Abstract

A detailed study of photo-inscribed optical waveguides in PMMA and polycarbonate using a mid-IR laser is presented. The wavelength of the laser is tuned near the absorption peaks of stretching C-H molecular bonds and the focused beam is scanned onto the surface of planar polymer samples. For the first time, we report the formation of optical waveguides in both polymers through resonant absorption of the laser beam. The optical properties of the waveguides were thoroughly assessed. An elliptic Gaussian mode is guided at the surface of both polymers. Insertion losses of 3.1 dB for a 30 mm long on-surface waveguide inscribed in PMMA were recorded. Such waveguides can interact with the external medium through evanescent coupling. As a proof of concept, the surface waveguides are used as highly sensitive refractometric sensors. An attenuation dynamical range of 35 dB was obtained for a liquid that matches the index of the PMMA substrate. Our results pave the way for large scale manufacturing of low cost biocompatible photonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser direct inscription of mid-IR transmitting waveguides in BGG glasses

Jean-Philippe Bérubé, Arthur Le Camus, Sandra Helena Messaddeq, Yannick Petit, Younès Messaddeq, Lionel Canioni, and Réal Vallée
Opt. Mater. Express 7(9) 3124-3135 (2017)

Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses

Amir H. Nejadmalayeri, Peter R. Herman, Jonas Burghoff, Matthias Will, Stefan Nolte, and Andreas Tünnermann
Opt. Lett. 30(9) 964-966 (2005)

Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse

Luis Pereira, Rui Min, Xuehao Hu, Christophe Caucheteur, Ole Bang, Beatriz Ortega, Carlos Marques, Paulo Antunes, and João L. Pinto
Opt. Express 26(14) 18096-18104 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  2. B. Ibarlucea, C. Fernandez-Sanchez, S. Demming, S. Buttgenbach, and A. Llobera, “Selective functionalization of PDMS-based photonics lab on a chip for biosensing,” Analyst 136(17), 3496 (2011).
    [Crossref]
  3. M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
    [Crossref]
  4. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  5. Z. Nie and E. Kumecheva, “Patterning surfaces with functional polymers,” Nat. Mater. 7(4), 277–290 (2008).
    [Crossref]
  6. O. Rötting, W. Röpke, H. Becker, and C. Gärtner, “Polymer microfabrication technologies,” Microsyst. Technol. 8(1), 32–36 (2002).
    [Crossref]
  7. T. Merkle, R. Götzen, J.-Y. Choi, and S. Koch, “Polymer multichip module process using 3-D printing technologies for D-band applications,” IEEE Trans. Microwave Theory Tech. 63(2), 481–493 (2015).
    [Crossref]
  8. K. Yasuhara, F. Yu, and T. Ishigure, “Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm,” Opt. Express 25(8), 8524–8533 (2017).
    [Crossref]
  9. A. Baum, P. Scully, M. Basanta, C. Paul Thomas, P. Fielden, N. Goddard, W. Perrie, and P. Chalker, “Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32(2), 190–192 (2007).
    [Crossref]
  10. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
    [Crossref]
  11. W. Patzold, C. Reinhardt, A. Demircan, and U. Mörgner, “Cascaded focus laser writing of low-loss waveguides in polymers,” Opt. Lett. 41(6), 1269–1272 (2016).
    [Crossref]
  12. C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 µm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
    [Crossref]
  13. A. A. Khalil, J. P. Bérubé, S. Danto, T. Cardinal, Y. Petit, R. Vallée, and L. Canioni, “Direct laser writing of near-surface waveguides in silver containing glasses with no additional processing,” Proc. SPIE 10908, 27 (2019).
    [Crossref]
  14. J. Lapointe, F. Parent, E.S. de Lima Filho, S. Loranger, and R. Kashyap, “Toward the integration of optical sensors in smartphone screens using femtosecond laser writing,” Opt. Lett. 40(23), 5654 (2015).
    [Crossref]
  15. N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15, 1 (2014).
    [Crossref]
  16. S. Duval, J. Gauthier, L.-R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6  µm,” Opt. Lett. 41(22), 5294 (2016).
    [Crossref]
  17. V. Fortin, F. Maes, M. Bernier, S. Bah, M. D’Auteuil, and R. Vallée, “Watt-level erbium-doped all-fiber laser at 3.44 µm,” Opt. Lett. 41(3), 559–562 (2016).
    [Crossref]
  18. P. Bon, G. Maucort, B. Wattelier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080 (2009).
    [Crossref]
  19. E. Bélanger, J. Bérubé, B. De Dorlodot, P. Marquet, and R. Vallée, “Comparative study of quantitative imaging techniques for refractometry of optical waveguides,” Opt. Express 26(13), 17498–17510 (2018).
    [Crossref]
  20. E. Ampem-Lassen, T. Huntington, N. Dragomir, K. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13(9), 3277 (2005).
    [Crossref]
  21. S.-M. Tseng and C.-L. Chen, “Side-polished fibers,” Appl. Opt. 31(18), 3438 (1992).
    [Crossref]

2019 (1)

A. A. Khalil, J. P. Bérubé, S. Danto, T. Cardinal, Y. Petit, R. Vallée, and L. Canioni, “Direct laser writing of near-surface waveguides in silver containing glasses with no additional processing,” Proc. SPIE 10908, 27 (2019).
[Crossref]

2018 (2)

E. Bélanger, J. Bérubé, B. De Dorlodot, P. Marquet, and R. Vallée, “Comparative study of quantitative imaging techniques for refractometry of optical waveguides,” Opt. Express 26(13), 17498–17510 (2018).
[Crossref]

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 µm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

2017 (1)

2016 (4)

2015 (2)

T. Merkle, R. Götzen, J.-Y. Choi, and S. Koch, “Polymer multichip module process using 3-D printing technologies for D-band applications,” IEEE Trans. Microwave Theory Tech. 63(2), 481–493 (2015).
[Crossref]

J. Lapointe, F. Parent, E.S. de Lima Filho, S. Loranger, and R. Kashyap, “Toward the integration of optical sensors in smartphone screens using femtosecond laser writing,” Opt. Lett. 40(23), 5654 (2015).
[Crossref]

2014 (1)

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15, 1 (2014).
[Crossref]

2011 (1)

B. Ibarlucea, C. Fernandez-Sanchez, S. Demming, S. Buttgenbach, and A. Llobera, “Selective functionalization of PDMS-based photonics lab on a chip for biosensing,” Analyst 136(17), 3496 (2011).
[Crossref]

2010 (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

2009 (1)

2008 (1)

Z. Nie and E. Kumecheva, “Patterning surfaces with functional polymers,” Nat. Mater. 7(4), 277–290 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2002 (2)

O. Rötting, W. Röpke, H. Becker, and C. Gärtner, “Polymer microfabrication technologies,” Microsyst. Technol. 8(1), 32–36 (2002).
[Crossref]

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

1992 (1)

Ampem-Lassen, E.

Arts, R.

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Bah, S.

Basanta, M.

Baum, A.

Becker, H.

O. Rötting, W. Röpke, H. Becker, and C. Gärtner, “Polymer microfabrication technologies,” Microsyst. Technol. 8(1), 32–36 (2002).
[Crossref]

Bélanger, E.

Bernier, M.

Bérubé, J.

Bérubé, J. P.

A. A. Khalil, J. P. Bérubé, S. Danto, T. Cardinal, Y. Petit, R. Vallée, and L. Canioni, “Direct laser writing of near-surface waveguides in silver containing glasses with no additional processing,” Proc. SPIE 10908, 27 (2019).
[Crossref]

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 µm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Bon, P.

Buttgenbach, S.

B. Ibarlucea, C. Fernandez-Sanchez, S. Demming, S. Buttgenbach, and A. Llobera, “Selective functionalization of PDMS-based photonics lab on a chip for biosensing,” Analyst 136(17), 3496 (2011).
[Crossref]

Canioni, L.

A. A. Khalil, J. P. Bérubé, S. Danto, T. Cardinal, Y. Petit, R. Vallée, and L. Canioni, “Direct laser writing of near-surface waveguides in silver containing glasses with no additional processing,” Proc. SPIE 10908, 27 (2019).
[Crossref]

Cardinal, T.

A. A. Khalil, J. P. Bérubé, S. Danto, T. Cardinal, Y. Petit, R. Vallée, and L. Canioni, “Direct laser writing of near-surface waveguides in silver containing glasses with no additional processing,” Proc. SPIE 10908, 27 (2019).
[Crossref]

Chalker, P.

Chen, C.-L.

Choi, J.-Y.

T. Merkle, R. Götzen, J.-Y. Choi, and S. Koch, “Polymer multichip module process using 3-D printing technologies for D-band applications,” IEEE Trans. Microwave Theory Tech. 63(2), 481–493 (2015).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

D’Auteuil, M.

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Danto, S.

A. A. Khalil, J. P. Bérubé, S. Danto, T. Cardinal, Y. Petit, R. Vallée, and L. Canioni, “Direct laser writing of near-surface waveguides in silver containing glasses with no additional processing,” Proc. SPIE 10908, 27 (2019).
[Crossref]

De Dorlodot, B.

de Lima Filho, E.S.

Demircan, A.

Demming, S.

B. Ibarlucea, C. Fernandez-Sanchez, S. Demming, S. Buttgenbach, and A. Llobera, “Selective functionalization of PDMS-based photonics lab on a chip for biosensing,” Analyst 136(17), 3496 (2011).
[Crossref]

Dragomir, N.

Duval, S.

Fernandez-Sanchez, C.

B. Ibarlucea, C. Fernandez-Sanchez, S. Demming, S. Buttgenbach, and A. Llobera, “Selective functionalization of PDMS-based photonics lab on a chip for biosensing,” Analyst 136(17), 3496 (2011).
[Crossref]

Fielden, P.

Fortin, V.

Fraser, A.

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 µm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Frayssinous, C.

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 µm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Gärtner, C.

O. Rötting, W. Röpke, H. Becker, and C. Gärtner, “Polymer microfabrication technologies,” Microsyst. Technol. 8(1), 32–36 (2002).
[Crossref]

Gauthier, J.

Goddard, N.

Götzen, R.

T. Merkle, R. Götzen, J.-Y. Choi, and S. Koch, “Polymer multichip module process using 3-D printing technologies for D-band applications,” IEEE Trans. Microwave Theory Tech. 63(2), 481–493 (2015).
[Crossref]

Huntington, T.

Ibarlucea, B.

B. Ibarlucea, C. Fernandez-Sanchez, S. Demming, S. Buttgenbach, and A. Llobera, “Selective functionalization of PDMS-based photonics lab on a chip for biosensing,” Analyst 136(17), 3496 (2011).
[Crossref]

Ishigure, T.

Itoh, K.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Jing, N.

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15, 1 (2014).
[Crossref]

Kashyap, R.

Khalil, A. A.

A. A. Khalil, J. P. Bérubé, S. Danto, T. Cardinal, Y. Petit, R. Vallée, and L. Canioni, “Direct laser writing of near-surface waveguides in silver containing glasses with no additional processing,” Proc. SPIE 10908, 27 (2019).
[Crossref]

Koch, S.

T. Merkle, R. Götzen, J.-Y. Choi, and S. Koch, “Polymer multichip module process using 3-D printing technologies for D-band applications,” IEEE Trans. Microwave Theory Tech. 63(2), 481–493 (2015).
[Crossref]

Kumecheva, E.

Z. Nie and E. Kumecheva, “Patterning surfaces with functional polymers,” Nat. Mater. 7(4), 277–290 (2008).
[Crossref]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Lapointe, J.

Llobera, A.

B. Ibarlucea, C. Fernandez-Sanchez, S. Demming, S. Buttgenbach, and A. Llobera, “Selective functionalization of PDMS-based photonics lab on a chip for biosensing,” Analyst 136(17), 3496 (2011).
[Crossref]

Loranger, S.

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Maes, F.

Marquet, P.

Maucort, G.

Merkle, T.

T. Merkle, R. Götzen, J.-Y. Choi, and S. Koch, “Polymer multichip module process using 3-D printing technologies for D-band applications,” IEEE Trans. Microwave Theory Tech. 63(2), 481–493 (2015).
[Crossref]

Merkx, M.

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Moirangthem, M.

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Monneret, S.

Mörgner, U.

Nie, Z.

Z. Nie and E. Kumecheva, “Patterning surfaces with functional polymers,” Nat. Mater. 7(4), 277–290 (2008).
[Crossref]

Nishii, J.

Nugent, K.

Olivier, M.

Paradis, P.

Parent, F.

Patzold, W.

Paul Thomas, C.

Perrie, W.

Petit, Y.

A. A. Khalil, J. P. Bérubé, S. Danto, T. Cardinal, Y. Petit, R. Vallée, and L. Canioni, “Direct laser writing of near-surface waveguides in silver containing glasses with no additional processing,” Proc. SPIE 10908, 27 (2019).
[Crossref]

Piché, M.

Reinhardt, C.

Roberts, A.

Robichaud, L.-R.

Röpke, W.

O. Rötting, W. Röpke, H. Becker, and C. Gärtner, “Polymer microfabrication technologies,” Microsyst. Technol. 8(1), 32–36 (2002).
[Crossref]

Rötting, O.

O. Rötting, W. Röpke, H. Becker, and C. Gärtner, “Polymer microfabrication technologies,” Microsyst. Technol. 8(1), 32–36 (2002).
[Crossref]

Schenning, A. P. H. J.

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Scully, P.

Sowa, S.

Tamaki, T.

Teng, C.

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15, 1 (2014).
[Crossref]

Tseng, S.-M.

Vallée, R.

Watanabe, W.

Wattelier, B.

Yasuhara, K.

Yu, F.

Zhao, X.

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15, 1 (2014).
[Crossref]

Zheng, J.

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15, 1 (2014).
[Crossref]

Adv. Funct. Mater. (1)

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Analyst (1)

B. Ibarlucea, C. Fernandez-Sanchez, S. Demming, S. Buttgenbach, and A. Llobera, “Selective functionalization of PDMS-based photonics lab on a chip for biosensing,” Analyst 136(17), 3496 (2011).
[Crossref]

Appl. Opt. (1)

IEEE Sens. J. (1)

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15, 1 (2014).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

T. Merkle, R. Götzen, J.-Y. Choi, and S. Koch, “Polymer multichip module process using 3-D printing technologies for D-band applications,” IEEE Trans. Microwave Theory Tech. 63(2), 481–493 (2015).
[Crossref]

J. Mater. Process. Technol. (1)

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 µm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Microsyst. Technol. (1)

O. Rötting, W. Röpke, H. Becker, and C. Gärtner, “Polymer microfabrication technologies,” Microsyst. Technol. 8(1), 32–36 (2002).
[Crossref]

Nat. Mater. (1)

Z. Nie and E. Kumecheva, “Patterning surfaces with functional polymers,” Nat. Mater. 7(4), 277–290 (2008).
[Crossref]

Nat. Photonics (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Proc. SPIE (1)

A. A. Khalil, J. P. Bérubé, S. Danto, T. Cardinal, Y. Petit, R. Vallée, and L. Canioni, “Direct laser writing of near-surface waveguides in silver containing glasses with no additional processing,” Proc. SPIE 10908, 27 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Absorption spectra of PMMA and polycarbonate along with the emission spectrum of the tunable mid-IR laser. The region delimited by the blue arrow depicts the tunable range of the central wavelength of the femtosecond laser.
Fig. 2.
Fig. 2. a) Brightfield images of the cross section and longitudinal section of photo-induced modifications inscribed using a single pass of the laser in a) PMMA and b) polycarbonate. The cw laser was used to inscribed the modifications (λc = 3.425 µm).
Fig. 3.
Fig. 3. Refractive index profiles (∼2 µm below the surface) in a) Polycarbonate and b) PMMA using different laser fluences and number of successive passes. On the right: plot of the data points taken along the blue (solid) and red (dashed) lines. The white scale bars in the phase images equal 20 µm. For feasibility reasons, the phase image had to be taken about two microns below the surface. The cw laser was used to inscribed the modifications (λc = 3.425 µm).
Fig. 4.
Fig. 4. Near-field intensity profile of λ = 633 nm light transmitted through waveguides inscribed in a) PMMA and b) polycarbonate. The white scale bar equals 20 µm. The boundary of the photo-induced modification area along with the surface of the sample were added to the near-field images for illustrative purposes. The cw laser was used to inscribed the waveguides (λc = 3.425 µm).
Fig. 5.
Fig. 5. Ratio of the transmitted power with (P) and without (P0) the soaked tissues deposited on the surface of the sensor waveguides.

Tables (1)

Tables Icon

Table 1. Propagation loss of the guided modes in both polymers

Metrics