Abstract

This work shows the first application of a burst laser for laser-induced grating spectroscopy (LIGS) diagnostics. High repetition rate (100 kHz) LIGS is performed in non reacting and reacting flows using the fundamental harmonic of a Nd:YAG pulse-burst laser as pump. In the first part of the paper, we demonstrate the first time-resolved, high repetition rate electrostrictive LIGS measurements in a sinusoidally-modulated helium jet, allowed by the highly energetic pulses delivered by the burst laser (around 130 mJ per pulse). In the second part of the paper, we perform thermal LIGS measurements in a premixed laminar methane/air flame. Thermal gratings are generated in the flame products from the water vapour, which weakly absorbs 1064 nm light. Thus, this work demonstrates the potential of seeding-free high repetition rate LIGS as a technique to detect and time-resolve the instantaneous speed of sound, temperature, and composition in unsteady flow processes.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Burst-mode OH/CH2O planar laser-induced fluorescence imaging of the heat release zone in an unsteady flame

Ulrich Retzer, Rongchao Pan, Thomas Werblinski, Franz J. T. Huber, Mikhail N. Slipchenko, Terrence R. Meyer, Lars Zigan, and Stefan Will
Opt. Express 26(14) 18105-18114 (2018)

100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser

Sukesh Roy, Paul S. Hsu, Naibo Jiang, Mikhail N. Slipchenko, and James R. Gord
Opt. Lett. 40(21) 5125-5128 (2015)

Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

James B. Michael, Prabhakar Venkateswaran, Christopher R. Shaddix, and Terrence R. Meyer
Appl. Opt. 54(11) 3331-3344 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
    [Crossref]
  2. D. F. Davidson, A. Y. Chang, M. D. Dirosa, and R. K. Hanson, “Continuous wave laser absorption techniques for gas-dynamic measurements in supersonic flows,” Appl. Opt. 30(18), 2598–2608 (1991).
    [Crossref]
  3. R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energy Combust. Sci. 44, 103–114 (2014).
    [Crossref]
  4. G. H. Wang, N. T. Clemens, and P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame,” Proc. Combust. Inst. 30(1), 691–699 (2005).
    [Crossref]
  5. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single shot thermometry at 1-kHz using fd-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
    [Crossref]
  6. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
    [Crossref]
  7. S. Roy, P. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
    [Crossref]
  8. J. D. Miller, M. S. Slipchenko, J. G. Mance, and R. S J. Gord, “1-kHz two-dimentsional coherent anti-Stokes Raman scattering (2D-CARS) for gas-phase thermometry,” Opt. Express 24(22), 24971–1342 (2016).
    [Crossref]
  9. E. B. Cummings, I. A. Leyva, and H. G. Hornung, “Laser-induced thermal acoustics (LITA) signals from finite beams,” Appl. Opt. 34(18), 3290–3302 (1995).
    [Crossref]
  10. H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
    [Crossref]
  11. A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory,” Appl. Phys. B: Lasers Opt. 81(1), 101–111 (2005).
    [Crossref]
  12. F. J. Förster, C. Crua, M. Davy, and P. Ewart, “Time-resolved gas thermometry by laser-induced grating spectroscopy with a high-repetition rate laser system,” Exp. Fluids 58(7), 87 (2017).
    [Crossref]
  13. F. De Domenico, S. M. Lowe, L. Fan, B. A. O. Williams, and S. Hochgreb, “High frequency measurement of temperature and composition spots with LITGS,” J. Eng. Gas Turbines Power 141(3), 1–11 (2019).
    [Crossref]
  14. P. P. Wu and R. B. Miles, “High-energy pulse-burst laser system for megahertz-rate flow visualization,” Opt. Lett. 25(22), 1639–1641 (2000).
    [Crossref]
  15. F. De Domenico, T. F. Guiberti, S. Hochgreb, and W. L. Roberts, “Temperature and water measurements in flames using 1064 nm Laser-Induced Grating Spectroscopy (LIGS),” Combust. Flame 205, 336–344 (2019).
    [Crossref]

2019 (2)

F. De Domenico, S. M. Lowe, L. Fan, B. A. O. Williams, and S. Hochgreb, “High frequency measurement of temperature and composition spots with LITGS,” J. Eng. Gas Turbines Power 141(3), 1–11 (2019).
[Crossref]

F. De Domenico, T. F. Guiberti, S. Hochgreb, and W. L. Roberts, “Temperature and water measurements in flames using 1064 nm Laser-Induced Grating Spectroscopy (LIGS),” Combust. Flame 205, 336–344 (2019).
[Crossref]

2017 (1)

F. J. Förster, C. Crua, M. Davy, and P. Ewart, “Time-resolved gas thermometry by laser-induced grating spectroscopy with a high-repetition rate laser system,” Exp. Fluids 58(7), 87 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (1)

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

2010 (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

2009 (1)

2005 (2)

G. H. Wang, N. T. Clemens, and P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame,” Proc. Combust. Inst. 30(1), 691–699 (2005).
[Crossref]

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory,” Appl. Phys. B: Lasers Opt. 81(1), 101–111 (2005).
[Crossref]

2000 (1)

1998 (2)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref]

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
[Crossref]

1995 (1)

1991 (1)

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref]

Chang, A. Y.

Clemens, N. T.

G. H. Wang, N. T. Clemens, and P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame,” Proc. Combust. Inst. 30(1), 691–699 (2005).
[Crossref]

Crua, C.

F. J. Förster, C. Crua, M. Davy, and P. Ewart, “Time-resolved gas thermometry by laser-induced grating spectroscopy with a high-repetition rate laser system,” Exp. Fluids 58(7), 87 (2017).
[Crossref]

Cummings, E. B.

Davidson, D. F.

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

D. F. Davidson, A. Y. Chang, M. D. Dirosa, and R. K. Hanson, “Continuous wave laser absorption techniques for gas-dynamic measurements in supersonic flows,” Appl. Opt. 30(18), 2598–2608 (1991).
[Crossref]

Davy, M.

F. J. Förster, C. Crua, M. Davy, and P. Ewart, “Time-resolved gas thermometry by laser-induced grating spectroscopy with a high-repetition rate laser system,” Exp. Fluids 58(7), 87 (2017).
[Crossref]

De Domenico, F.

F. De Domenico, S. M. Lowe, L. Fan, B. A. O. Williams, and S. Hochgreb, “High frequency measurement of temperature and composition spots with LITGS,” J. Eng. Gas Turbines Power 141(3), 1–11 (2019).
[Crossref]

F. De Domenico, T. F. Guiberti, S. Hochgreb, and W. L. Roberts, “Temperature and water measurements in flames using 1064 nm Laser-Induced Grating Spectroscopy (LIGS),” Combust. Flame 205, 336–344 (2019).
[Crossref]

Dillmann, M.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
[Crossref]

Dirosa, M. D.

Dreier, T.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
[Crossref]

Dreizler, A.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
[Crossref]

Ewart, P.

F. J. Förster, C. Crua, M. Davy, and P. Ewart, “Time-resolved gas thermometry by laser-induced grating spectroscopy with a high-repetition rate laser system,” Exp. Fluids 58(7), 87 (2017).
[Crossref]

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
[Crossref]

Fan, L.

F. De Domenico, S. M. Lowe, L. Fan, B. A. O. Williams, and S. Hochgreb, “High frequency measurement of temperature and composition spots with LITGS,” J. Eng. Gas Turbines Power 141(3), 1–11 (2019).
[Crossref]

Förster, F. J.

F. J. Förster, C. Crua, M. Davy, and P. Ewart, “Time-resolved gas thermometry by laser-induced grating spectroscopy with a high-repetition rate laser system,” Exp. Fluids 58(7), 87 (2017).
[Crossref]

Gord, J. R.

Guiberti, T. F.

F. De Domenico, T. F. Guiberti, S. Hochgreb, and W. L. Roberts, “Temperature and water measurements in flames using 1064 nm Laser-Induced Grating Spectroscopy (LIGS),” Combust. Flame 205, 336–344 (2019).
[Crossref]

Hanson, R. K.

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

D. F. Davidson, A. Y. Chang, M. D. Dirosa, and R. K. Hanson, “Continuous wave laser absorption techniques for gas-dynamic measurements in supersonic flows,” Appl. Opt. 30(18), 2598–2608 (1991).
[Crossref]

Heinze, J.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
[Crossref]

Hemmerling, B.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory,” Appl. Phys. B: Lasers Opt. 81(1), 101–111 (2005).
[Crossref]

Hochgreb, S.

F. De Domenico, T. F. Guiberti, S. Hochgreb, and W. L. Roberts, “Temperature and water measurements in flames using 1064 nm Laser-Induced Grating Spectroscopy (LIGS),” Combust. Flame 205, 336–344 (2019).
[Crossref]

F. De Domenico, S. M. Lowe, L. Fan, B. A. O. Williams, and S. Hochgreb, “High frequency measurement of temperature and composition spots with LITGS,” J. Eng. Gas Turbines Power 141(3), 1–11 (2019).
[Crossref]

Hornung, H. G.

Hsu, P.

J. Gord, R. S

Jiang, N.

Kozlov, D. N.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory,” Appl. Phys. B: Lasers Opt. 81(1), 101–111 (2005).
[Crossref]

Kulatilaka, W. D.

Latzel, H.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
[Crossref]

Leyva, I. A.

Lloyd, G. M.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
[Crossref]

Lowe, S. M.

F. De Domenico, S. M. Lowe, L. Fan, B. A. O. Williams, and S. Hochgreb, “High frequency measurement of temperature and composition spots with LITGS,” J. Eng. Gas Turbines Power 141(3), 1–11 (2019).
[Crossref]

Lucht, R. P.

Mance, J. G.

Miles, R. B.

Miller, J. D.

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Radi, P. P.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory,” Appl. Phys. B: Lasers Opt. 81(1), 101–111 (2005).
[Crossref]

Richardson, D. R.

Roberts, W. L.

F. De Domenico, T. F. Guiberti, S. Hochgreb, and W. L. Roberts, “Temperature and water measurements in flames using 1064 nm Laser-Induced Grating Spectroscopy (LIGS),” Combust. Flame 205, 336–344 (2019).
[Crossref]

Roy, S.

Slipchenko, M. N.

Slipchenko, M. S.

Stampanoni-Panariello, A.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory,” Appl. Phys. B: Lasers Opt. 81(1), 101–111 (2005).
[Crossref]

Stricker, W.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
[Crossref]

Varghese, P. L.

G. H. Wang, N. T. Clemens, and P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame,” Proc. Combust. Inst. 30(1), 691–699 (2005).
[Crossref]

Wang, G. H.

G. H. Wang, N. T. Clemens, and P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame,” Proc. Combust. Inst. 30(1), 691–699 (2005).
[Crossref]

Williams, B. A. O.

F. De Domenico, S. M. Lowe, L. Fan, B. A. O. Williams, and S. Hochgreb, “High frequency measurement of temperature and composition spots with LITGS,” J. Eng. Gas Turbines Power 141(3), 1–11 (2019).
[Crossref]

Wu, P. P.

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (2)

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, and P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B: Lasers Opt. 67(5), 667–673 (1998).
[Crossref]

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory,” Appl. Phys. B: Lasers Opt. 81(1), 101–111 (2005).
[Crossref]

Combust. Flame (1)

F. De Domenico, T. F. Guiberti, S. Hochgreb, and W. L. Roberts, “Temperature and water measurements in flames using 1064 nm Laser-Induced Grating Spectroscopy (LIGS),” Combust. Flame 205, 336–344 (2019).
[Crossref]

Exp. Fluids (1)

F. J. Förster, C. Crua, M. Davy, and P. Ewart, “Time-resolved gas thermometry by laser-induced grating spectroscopy with a high-repetition rate laser system,” Exp. Fluids 58(7), 87 (2017).
[Crossref]

J. Eng. Gas Turbines Power (1)

F. De Domenico, S. M. Lowe, L. Fan, B. A. O. Williams, and S. Hochgreb, “High frequency measurement of temperature and composition spots with LITGS,” J. Eng. Gas Turbines Power 141(3), 1–11 (2019).
[Crossref]

Meas. Sci. Technol. (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. Combust. Inst. (1)

G. H. Wang, N. T. Clemens, and P. L. Varghese, “High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame,” Proc. Combust. Inst. 30(1), 691–699 (2005).
[Crossref]

Prog. Energy Combust. Sci. (2)

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Optical layout of the experiment. BSp: Beam Splitter (for 1064 nm); PT: Periscope Tower; MB: Magnetic Base; CL: Crossing Lens; BD: Beam Dump; PBSC: Polarising Beam Splitter Cube; HWP: Half Wave Plate; BSa: Beam Sampler; NDFW: Neutral Density Filter Wheel; CMOS: CMOS Camera; HBS: Harmonic Beam Splitter; PMT: Photomultiplier. Refer to [15] for more details.
Fig. 2.
Fig. 2. Experimental set-up: Helium jet (a) and pressure vessel with McKenna burner (b). CL: Crossing Lens; BPR: Back Pressure Regulator; BD: Beam Dump
Fig. 3.
Fig. 3. Normalized single shot LIEGS signals recorded at 100 kHz in the steady jets of air (red) and helium and air (black) (a). Density derived from LIGS signals during a 10 ms burst (b): steady jet of pure air (red circles), steady mixture of helium and air (black circles); modulated jet of helium and air (blue circles) and corresponding averaged signal over 42 bursts (magenta line).
Fig. 4.
Fig. 4. Comparison between 100 kHz (black) and 10 Hz (red) LIGS measurements in premixed methane-air flames at 4 bar. Normalized LIGS signals (solid line) and pump laser pulses (dashed lines) (a); measured speed of sound (b); measured water concentration (c).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f = n c Λ = n Λ γ R T W
( f E , i f E , 0 ) 2 = ( 1 R c ¯ p , a ( 1 X H e ) + c ¯ p , h X H e ) 1 ( 1 R c ¯ p , a ) 1 W a W a ( 1 X H e ) + W H e X H e
ρ i ρ 0 = W i W a = W a ( 1 X H e ) + W H e X H e W a
f a , i = c a Λ i = c a sin ( θ i / 2 ) λ / 2
c E , i = Λ i f E , i

Metrics