Abstract

Doppler wind lidar is an effective tool for wind detection with high temporal and spatial resolution. However, precise wind profile measurement under rainy conditions is a challenge, due to the interfering signals from raindrop reflections. In this work, a compact all-fiber coherent Doppler lidar (CDL) at working wavelength of 1.5 µm is applied for simultaneous wind and precipitation detection. The performance of the lidar is validated by comparison with the weather balloons. Thanks to the ability of precise spectrum measurement, both aerosol and rainfall signals can be detected by the CDL under rainy conditions. The spectrum width is used to identify the precipitation events, during which the two-peak Doppler spectrum is observed. The spectrum is fitted by a two-component Gaussian model and two velocities are obtained. By using the velocity-azimuth display (VAD) scanning technique, wind speed and rainfall speed are simultaneously retrieved. The false detection probability of wind speed in the rainy conditions is thus reduced.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis

Zhangjun Wang, Zhishen Liu, Liping Liu, Songhua Wu, Bingyi Liu, Zhigang Li, and Xinzhao Chu
Appl. Opt. 49(36) 6960-6978 (2010)

All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer

Mingjia Shangguan, Haiyun Xia, Chong Wang, Jiawei Qiu, Guoliang Shentu, Qiang Zhang, Xiankang Dou, and Jian-wei Pan
Opt. Express 24(17) 19322-19336 (2016)

A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations

Cyrus F. Abari, Xinzhao Chu, R. Michael Hardesty, and Jakob Mann
Appl. Opt. 54(30) 8999-9009 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
    [Crossref]
  2. C. Kidd and G. Huffman, “Global precipitation measurement,” Met. Apps 18(3), 334–353 (2011).
    [Crossref]
  3. J. Luers and P. Haines, “Heavy rain influence on airplane accidents,” J. Aircr. 20(2), 187–191 (1983).
    [Crossref]
  4. L. Alfieri and J. Thielen, “A European precipitation index for extreme rain-storm and flash flood early warning,” Met. Apps 22(1), 3–13 (2015).
    [Crossref]
  5. Y. Bayissa, T. Tadesse, G. Demisse, and A. Shiferaw, “Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia,” Remote Sens. 9(7), 669 (2017).
    [Crossref]
  6. U. Schneider, P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, “Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC),” Atmosphere 8(12), 52 (2017).
    [Crossref]
  7. P. Chan and Y. Lee, “Application of short-range lidar in wind shear alerting,” J. Atmos. Oceanic Technol. 29(2), 207–220 (2012).
    [Crossref]
  8. Y. Cao, Z. Wu, and Z. Xu, “Effects of rainfall on aircraft aerodynamics,” Prog. Aerosp. Sci. 71, 85–127 (2014).
    [Crossref]
  9. B. C. Bernstein, T. A. Omeron, M. K. Politovich, and F. McDonough, “Surface weather features associated with freezing precipitation and severe in-flight aircraft icing,” Atmos. Res. 46(1-2), 57–73 (1998).
    [Crossref]
  10. C. J. O’Connor and D. K. Rutishauser, “Enhanced Airport Capacity Through Safe, Dynamic Reductions in Aircraft Separation: NASA's Aircraft Vortex Spacing System (AVOSS),” (2001).
  11. A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).
  12. J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
    [Crossref]
  13. G. Peters, B. Fischer, and T. Andersson, “Rain observations with a vertically looking Micro Rain Radar (MRR),” Boreal Environ. Res. 7, 353–362 (2002).
  14. T. N. Rao, D. N. Rao, and S. Raghavan, “Tropical precipitating systems observed with Indian MST radar,” Radio Sci. 34(5), 1125–1139 (1999).
    [Crossref]
  15. H. Qing, Y. Chu, Z. Zhao, C. Su, C. Zhou, and Y. Zhang, “Observation and analysis of atmospheric rainfall based on the very high frequency radar,” IET Radar, Sonar & Navigation 11(4), 616–620 (2017).
    [Crossref]
  16. P. A. Lewandowski, W. E. Eichinger, A. Kruger, and W. F. Krajewski, “Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence,” J. Atmos. Oceanic Technol. 26(3), 656–664 (2009).
    [Crossref]
  17. C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
    [Crossref]
  18. S. Lolli, E. J. Welton, and J. R. Campbell, “Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling,” J. Atmos. Oceanic Technol. 30(12), 2798–2807 (2013).
    [Crossref]
  19. E. J. O’Connor, R. J. Hogan, and A. J. Illingworth, “Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar,” J. Appl. Meteorol. 44(1), 14–27 (2005).
    [Crossref]
  20. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richer, and A. M. Weickmann, “High-resolution doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18(3), 376–393 (2001).
    [Crossref]
  21. G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
    [Crossref]
  22. H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41(22), 5218 (2016).
    [Crossref]
  23. M. L. Aitken, M. E. Rhodes, and J. K. Lundquist, “Performance of a wind-profiling lidar in the region of wind turbine rotor disks,” J. Atmos. Oceanic Technol. 29(3), 347–355 (2012).
    [Crossref]
  24. H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286 (2012).
    [Crossref]
  25. M. Shangguan, H. Xia, X. Dou, C. Wang, J. Qiu, Y. Zhang, Z. Shu, and X. Xue, “Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination,” Chin. Phys. B 24(9), 094212 (2015).
    [Crossref]
  26. H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22(18), 21775 (2014).
    [Crossref]
  27. O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
    [Crossref]
  28. R. T. Menzies and R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77(3), 449–462 (1989).
    [Crossref]
  29. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46(11), 1953 (2007).
    [Crossref]
  30. G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
    [Crossref]
  31. W. Diao, X. Zhang, J. Liu, X. Zhu, Y. Liu, D. Bi, and W. Chen, “All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers,” Chin. Opt. Lett. 12(7), 072801 (2014).
    [Crossref]
  32. P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(9), 9339–9372 (2015).
    [Crossref]
  33. M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J.-W. Pan, “Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector,” Opt. Lett. 42(18), 3541 (2017).
    [Crossref]
  34. B. T. Lottman, R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Evaluation of Vertical Winds near and inside a Cloud Deck Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 18(8), 1377–1386 (2001).
    [Crossref]
  35. N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
    [Crossref]
  36. M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24(17), 19322 (2016).
    [Crossref]
  37. M. Aoki, H. Iwai, K. Nakagawa, S. Ishii, and K. Mizutani, “Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 33(9), 1949–1966 (2016).
    [Crossref]
  38. K. Träumner, J. Handwerker, A. Wieser, and J. Grenzhäuser, “A Synergy Approach to Estimate Properties of Raindrop Size Distributions Using a Doppler Lidar and Cloud Radar,” J. Atmos. Oceanic Technol. 27(6), 1095–1100 (2010).
    [Crossref]
  39. R. Frehlich, “Performance of maximum likelihood estimators of mean power and doppler velocity with a priori knowledge of spectrum width,” J. Atmos. Oceanic Technol. 16(11), 1702–1709 (1999).
    [Crossref]
  40. T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005).
  41. R. G. Frehlich and M. J. Yadlowsky, “Performance of Mean-Frequency Estimators for Doppler Radar and Lidar,” J. Atmos. Oceanic Technol. 11(5), 1217–1230 (1994).
    [Crossref]
  42. B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Electron. 31(1), 16–27 (1993).
    [Crossref]
  43. B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Electron. 31(1), 28–35 (1993).
    [Crossref]
  44. H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 µm with an upconversion single-photon detector,” Opt. Lett. 40(7), 1579 (2015).
    [Crossref]
  45. ANSI Standard Z136.1, American National Standard for the Safe Use of Lasers (American National Standards Institute, Inc., 2007).
  46. C. Wang, H. Xia, Y. Wu, J. Dong, T. Wei, L. Wang, and X. Dou, “Meter-scale spatial-resolution-coherent Doppler wind lidar based on Golay coding,” Opt. Lett. 44(2), 311 (2019).
    [Crossref]
  47. J. Bian, “Statistics of gravity waves in the lower stratosphere over Beijing based on high vertical resolution radiosonde,” Sci. China, Ser. D: Earth Sci. 48(9), 1548 (2005).
    [Crossref]
  48. S. D. Zhang and F. Yi, “A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E) China,” Ann. Geophys. 23(3), 665–673 (2005).
    [Crossref]
  49. M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).
  50. R. Frehlich, “Simulation of Coherent Doppler Lidar Performance in the Weak_Signal Regime,” J. Atmos. Oceanic Technol. 13(3), 646–658 (1996).
    [Crossref]
  51. X. Shang, H. Xia, X. Dou, M. Shangguan, M. Li, and C. Wang, “Adaptive inversion algorithm for 1.5 µm visibility lidar incorporating in situ Angstrom wavelength exponent,” Opt. Commun. 418, 129–134 (2018).
    [Crossref]
  52. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120 (2007).
    [Crossref]
  53. J. Qiu, H. Xia, M. Shangguan, X. Dou, M. Li, C. Wang, X. Shang, S. Lin, and J. Liu, “Micro-pulse polarization lidar at 1.5 µm using a single superconducting nanowire single-photon detector,” Opt. Lett. 42(21), 4454 (2017).
    [Crossref]
  54. L. R. Bissonnette, G. Roy, and F. Fabry, “Range–Height Scans of Lidar Depolarization for Characterizing Properties and Phase of Clouds and Precipitation,” J. Atmos. Oceanic Technol. 18(9), 1429–1446 (2001).
    [Crossref]
  55. C. Wang, H. Xia, M. Shangguan, Y. Wu, L. Wang, L. Zhao, J. Qiu, and R. Zhang, “1.5 µm polarization coherent lidar incorporating time-division multiplexing,” Opt. Express 25(17), 20663 (2017).
    [Crossref]
  56. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41(36), 7657–7666 (2002).
    [Crossref]
  57. V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
    [Crossref]
  58. F. Liu and F. Yi, “Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere,” Appl. Opt. 52(28), 6884–6895 (2013).
    [Crossref]
  59. D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003).
    [Crossref]
  60. D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42(15), 2593–2608 (2003).
    [Crossref]

2019 (2)

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

C. Wang, H. Xia, Y. Wu, J. Dong, T. Wei, L. Wang, and X. Dou, “Meter-scale spatial-resolution-coherent Doppler wind lidar based on Golay coding,” Opt. Lett. 44(2), 311 (2019).
[Crossref]

2018 (2)

O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
[Crossref]

X. Shang, H. Xia, X. Dou, M. Shangguan, M. Li, and C. Wang, “Adaptive inversion algorithm for 1.5 µm visibility lidar incorporating in situ Angstrom wavelength exponent,” Opt. Commun. 418, 129–134 (2018).
[Crossref]

2017 (6)

H. Qing, Y. Chu, Z. Zhao, C. Su, C. Zhou, and Y. Zhang, “Observation and analysis of atmospheric rainfall based on the very high frequency radar,” IET Radar, Sonar & Navigation 11(4), 616–620 (2017).
[Crossref]

Y. Bayissa, T. Tadesse, G. Demisse, and A. Shiferaw, “Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia,” Remote Sens. 9(7), 669 (2017).
[Crossref]

U. Schneider, P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, “Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC),” Atmosphere 8(12), 52 (2017).
[Crossref]

C. Wang, H. Xia, M. Shangguan, Y. Wu, L. Wang, L. Zhao, J. Qiu, and R. Zhang, “1.5 µm polarization coherent lidar incorporating time-division multiplexing,” Opt. Express 25(17), 20663 (2017).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J.-W. Pan, “Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector,” Opt. Lett. 42(18), 3541 (2017).
[Crossref]

J. Qiu, H. Xia, M. Shangguan, X. Dou, M. Li, C. Wang, X. Shang, S. Lin, and J. Liu, “Micro-pulse polarization lidar at 1.5 µm using a single superconducting nanowire single-photon detector,” Opt. Lett. 42(21), 4454 (2017).
[Crossref]

2016 (3)

2015 (5)

M. Shangguan, H. Xia, X. Dou, C. Wang, J. Qiu, Y. Zhang, Z. Shu, and X. Xue, “Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination,” Chin. Phys. B 24(9), 094212 (2015).
[Crossref]

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(9), 9339–9372 (2015).
[Crossref]

L. Alfieri and J. Thielen, “A European precipitation index for extreme rain-storm and flash flood early warning,” Met. Apps 22(1), 3–13 (2015).
[Crossref]

H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 µm with an upconversion single-photon detector,” Opt. Lett. 40(7), 1579 (2015).
[Crossref]

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

2014 (4)

2013 (3)

S. Lolli, E. J. Welton, and J. R. Campbell, “Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling,” J. Atmos. Oceanic Technol. 30(12), 2798–2807 (2013).
[Crossref]

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

F. Liu and F. Yi, “Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere,” Appl. Opt. 52(28), 6884–6895 (2013).
[Crossref]

2012 (4)

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286 (2012).
[Crossref]

M. L. Aitken, M. E. Rhodes, and J. K. Lundquist, “Performance of a wind-profiling lidar in the region of wind turbine rotor disks,” J. Atmos. Oceanic Technol. 29(3), 347–355 (2012).
[Crossref]

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

P. Chan and Y. Lee, “Application of short-range lidar in wind shear alerting,” J. Atmos. Oceanic Technol. 29(2), 207–220 (2012).
[Crossref]

2011 (1)

C. Kidd and G. Huffman, “Global precipitation measurement,” Met. Apps 18(3), 334–353 (2011).
[Crossref]

2010 (2)

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

K. Träumner, J. Handwerker, A. Wieser, and J. Grenzhäuser, “A Synergy Approach to Estimate Properties of Raindrop Size Distributions Using a Doppler Lidar and Cloud Radar,” J. Atmos. Oceanic Technol. 27(6), 1095–1100 (2010).
[Crossref]

2009 (1)

P. A. Lewandowski, W. E. Eichinger, A. Kruger, and W. F. Krajewski, “Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence,” J. Atmos. Oceanic Technol. 26(3), 656–664 (2009).
[Crossref]

2007 (3)

2005 (3)

E. J. O’Connor, R. J. Hogan, and A. J. Illingworth, “Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar,” J. Appl. Meteorol. 44(1), 14–27 (2005).
[Crossref]

J. Bian, “Statistics of gravity waves in the lower stratosphere over Beijing based on high vertical resolution radiosonde,” Sci. China, Ser. D: Earth Sci. 48(9), 1548 (2005).
[Crossref]

S. D. Zhang and F. Yi, “A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E) China,” Ann. Geophys. 23(3), 665–673 (2005).
[Crossref]

2003 (2)

2002 (2)

2001 (3)

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richer, and A. M. Weickmann, “High-resolution doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18(3), 376–393 (2001).
[Crossref]

B. T. Lottman, R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Evaluation of Vertical Winds near and inside a Cloud Deck Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 18(8), 1377–1386 (2001).
[Crossref]

L. R. Bissonnette, G. Roy, and F. Fabry, “Range–Height Scans of Lidar Depolarization for Characterizing Properties and Phase of Clouds and Precipitation,” J. Atmos. Oceanic Technol. 18(9), 1429–1446 (2001).
[Crossref]

1999 (2)

R. Frehlich, “Performance of maximum likelihood estimators of mean power and doppler velocity with a priori knowledge of spectrum width,” J. Atmos. Oceanic Technol. 16(11), 1702–1709 (1999).
[Crossref]

T. N. Rao, D. N. Rao, and S. Raghavan, “Tropical precipitating systems observed with Indian MST radar,” Radio Sci. 34(5), 1125–1139 (1999).
[Crossref]

1998 (1)

B. C. Bernstein, T. A. Omeron, M. K. Politovich, and F. McDonough, “Surface weather features associated with freezing precipitation and severe in-flight aircraft icing,” Atmos. Res. 46(1-2), 57–73 (1998).
[Crossref]

1996 (1)

R. Frehlich, “Simulation of Coherent Doppler Lidar Performance in the Weak_Signal Regime,” J. Atmos. Oceanic Technol. 13(3), 646–658 (1996).
[Crossref]

1994 (1)

R. G. Frehlich and M. J. Yadlowsky, “Performance of Mean-Frequency Estimators for Doppler Radar and Lidar,” J. Atmos. Oceanic Technol. 11(5), 1217–1230 (1994).
[Crossref]

1993 (2)

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Electron. 31(1), 16–27 (1993).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Electron. 31(1), 28–35 (1993).
[Crossref]

1989 (1)

R. T. Menzies and R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77(3), 449–462 (1989).
[Crossref]

1983 (1)

J. Luers and P. Haines, “Heavy rain influence on airplane accidents,” J. Aircr. 20(2), 187–191 (1983).
[Crossref]

Ablinger, M.

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Achtert, P.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(9), 9339–9372 (2015).
[Crossref]

Adler, B.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Agústsson, H.

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Aitken, M. L.

M. L. Aitken, M. E. Rhodes, and J. K. Lundquist, “Performance of a wind-profiling lidar in the region of wind turbine rotor disks,” J. Atmos. Oceanic Technol. 29(3), 347–355 (2012).
[Crossref]

Alfieri, L.

L. Alfieri and J. Thielen, “A European precipitation index for extreme rain-storm and flash flood early warning,” Met. Apps 22(1), 3–13 (2015).
[Crossref]

Amzajerdian, F.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Andersson, T.

G. Peters, B. Fischer, and T. Andersson, “Rain observations with a vertically looking Micro Rain Radar (MRR),” Boreal Environ. Res. 7, 353–362 (2002).

Ando, T.

Aoki, M.

M. Aoki, H. Iwai, K. Nakagawa, S. Ishii, and K. Mizutani, “Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 33(9), 1949–1966 (2016).
[Crossref]

Asaka, K.

Augere, B.

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

Azarbarzin, A. A.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
[Crossref]

Banta, R. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richer, and A. M. Weickmann, “High-resolution doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18(3), 376–393 (2001).
[Crossref]

Barnes, B. W.

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Baumgart, R.

Bayissa, Y.

Y. Bayissa, T. Tadesse, G. Demisse, and A. Shiferaw, “Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia,” Remote Sens. 9(7), 669 (2017).
[Crossref]

Becker, A.

U. Schneider, P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, “Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC),” Atmosphere 8(12), 52 (2017).
[Crossref]

Behrendt, A.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41(36), 7657–7666 (2002).
[Crossref]

Bernstein, B. C.

B. C. Bernstein, T. A. Omeron, M. K. Politovich, and F. McDonough, “Surface weather features associated with freezing precipitation and severe in-flight aircraft icing,” Atmos. Res. 46(1-2), 57–73 (1998).
[Crossref]

Besson, C.

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

Beyon, J. Y.

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Bi, D.

Bian, J.

J. Bian, “Statistics of gravity waves in the lower stratosphere over Beijing based on high vertical resolution radiosonde,” Sci. China, Ser. D: Earth Sci. 48(9), 1548 (2005).
[Crossref]

Bissonnette, L. R.

L. R. Bissonnette, G. Roy, and F. Fabry, “Range–Height Scans of Lidar Depolarization for Characterizing Properties and Phase of Clouds and Precipitation,” J. Atmos. Oceanic Technol. 18(9), 1429–1446 (2001).
[Crossref]

Brisset, P.

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Brooks, B. J.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(9), 9339–9372 (2015).
[Crossref]

Brooks, I. M.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(9), 9339–9372 (2015).
[Crossref]

Brynjólfsson, S.

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Cadeddu, M. P.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Campbell, J. R.

S. Lolli, E. J. Welton, and J. R. Campbell, “Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling,” J. Atmos. Oceanic Technol. 30(12), 2798–2807 (2013).
[Crossref]

Canat, G.

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

Cao, Y.

Y. Cao, Z. Wu, and Z. Xu, “Effects of rainfall on aircraft aerodynamics,” Prog. Aerosp. Sci. 71, 85–127 (2014).
[Crossref]

Chan, P.

P. Chan and Y. Lee, “Application of short-range lidar in wind shear alerting,” J. Atmos. Oceanic Technol. 29(2), 207–220 (2012).
[Crossref]

Chen, R.

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Chen, W.

Cheng, T.

Chu, Y.

H. Qing, Y. Chu, Z. Zhao, C. Su, C. Zhou, and Y. Zhang, “Observation and analysis of atmospheric rainfall based on the very high frequency radar,” IET Radar, Sonar & Navigation 11(4), 616–620 (2017).
[Crossref]

Corsmeier, U.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Demisse, G.

Y. Bayissa, T. Tadesse, G. Demisse, and A. Shiferaw, “Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia,” Remote Sens. 9(7), 669 (2017).
[Crossref]

Di Girolamo, P.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Diao, W.

Dick, G.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Dolfi-Bouteyre, A.

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

Dong, J.

Dou, X.

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

C. Wang, H. Xia, Y. Wu, J. Dong, T. Wei, L. Wang, and X. Dou, “Meter-scale spatial-resolution-coherent Doppler wind lidar based on Golay coding,” Opt. Lett. 44(2), 311 (2019).
[Crossref]

X. Shang, H. Xia, X. Dou, M. Shangguan, M. Li, and C. Wang, “Adaptive inversion algorithm for 1.5 µm visibility lidar incorporating in situ Angstrom wavelength exponent,” Opt. Commun. 418, 129–134 (2018).
[Crossref]

J. Qiu, H. Xia, M. Shangguan, X. Dou, M. Li, C. Wang, X. Shang, S. Lin, and J. Liu, “Micro-pulse polarization lidar at 1.5 µm using a single superconducting nanowire single-photon detector,” Opt. Lett. 42(21), 4454 (2017).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J.-W. Pan, “Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector,” Opt. Lett. 42(18), 3541 (2017).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24(17), 19322 (2016).
[Crossref]

H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41(22), 5218 (2016).
[Crossref]

H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 µm with an upconversion single-photon detector,” Opt. Lett. 40(7), 1579 (2015).
[Crossref]

M. Shangguan, H. Xia, X. Dou, C. Wang, J. Qiu, Y. Zhang, Z. Shu, and X. Xue, “Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination,” Chin. Phys. B 24(9), 094212 (2015).
[Crossref]

H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22(18), 21775 (2014).
[Crossref]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286 (2012).
[Crossref]

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Eichinger, W. E.

P. A. Lewandowski, W. E. Eichinger, A. Kruger, and W. F. Krajewski, “Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence,” J. Atmos. Oceanic Technol. 26(3), 656–664 (2009).
[Crossref]

Fabry, F.

L. R. Bissonnette, G. Roy, and F. Fabry, “Range–Height Scans of Lidar Depolarization for Characterizing Properties and Phase of Clouds and Precipitation,” J. Atmos. Oceanic Technol. 18(9), 1429–1446 (2001).
[Crossref]

Fejer, M. M.

Finger, P.

U. Schneider, P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, “Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC),” Atmosphere 8(12), 52 (2017).
[Crossref]

Fischer, B.

G. Peters, B. Fischer, and T. Andersson, “Rain observations with a vertically looking Micro Rain Radar (MRR),” Boreal Environ. Res. 7, 353–362 (2002).

Fleury, D.

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

Frehlich, R.

R. Frehlich, “Performance of maximum likelihood estimators of mean power and doppler velocity with a priori knowledge of spectrum width,” J. Atmos. Oceanic Technol. 16(11), 1702–1709 (1999).
[Crossref]

R. Frehlich, “Simulation of Coherent Doppler Lidar Performance in the Weak_Signal Regime,” J. Atmos. Oceanic Technol. 13(3), 646–658 (1996).
[Crossref]

Frehlich, R. G.

B. T. Lottman, R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Evaluation of Vertical Winds near and inside a Cloud Deck Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 18(8), 1377–1386 (2001).
[Crossref]

R. G. Frehlich and M. J. Yadlowsky, “Performance of Mean-Frequency Estimators for Doppler Radar and Lidar,” J. Atmos. Oceanic Technol. 11(5), 1217–1230 (1994).
[Crossref]

Fujii, T.

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005).

Fukuchi, T.

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005).

Garhammer, M.

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Gaudo, T.

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

George, J. L.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richer, and A. M. Weickmann, “High-resolution doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18(3), 376–393 (2001).
[Crossref]

Gilliot, A.

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

Goular, D.

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

Grenzhäuser, J.

K. Träumner, J. Handwerker, A. Wieser, and J. Grenzhäuser, “A Synergy Approach to Estimate Properties of Raindrop Size Distributions Using a Doppler Lidar and Cloud Radar,” J. Atmos. Oceanic Technol. 27(6), 1095–1100 (2010).
[Crossref]

Grund, C. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richer, and A. M. Weickmann, “High-resolution doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18(3), 376–393 (2001).
[Crossref]

Gu, S. Y.

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Haines, P.

J. Luers and P. Haines, “Heavy rain influence on airplane accidents,” J. Aircr. 20(2), 187–191 (1983).
[Crossref]

Han, Y.

Handwerker, J.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

K. Träumner, J. Handwerker, A. Wieser, and J. Grenzhäuser, “A Synergy Approach to Estimate Properties of Raindrop Size Distributions Using a Doppler Lidar and Cloud Radar,” J. Atmos. Oceanic Technol. 27(6), 1095–1100 (2010).
[Crossref]

Hannon, S. M.

B. T. Lottman, R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Evaluation of Vertical Winds near and inside a Cloud Deck Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 18(8), 1377–1386 (2001).
[Crossref]

Hardesty, R. M.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Electron. 31(1), 28–35 (1993).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Electron. 31(1), 16–27 (1993).
[Crossref]

R. T. Menzies and R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77(3), 449–462 (1989).
[Crossref]

Henderson, S. W.

B. T. Lottman, R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Evaluation of Vertical Winds near and inside a Cloud Deck Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 18(8), 1377–1386 (2001).
[Crossref]

Hirano, Y.

Hogan, R. J.

E. J. O’Connor, R. J. Hogan, and A. J. Illingworth, “Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar,” J. Appl. Meteorol. 44(1), 14–27 (2005).
[Crossref]

Hou, A. Y.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
[Crossref]

Howell, J. N.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richer, and A. M. Weickmann, “High-resolution doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18(3), 376–393 (2001).
[Crossref]

Hu, D.

Huffman, G.

C. Kidd and G. Huffman, “Global precipitation measurement,” Met. Apps 18(3), 334–353 (2011).
[Crossref]

Iguchi, T.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
[Crossref]

Illingworth, A. J.

E. J. O’Connor, R. J. Hogan, and A. J. Illingworth, “Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar,” J. Appl. Meteorol. 44(1), 14–27 (2005).
[Crossref]

Ishii, S.

M. Aoki, H. Iwai, K. Nakagawa, S. Ishii, and K. Mizutani, “Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 33(9), 1949–1966 (2016).
[Crossref]

Iwai, H.

M. Aoki, H. Iwai, K. Nakagawa, S. Ishii, and K. Mizutani, “Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 33(9), 1949–1966 (2016).
[Crossref]

Jia, M.

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Jia, X.

Jóhannesson, T.

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Jonassen, M. O.

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Kakar, R. K.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
[Crossref]

Kalthoff, N.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Kameyama, S.

Kavaya, M. J.

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Khodayar, S.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Kidd, C.

C. Kidd and G. Huffman, “Global precipitation measurement,” Met. Apps 18(3), 334–353 (2011).
[Crossref]

Kobayashi, T.

Koch, G. J.

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Kohler, M.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Kojima, M.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
[Crossref]

Kopmann, A.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Kottmeier, C.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Krajewski, W. F.

P. A. Lewandowski, W. E. Eichinger, A. Kruger, and W. F. Krajewski, “Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence,” J. Atmos. Oceanic Technol. 26(3), 656–664 (2009).
[Crossref]

Kruger, A.

P. A. Lewandowski, W. E. Eichinger, A. Kruger, and W. F. Krajewski, “Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence,” J. Atmos. Oceanic Technol. 26(3), 656–664 (2009).
[Crossref]

Kühnel, R.

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Kummerow, C. D.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
[Crossref]

Kunka, N.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Lambert, D.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Lämmlein, S.

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Lee, Y.

P. Chan and Y. Lee, “Application of short-range lidar in wind shear alerting,” J. Atmos. Oceanic Technol. 29(2), 207–220 (2012).
[Crossref]

Lemmerz, C.

O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
[Crossref]

Lewandowski, P. A.

P. A. Lewandowski, W. E. Eichinger, A. Kruger, and W. F. Krajewski, “Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence,” J. Atmos. Oceanic Technol. 26(3), 656–664 (2009).
[Crossref]

Li, M.

X. Shang, H. Xia, X. Dou, M. Shangguan, M. Li, and C. Wang, “Adaptive inversion algorithm for 1.5 µm visibility lidar incorporating in situ Angstrom wavelength exponent,” Opt. Commun. 418, 129–134 (2018).
[Crossref]

J. Qiu, H. Xia, M. Shangguan, X. Dou, M. Li, C. Wang, X. Shang, S. Lin, and J. Liu, “Micro-pulse polarization lidar at 1.5 µm using a single superconducting nanowire single-photon detector,” Opt. Lett. 42(21), 4454 (2017).
[Crossref]

Lin, S.

Liu, F.

Liu, J.

Liu, L.

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Liu, Y.

Lolli, S.

S. Lolli, E. J. Welton, and J. R. Campbell, “Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling,” J. Atmos. Oceanic Technol. 30(12), 2798–2807 (2013).
[Crossref]

Lottman, B. T.

B. T. Lottman, R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Evaluation of Vertical Winds near and inside a Cloud Deck Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 18(8), 1377–1386 (2001).
[Crossref]

Lu, D.

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Luers, J.

J. Luers and P. Haines, “Heavy rain influence on airplane accidents,” J. Aircr. 20(2), 187–191 (1983).
[Crossref]

Lundquist, J. K.

M. L. Aitken, M. E. Rhodes, and J. K. Lundquist, “Performance of a wind-profiling lidar in the region of wind turbine rotor disks,” J. Atmos. Oceanic Technol. 29(3), 347–355 (2012).
[Crossref]

Lux, O.

O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
[Crossref]

Marksteiner, U.

O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
[Crossref]

McDonough, F.

B. C. Bernstein, T. A. Omeron, M. K. Politovich, and F. McDonough, “Surface weather features associated with freezing precipitation and severe in-flight aircraft icing,” Atmos. Res. 46(1-2), 57–73 (1998).
[Crossref]

Menzies, R. T.

R. T. Menzies and R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77(3), 449–462 (1989).
[Crossref]

Meyer-Christoffer, A.

U. Schneider, P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, “Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC),” Atmosphere 8(12), 52 (2017).
[Crossref]

Mizutani, K.

M. Aoki, H. Iwai, K. Nakagawa, S. Ishii, and K. Mizutani, “Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 33(9), 1949–1966 (2016).
[Crossref]

Moat, B. I.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(9), 9339–9372 (2015).
[Crossref]

Modlin, E. A.

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

Nakagawa, K.

M. Aoki, H. Iwai, K. Nakagawa, S. Ishii, and K. Mizutani, “Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 33(9), 1949–1966 (2016).
[Crossref]

Nakamura, K.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
[Crossref]

Nakamura, T.

Neeck, S.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
[Crossref]

O’Connor, C. J.

C. J. O’Connor and D. K. Rutishauser, “Enhanced Airport Capacity Through Safe, Dynamic Reductions in Aircraft Separation: NASA's Aircraft Vortex Spacing System (AVOSS),” (2001).

O’Connor, E. J.

E. J. O’Connor, R. J. Hogan, and A. J. Illingworth, “Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar,” J. Appl. Meteorol. 44(1), 14–27 (2005).
[Crossref]

Oki, R.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
[Crossref]

Omeron, T. A.

B. C. Bernstein, T. A. Omeron, M. K. Politovich, and F. McDonough, “Surface weather features associated with freezing precipitation and severe in-flight aircraft icing,” Atmos. Res. 46(1-2), 57–73 (1998).
[Crossref]

Onishi, M.

Pan, J.

Pan, J. W.

Pan, J.-W.

Pelc, J. S.

Persson, P. O. G.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(9), 9339–9372 (2015).
[Crossref]

Peters, G.

G. Peters, B. Fischer, and T. Andersson, “Rain observations with a vertically looking Micro Rain Radar (MRR),” Boreal Environ. Res. 7, 353–362 (2002).

Petros, M.

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Petzar, P. E.

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

Planchat, C.

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

Politovich, M. K.

B. C. Bernstein, T. A. Omeron, M. K. Politovich, and F. McDonough, “Surface weather features associated with freezing precipitation and severe in-flight aircraft icing,” Atmos. Res. 46(1-2), 57–73 (1998).
[Crossref]

Post, M. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richer, and A. M. Weickmann, “High-resolution doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18(3), 376–393 (2001).
[Crossref]

Prytherch, J.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(9), 9339–9372 (2015).
[Crossref]

Qing, H.

H. Qing, Y. Chu, Z. Zhao, C. Su, C. Zhou, and Y. Zhang, “Observation and analysis of atmospheric rainfall based on the very high frequency radar,” IET Radar, Sonar & Navigation 11(4), 616–620 (2017).
[Crossref]

Qiu, J.

J. Qiu, H. Xia, M. Shangguan, X. Dou, M. Li, C. Wang, X. Shang, S. Lin, and J. Liu, “Micro-pulse polarization lidar at 1.5 µm using a single superconducting nanowire single-photon detector,” Opt. Lett. 42(21), 4454 (2017).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J.-W. Pan, “Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector,” Opt. Lett. 42(18), 3541 (2017).
[Crossref]

C. Wang, H. Xia, M. Shangguan, Y. Wu, L. Wang, L. Zhao, J. Qiu, and R. Zhang, “1.5 µm polarization coherent lidar incorporating time-division multiplexing,” Opt. Express 25(17), 20663 (2017).
[Crossref]

H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41(22), 5218 (2016).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24(17), 19322 (2016).
[Crossref]

M. Shangguan, H. Xia, X. Dou, C. Wang, J. Qiu, Y. Zhang, Z. Shu, and X. Xue, “Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination,” Chin. Phys. B 24(9), 094212 (2015).
[Crossref]

H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22(18), 21775 (2014).
[Crossref]

Raghavan, S.

T. N. Rao, D. N. Rao, and S. Raghavan, “Tropical precipitating systems observed with Indian MST radar,” Radio Sci. 34(5), 1125–1139 (1999).
[Crossref]

Rahm, S.

O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
[Crossref]

Ramatschi, M.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Rao, D. N.

T. N. Rao, D. N. Rao, and S. Raghavan, “Tropical precipitating systems observed with Indian MST radar,” Radio Sci. 34(5), 1125–1139 (1999).
[Crossref]

Rao, T. N.

T. N. Rao, D. N. Rao, and S. Raghavan, “Tropical precipitating systems observed with Indian MST radar,” Radio Sci. 34(5), 1125–1139 (1999).
[Crossref]

Reitebuch, O.

O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
[Crossref]

Reuder, J.

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Rhodes, M. E.

M. L. Aitken, M. E. Rhodes, and J. K. Lundquist, “Performance of a wind-profiling lidar in the region of wind turbine rotor disks,” J. Atmos. Oceanic Technol. 29(3), 347–355 (2012).
[Crossref]

Richer, R. A.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richer, and A. M. Weickmann, “High-resolution doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18(3), 376–393 (2001).
[Crossref]

Roy, G.

L. R. Bissonnette, G. Roy, and F. Fabry, “Range–Height Scans of Lidar Depolarization for Characterizing Properties and Phase of Clouds and Precipitation,” J. Atmos. Oceanic Technol. 18(9), 1429–1446 (2001).
[Crossref]

Rustemeier, E.

U. Schneider, P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, “Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC),” Atmosphere 8(12), 52 (2017).
[Crossref]

Rutishauser, D. K.

C. J. O’Connor and D. K. Rutishauser, “Enhanced Airport Capacity Through Safe, Dynamic Reductions in Aircraft Separation: NASA's Aircraft Vortex Spacing System (AVOSS),” (2001).

Rye, B. J.

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Electron. 31(1), 28–35 (1993).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Electron. 31(1), 16–27 (1993).
[Crossref]

Schäfler, A.

O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
[Crossref]

Schlüssel, P.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Schneider, U.

U. Schneider, P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, “Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC),” Atmosphere 8(12), 52 (2017).
[Crossref]

Shang, X.

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

X. Shang, H. Xia, X. Dou, M. Shangguan, M. Li, and C. Wang, “Adaptive inversion algorithm for 1.5 µm visibility lidar incorporating in situ Angstrom wavelength exponent,” Opt. Commun. 418, 129–134 (2018).
[Crossref]

J. Qiu, H. Xia, M. Shangguan, X. Dou, M. Li, C. Wang, X. Shang, S. Lin, and J. Liu, “Micro-pulse polarization lidar at 1.5 µm using a single superconducting nanowire single-photon detector,” Opt. Lett. 42(21), 4454 (2017).
[Crossref]

Shangguan, M.

X. Shang, H. Xia, X. Dou, M. Shangguan, M. Li, and C. Wang, “Adaptive inversion algorithm for 1.5 µm visibility lidar incorporating in situ Angstrom wavelength exponent,” Opt. Commun. 418, 129–134 (2018).
[Crossref]

J. Qiu, H. Xia, M. Shangguan, X. Dou, M. Li, C. Wang, X. Shang, S. Lin, and J. Liu, “Micro-pulse polarization lidar at 1.5 µm using a single superconducting nanowire single-photon detector,” Opt. Lett. 42(21), 4454 (2017).
[Crossref]

C. Wang, H. Xia, M. Shangguan, Y. Wu, L. Wang, L. Zhao, J. Qiu, and R. Zhang, “1.5 µm polarization coherent lidar incorporating time-division multiplexing,” Opt. Express 25(17), 20663 (2017).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J.-W. Pan, “Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector,” Opt. Lett. 42(18), 3541 (2017).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24(17), 19322 (2016).
[Crossref]

H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41(22), 5218 (2016).
[Crossref]

H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 µm with an upconversion single-photon detector,” Opt. Lett. 40(7), 1579 (2015).
[Crossref]

M. Shangguan, H. Xia, X. Dou, C. Wang, J. Qiu, Y. Zhang, Z. Shu, and X. Xue, “Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination,” Chin. Phys. B 24(9), 094212 (2015).
[Crossref]

H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22(18), 21775 (2014).
[Crossref]

Shen, F.

Shentu, G.

Shiferaw, A.

Y. Bayissa, T. Tadesse, G. Demisse, and A. Shiferaw, “Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia,” Remote Sens. 9(7), 669 (2017).
[Crossref]

Shu, Z.

Singh, U. N.

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Su, C.

H. Qing, Y. Chu, Z. Zhao, C. Su, C. Zhou, and Y. Zhang, “Observation and analysis of atmospheric rainfall based on the very high frequency radar,” IET Radar, Sonar & Navigation 11(4), 616–620 (2017).
[Crossref]

Sun, D.

Tadesse, T.

Y. Bayissa, T. Tadesse, G. Demisse, and A. Shiferaw, “Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia,” Remote Sens. 9(7), 669 (2017).
[Crossref]

Thielen, J.

L. Alfieri and J. Thielen, “A European precipitation index for extreme rain-storm and flash flood early warning,” Met. Apps 22(1), 3–13 (2015).
[Crossref]

Tjernström, M.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(9), 9339–9372 (2015).
[Crossref]

Träumner, K.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

K. Träumner, J. Handwerker, A. Wieser, and J. Grenzhäuser, “A Synergy Approach to Estimate Properties of Raindrop Size Distributions Using a Doppler Lidar and Cloud Radar,” J. Atmos. Oceanic Technol. 27(6), 1095–1100 (2010).
[Crossref]

Trieu, B. C.

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

Tsuda, T.

Turner, D. D.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Valla, M.

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

Van Baelen, J.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Wadaka, S.

Wang, C.

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

C. Wang, H. Xia, Y. Wu, J. Dong, T. Wei, L. Wang, and X. Dou, “Meter-scale spatial-resolution-coherent Doppler wind lidar based on Golay coding,” Opt. Lett. 44(2), 311 (2019).
[Crossref]

X. Shang, H. Xia, X. Dou, M. Shangguan, M. Li, and C. Wang, “Adaptive inversion algorithm for 1.5 µm visibility lidar incorporating in situ Angstrom wavelength exponent,” Opt. Commun. 418, 129–134 (2018).
[Crossref]

C. Wang, H. Xia, M. Shangguan, Y. Wu, L. Wang, L. Zhao, J. Qiu, and R. Zhang, “1.5 µm polarization coherent lidar incorporating time-division multiplexing,” Opt. Express 25(17), 20663 (2017).
[Crossref]

J. Qiu, H. Xia, M. Shangguan, X. Dou, M. Li, C. Wang, X. Shang, S. Lin, and J. Liu, “Micro-pulse polarization lidar at 1.5 µm using a single superconducting nanowire single-photon detector,” Opt. Lett. 42(21), 4454 (2017).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J.-W. Pan, “Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector,” Opt. Lett. 42(18), 3541 (2017).
[Crossref]

H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41(22), 5218 (2016).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24(17), 19322 (2016).
[Crossref]

H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 µm with an upconversion single-photon detector,” Opt. Lett. 40(7), 1579 (2015).
[Crossref]

M. Shangguan, H. Xia, X. Dou, C. Wang, J. Qiu, Y. Zhang, Z. Shu, and X. Xue, “Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination,” Chin. Phys. B 24(9), 094212 (2015).
[Crossref]

H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22(18), 21775 (2014).
[Crossref]

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Wang, L.

C. Wang, H. Xia, Y. Wu, J. Dong, T. Wei, L. Wang, and X. Dou, “Meter-scale spatial-resolution-coherent Doppler wind lidar based on Golay coding,” Opt. Lett. 44(2), 311 (2019).
[Crossref]

C. Wang, H. Xia, M. Shangguan, Y. Wu, L. Wang, L. Zhao, J. Qiu, and R. Zhang, “1.5 µm polarization coherent lidar incorporating time-division multiplexing,” Opt. Express 25(17), 20663 (2017).
[Crossref]

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Wei, T.

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

C. Wang, H. Xia, Y. Wu, J. Dong, T. Wei, L. Wang, and X. Dou, “Meter-scale spatial-resolution-coherent Doppler wind lidar based on Golay coding,” Opt. Lett. 44(2), 311 (2019).
[Crossref]

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Weickmann, A. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richer, and A. M. Weickmann, “High-resolution doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18(3), 376–393 (2001).
[Crossref]

Weiler, F.

O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
[Crossref]

Welton, E. J.

S. Lolli, E. J. Welton, and J. R. Campbell, “Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling,” J. Atmos. Oceanic Technol. 30(12), 2798–2807 (2013).
[Crossref]

Whiteman, D. N.

Wickert, J.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Wieser, A.

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

K. Träumner, J. Handwerker, A. Wieser, and J. Grenzhäuser, “A Synergy Approach to Estimate Properties of Raindrop Size Distributions Using a Doppler Lidar and Cloud Radar,” J. Atmos. Oceanic Technol. 27(6), 1095–1100 (2010).
[Crossref]

Witschas, B.

O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
[Crossref]

Wu, J.

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Wu, Y.

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

C. Wang, H. Xia, Y. Wu, J. Dong, T. Wei, L. Wang, and X. Dou, “Meter-scale spatial-resolution-coherent Doppler wind lidar based on Golay coding,” Opt. Lett. 44(2), 311 (2019).
[Crossref]

C. Wang, H. Xia, M. Shangguan, Y. Wu, L. Wang, L. Zhao, J. Qiu, and R. Zhang, “1.5 µm polarization coherent lidar incorporating time-division multiplexing,” Opt. Express 25(17), 20663 (2017).
[Crossref]

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Wu, Z.

Y. Cao, Z. Wu, and Z. Xu, “Effects of rainfall on aircraft aerodynamics,” Prog. Aerosp. Sci. 71, 85–127 (2014).
[Crossref]

Wulfmeyer, V.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Xia, H.

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

C. Wang, H. Xia, Y. Wu, J. Dong, T. Wei, L. Wang, and X. Dou, “Meter-scale spatial-resolution-coherent Doppler wind lidar based on Golay coding,” Opt. Lett. 44(2), 311 (2019).
[Crossref]

X. Shang, H. Xia, X. Dou, M. Shangguan, M. Li, and C. Wang, “Adaptive inversion algorithm for 1.5 µm visibility lidar incorporating in situ Angstrom wavelength exponent,” Opt. Commun. 418, 129–134 (2018).
[Crossref]

C. Wang, H. Xia, M. Shangguan, Y. Wu, L. Wang, L. Zhao, J. Qiu, and R. Zhang, “1.5 µm polarization coherent lidar incorporating time-division multiplexing,” Opt. Express 25(17), 20663 (2017).
[Crossref]

J. Qiu, H. Xia, M. Shangguan, X. Dou, M. Li, C. Wang, X. Shang, S. Lin, and J. Liu, “Micro-pulse polarization lidar at 1.5 µm using a single superconducting nanowire single-photon detector,” Opt. Lett. 42(21), 4454 (2017).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J.-W. Pan, “Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector,” Opt. Lett. 42(18), 3541 (2017).
[Crossref]

H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41(22), 5218 (2016).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24(17), 19322 (2016).
[Crossref]

H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 µm with an upconversion single-photon detector,” Opt. Lett. 40(7), 1579 (2015).
[Crossref]

M. Shangguan, H. Xia, X. Dou, C. Wang, J. Qiu, Y. Zhang, Z. Shu, and X. Xue, “Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination,” Chin. Phys. B 24(9), 094212 (2015).
[Crossref]

H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22(18), 21775 (2014).
[Crossref]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286 (2012).
[Crossref]

H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120 (2007).
[Crossref]

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Xia, X.

Xu, Z.

Y. Cao, Z. Wu, and Z. Xu, “Effects of rainfall on aircraft aerodynamics,” Prog. Aerosp. Sci. 71, 85–127 (2014).
[Crossref]

Xue, X.

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

M. Shangguan, H. Xia, X. Dou, C. Wang, J. Qiu, Y. Zhang, Z. Shu, and X. Xue, “Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination,” Chin. Phys. B 24(9), 094212 (2015).
[Crossref]

H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22(18), 21775 (2014).
[Crossref]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286 (2012).
[Crossref]

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Yadlowsky, M. J.

R. G. Frehlich and M. J. Yadlowsky, “Performance of Mean-Frequency Estimators for Doppler Radar and Lidar,” J. Atmos. Oceanic Technol. 11(5), 1217–1230 (1994).
[Crossref]

Yang, C.

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

Yang, Y.

Yi, F.

F. Liu and F. Yi, “Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere,” Appl. Opt. 52(28), 6884–6895 (2013).
[Crossref]

S. D. Zhang and F. Yi, “A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E) China,” Ann. Geophys. 23(3), 665–673 (2005).
[Crossref]

Yu, J.

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Yuan, J.

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Zhang, J.

Zhang, Q.

Zhang, R.

Zhang, S. D.

S. D. Zhang and F. Yi, “A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E) China,” Ann. Geophys. 23(3), 665–673 (2005).
[Crossref]

Zhang, X.

Zhang, Y.

H. Qing, Y. Chu, Z. Zhao, C. Su, C. Zhou, and Y. Zhang, “Observation and analysis of atmospheric rainfall based on the very high frequency radar,” IET Radar, Sonar & Navigation 11(4), 616–620 (2017).
[Crossref]

M. Shangguan, H. Xia, X. Dou, C. Wang, J. Qiu, Y. Zhang, Z. Shu, and X. Xue, “Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination,” Chin. Phys. B 24(9), 094212 (2015).
[Crossref]

Zhao, L.

C. Wang, H. Xia, M. Shangguan, Y. Wu, L. Wang, L. Zhao, J. Qiu, and R. Zhang, “1.5 µm polarization coherent lidar incorporating time-division multiplexing,” Opt. Express 25(17), 20663 (2017).
[Crossref]

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Zhao, R.

Zhao, Z.

H. Qing, Y. Chu, Z. Zhao, C. Su, C. Zhou, and Y. Zhang, “Observation and analysis of atmospheric rainfall based on the very high frequency radar,” IET Radar, Sonar & Navigation 11(4), 616–620 (2017).
[Crossref]

Zhou, C.

H. Qing, Y. Chu, Z. Zhao, C. Su, C. Zhou, and Y. Zhang, “Observation and analysis of atmospheric rainfall based on the very high frequency radar,” IET Radar, Sonar & Navigation 11(4), 616–620 (2017).
[Crossref]

Zhu, X.

Ziese, M.

U. Schneider, P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, “Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC),” Atmosphere 8(12), 52 (2017).
[Crossref]

Zus, F.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Ann. Geophys. (1)

S. D. Zhang and F. Yi, “A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E) China,” Ann. Geophys. 23(3), 665–673 (2005).
[Crossref]

Appl. Opt. (6)

Atmos. Meas. Tech. (3)

C. Wang, M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, X. Xue, X. Dou, C. Yang, X. Xue, and X. Dou, “Relationship Analysis of PM2.5 and BLH using Aerosol and Turbulence Detection Lidar,” Atmos. Meas. Tech. 12(6), 3303–3315 (2019).
[Crossref]

O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, “Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus,” Atmos. Meas. Tech. 11(6), 3297–3322 (2018).
[Crossref]

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(9), 9339–9372 (2015).
[Crossref]

Atmos. Res. (1)

B. C. Bernstein, T. A. Omeron, M. K. Politovich, and F. McDonough, “Surface weather features associated with freezing precipitation and severe in-flight aircraft icing,” Atmos. Res. 46(1-2), 57–73 (1998).
[Crossref]

Atmosphere (1)

U. Schneider, P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, “Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC),” Atmosphere 8(12), 52 (2017).
[Crossref]

Boreal Environ. Res. (1)

G. Peters, B. Fischer, and T. Andersson, “Rain observations with a vertically looking Micro Rain Radar (MRR),” Boreal Environ. Res. 7, 353–362 (2002).

Bull. Am. Meteorol. Soc. (1)

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, “The global precipitation measurement mission,” Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014).
[Crossref]

Chin. Opt. Lett. (1)

Chin. Phys. B (1)

M. Shangguan, H. Xia, X. Dou, C. Wang, J. Qiu, Y. Zhang, Z. Shu, and X. Xue, “Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination,” Chin. Phys. B 24(9), 094212 (2015).
[Crossref]

IEEE Trans. Geosci. Electron. (2)

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Electron. 31(1), 16–27 (1993).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Electron. 31(1), 28–35 (1993).
[Crossref]

IET Radar, Sonar & Navigation (1)

H. Qing, Y. Chu, Z. Zhao, C. Su, C. Zhou, and Y. Zhang, “Observation and analysis of atmospheric rainfall based on the very high frequency radar,” IET Radar, Sonar & Navigation 11(4), 616–620 (2017).
[Crossref]

J. Aircr. (1)

J. Luers and P. Haines, “Heavy rain influence on airplane accidents,” J. Aircr. 20(2), 187–191 (1983).
[Crossref]

J. Appl. Meteorol. (1)

E. J. O’Connor, R. J. Hogan, and A. J. Illingworth, “Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar,” J. Appl. Meteorol. 44(1), 14–27 (2005).
[Crossref]

J. Appl. Remote Sens (1)

G. J. Koch, J. Y. Beyon, P. E. Petzar, M. Petros, J. Yu, B. C. Trieu, M. J. Kavaya, U. N. Singh, E. A. Modlin, and B. W. Barnes, “Field testing of a high-energy 2-µm Doppler lidar,” J. Appl. Remote Sens 4(1), 043512 (2010).
[Crossref]

J. Atmos. Oceanic Technol. (12)

M. L. Aitken, M. E. Rhodes, and J. K. Lundquist, “Performance of a wind-profiling lidar in the region of wind turbine rotor disks,” J. Atmos. Oceanic Technol. 29(3), 347–355 (2012).
[Crossref]

M. Aoki, H. Iwai, K. Nakagawa, S. Ishii, and K. Mizutani, “Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 33(9), 1949–1966 (2016).
[Crossref]

K. Träumner, J. Handwerker, A. Wieser, and J. Grenzhäuser, “A Synergy Approach to Estimate Properties of Raindrop Size Distributions Using a Doppler Lidar and Cloud Radar,” J. Atmos. Oceanic Technol. 27(6), 1095–1100 (2010).
[Crossref]

R. Frehlich, “Performance of maximum likelihood estimators of mean power and doppler velocity with a priori knowledge of spectrum width,” J. Atmos. Oceanic Technol. 16(11), 1702–1709 (1999).
[Crossref]

B. T. Lottman, R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Evaluation of Vertical Winds near and inside a Cloud Deck Using Coherent Doppler Lidar,” J. Atmos. Oceanic Technol. 18(8), 1377–1386 (2001).
[Crossref]

R. G. Frehlich and M. J. Yadlowsky, “Performance of Mean-Frequency Estimators for Doppler Radar and Lidar,” J. Atmos. Oceanic Technol. 11(5), 1217–1230 (1994).
[Crossref]

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richer, and A. M. Weickmann, “High-resolution doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18(3), 376–393 (2001).
[Crossref]

S. Lolli, E. J. Welton, and J. R. Campbell, “Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling,” J. Atmos. Oceanic Technol. 30(12), 2798–2807 (2013).
[Crossref]

P. A. Lewandowski, W. E. Eichinger, A. Kruger, and W. F. Krajewski, “Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence,” J. Atmos. Oceanic Technol. 26(3), 656–664 (2009).
[Crossref]

P. Chan and Y. Lee, “Application of short-range lidar in wind shear alerting,” J. Atmos. Oceanic Technol. 29(2), 207–220 (2012).
[Crossref]

R. Frehlich, “Simulation of Coherent Doppler Lidar Performance in the Weak_Signal Regime,” J. Atmos. Oceanic Technol. 13(3), 646–658 (1996).
[Crossref]

L. R. Bissonnette, G. Roy, and F. Fabry, “Range–Height Scans of Lidar Depolarization for Characterizing Properties and Phase of Clouds and Precipitation,” J. Atmos. Oceanic Technol. 18(9), 1429–1446 (2001).
[Crossref]

Met. Apps (2)

L. Alfieri and J. Thielen, “A European precipitation index for extreme rain-storm and flash flood early warning,” Met. Apps 22(1), 3–13 (2015).
[Crossref]

C. Kidd and G. Huffman, “Global precipitation measurement,” Met. Apps 18(3), 334–353 (2011).
[Crossref]

Meteorol. Atmos. Phys. (1)

J. Reuder, M. Ablinger, H. Agústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O. Jonassen, R. Kühnel, and S. Lämmlein, “FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland,” Meteorol. Atmos. Phys. 116(1-2), 1–13 (2012).
[Crossref]

Meteorol. Z. (1)

N. Kalthoff, B. Adler, A. Wieser, M. Kohler, K. Träumner, J. Handwerker, U. Corsmeier, S. Khodayar, D. Lambert, A. Kopmann, N. Kunka, G. Dick, M. Ramatschi, J. Wickert, and C. Kottmeier, “KITcube-a mobile observation platform for convection studies deployed during HyMeX,” Meteorol. Z. 22(6), 633–647 (2013).
[Crossref]

Opt. Commun. (1)

X. Shang, H. Xia, X. Dou, M. Shangguan, M. Li, and C. Wang, “Adaptive inversion algorithm for 1.5 µm visibility lidar incorporating in situ Angstrom wavelength exponent,” Opt. Commun. 418, 129–134 (2018).
[Crossref]

Opt. Eng. (1)

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Proc. IEEE (1)

R. T. Menzies and R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77(3), 449–462 (1989).
[Crossref]

Prog. Aerosp. Sci. (1)

Y. Cao, Z. Wu, and Z. Xu, “Effects of rainfall on aircraft aerodynamics,” Prog. Aerosp. Sci. 71, 85–127 (2014).
[Crossref]

Radio Sci. (1)

T. N. Rao, D. N. Rao, and S. Raghavan, “Tropical precipitating systems observed with Indian MST radar,” Radio Sci. 34(5), 1125–1139 (1999).
[Crossref]

Remote Sens. (1)

Y. Bayissa, T. Tadesse, G. Demisse, and A. Shiferaw, “Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia,” Remote Sens. 9(7), 669 (2017).
[Crossref]

Rev. Geophys. (1)

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Sci. China, Ser. D: Earth Sci. (1)

J. Bian, “Statistics of gravity waves in the lower stratosphere over Beijing based on high vertical resolution radiosonde,” Sci. China, Ser. D: Earth Sci. 48(9), 1548 (2005).
[Crossref]

Other (5)

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005).

C. J. O’Connor and D. K. Rutishauser, “Enhanced Airport Capacity Through Safe, Dynamic Reductions in Aircraft Separation: NASA's Aircraft Vortex Spacing System (AVOSS),” (2001).

A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, and A. Gilliot, “Aircraft wake vortex study and characterization with 1.5 µm fiber Doppler lidar,” (2009).

ANSI Standard Z136.1, American National Standard for the Safe Use of Lasers (American National Standards Institute, Inc., 2007).

M. Jia, J. Yuan, C. Wang, H. Xia, Y. Wu, L. Zhao, T. Wei, J. Wu, L. Wang, S. Y. Gu, L. Liu, D. Lu, R. Chen, X. Xue, and X. Dou, “Long-live High Frequency Gravity Wavesin Atmospheric Boundary Layer: Observations and Simulations,” Atmos. Chem. Phys. Discuss., 1–27 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Continuous observation results on August 16th, 2018. (a) Time-height plot of horizontal wind speed and (b) horizontal wind direction.
Fig. 2.
Fig. 2. Horizontal wind and direction profiles measured by Doppler wind lidar and radiosonde.
Fig. 3.
Fig. 3. Statistics of the difference in wind measurements between the lidar and radiosonde (dash lines are the Gaussian fit results to the data). (a) Histogram distributions of velocity difference and (b) direction difference.
Fig. 4.
Fig. 4. Results of the lidar during a precipitation event on 13 May 2019. (a) Wideband carrier-to-noise ratio; (b) Signal spectrum width.
Fig. 5.
Fig. 5. Comparison of the signal power spectrum between sunny (a) and rainy (b) conditions. Specific spectra and two-component Gaussian fitting curves at the distance of (c) 0.84 km; (d) 0.30 km; (e) 0.12 km. The position of the spectra (c)–(e) are marked in (b) with white dotted lines.
Fig. 6.
Fig. 6. (a) Lidar’s azimuth angle; (b) The separated radial wind speed and rain speed and their sine wave fitting results at the distance of 510 m; (c) Vertical wind speed and rain speed; (d) Accumulated rainfall; (e) Temperature.
Fig. 7.
Fig. 7. (a) The separated radial wind speed; (b) Horizontal wind speed; (c) Horizontal wind direction; (d) Vertical wind speed. (e) The separated radial rain speed; (f) Horizontal rain speed; (g) Horizontal rain direction; (h) Vertical rain speed.

Tables (1)

Tables Icon

Table 1. Key parameters of the lidar system

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S ( f ) = I a exp [ ( f f a ) 2 2 σ a 2 ] + I r exp [ ( f f r ) 2 2 σ r 2 ] ,
P ^ ( m ) = T s M | k = 0 M 1 z k exp ( 2 π i k m M ) | 2 ,
V LOS = λ 2 f i ,
{ V = ( V cos θ 0 , V sin θ 0 , V ) n = ( cos φ 0 cos θ , cos φ 0 sin θ , sin φ 0 ) ,
V LOS = V n = ( V cos θ 0 cos φ 0 cos θ  +  V sin θ 0 cos φ 0 sin θ  +  V sin φ 0 ) . = cos φ 0 [ V cos ( θ θ 0 ) + V tan φ 0 ]

Metrics