Abstract

In this paper we provide the theoretical and experimental evaluation of fiber bending and twisting effects on the group delay performance of a homogeneous 7-core fiber. We have experimentally evaluated the differential group delay between the central and outer cores for different curvature radii and twisting conditions, demonstrating that fiber twisting counteracts the degradation introduced by the curvature itself. These findings are generally applicable to time-sensitive application areas such as radio-over-fiber distribution and microwave photonics signal processing in fiber-wireless access networks, as well as high-capacity long-haul digital communications where digital multiple-input multiple-output processing may be required.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion-engineered multicore fibers for distributed radiofrequency signal processing

Sergi García and Ivana Gasulla
Opt. Express 24(18) 20641-20654 (2016)

Bending-induced inter-core group delays in multicore fibers

Viktor Tsvirkun, Siddharth Sivankutty, Géraud Bouwmans, Olivier Vanvincq, Esben Ravn Andresen, and Hervé Rigneault
Opt. Express 25(25) 31863-31875 (2017)

Group delay spread analysis of strongly coupled 3-core fibers: an effect of bending and twisting

Takeshi Fujisawa and Kunimasa Saitoh
Opt. Express 24(9) 9583-9591 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. D. Barrera, I. Gasulla, and S. Sales, “Multipoint two-dimensional curvature optical fiber sensor based on a non-twisted homogeneous four-core fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
    [Crossref]
  3. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  4. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication, Torino, 2010, pp. 1–3.
  5. T. Hayashi, T. Sasaki, E. Sasaoka, K. Saitoh, and M. Koshiba, “Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend,” Opt. Express 21(5), 5401–5412 (2013).
    [Crossref]
  6. A. A. Nasir, S. Durrani, and R. A. Kennedy, “Blind timing and carrier synchronisation in distributed multiple input multiple output communication systems,” IET Communications 5(7), 1028–1037 (2011).
    [Crossref]
  7. J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
    [Crossref]
  8. I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
    [Crossref]
  9. S. García and I. Gasulla, “Dispersion-engineered multicore fibers for distributed radiofrequency signal processing,” Opt. Express 24(18), 20641–20654 (2016).
    [Crossref]
  10. S. Garcia and I. Gasulla, “Experimental demonstration of multi-cavity optoelectronic oscillation over a multicore fiber,” Opt. Express 25(20), 23663–23668 (2017).
    [Crossref]
  11. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, T. Matsui, K. Nakajima, and F. Yamamoto, “Experimental and numerical evaluation of inter-core differential mode delay characteristic of weakly-coupled multi-core fiber,” Opt. Express 22(26), 31966–31976 (2014).
    [Crossref]
  12. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982).
    [Crossref]
  13. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971).
    [Crossref]
  14. S. Garcia and I. Gasulla, “Universal characteristic equation for multi-layer optical fibers,” submitted to Opt. Express (2019).
  15. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
    [Crossref]
  16. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
    [Crossref]
  17. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).
    [Crossref]
  18. S. García, M. Ureña, R. Guillem, and I. Gasulla, “Multicore fiber delay line performance against bending and twisting effects,” in Proceedings of 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.
  19. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19(15), 2606–2611 (1980).
    [Crossref]

2017 (1)

2016 (2)

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
[Crossref]

S. García and I. Gasulla, “Dispersion-engineered multicore fibers for distributed radiofrequency signal processing,” Opt. Express 24(18), 20641–20654 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (3)

2012 (2)

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
[Crossref]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

2011 (2)

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
[Crossref]

A. A. Nasir, S. Durrani, and R. A. Kennedy, “Blind timing and carrier synchronisation in distributed multiple input multiple output communication systems,” IET Communications 5(7), 1028–1037 (2011).
[Crossref]

2000 (1)

1982 (1)

1980 (1)

1971 (1)

Barrera, D.

Belabas, N.

Capmany, J.

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
[Crossref]

Dorrer, C.

Durrani, S.

A. A. Nasir, S. Durrani, and R. A. Kennedy, “Blind timing and carrier synchronisation in distributed multiple input multiple output communication systems,” IET Communications 5(7), 1028–1037 (2011).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Galve, J. M.

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
[Crossref]

Garcia, S.

S. Garcia and I. Gasulla, “Experimental demonstration of multi-cavity optoelectronic oscillation over a multicore fiber,” Opt. Express 25(20), 23663–23668 (2017).
[Crossref]

S. Garcia and I. Gasulla, “Universal characteristic equation for multi-layer optical fibers,” submitted to Opt. Express (2019).

García, S.

S. García and I. Gasulla, “Dispersion-engineered multicore fibers for distributed radiofrequency signal processing,” Opt. Express 24(18), 20641–20654 (2016).
[Crossref]

S. García, M. Ureña, R. Guillem, and I. Gasulla, “Multicore fiber delay line performance against bending and twisting effects,” in Proceedings of 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Gasulla, I.

S. Garcia and I. Gasulla, “Experimental demonstration of multi-cavity optoelectronic oscillation over a multicore fiber,” Opt. Express 25(20), 23663–23668 (2017).
[Crossref]

S. García and I. Gasulla, “Dispersion-engineered multicore fibers for distributed radiofrequency signal processing,” Opt. Express 24(18), 20641–20654 (2016).
[Crossref]

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
[Crossref]

D. Barrera, I. Gasulla, and S. Sales, “Multipoint two-dimensional curvature optical fiber sensor based on a non-twisted homogeneous four-core fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
[Crossref]

S. García, M. Ureña, R. Guillem, and I. Gasulla, “Multicore fiber delay line performance against bending and twisting effects,” in Proceedings of 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

S. Garcia and I. Gasulla, “Universal characteristic equation for multi-layer optical fibers,” submitted to Opt. Express (2019).

Gloge, D.

Guillem, R.

S. García, M. Ureña, R. Guillem, and I. Gasulla, “Multicore fiber delay line performance against bending and twisting effects,” in Proceedings of 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Hayashi, T.

T. Hayashi, T. Sasaki, E. Sasaoka, K. Saitoh, and M. Koshiba, “Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend,” Opt. Express 21(5), 5401–5412 (2013).
[Crossref]

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication, Torino, 2010, pp. 1–3.

Joffre, M.

Kennedy, R. A.

A. A. Nasir, S. Durrani, and R. A. Kennedy, “Blind timing and carrier synchronisation in distributed multiple input multiple output communication systems,” IET Communications 5(7), 1028–1037 (2011).
[Crossref]

Koshiba, M.

Likforman, J. P.

Lloret, J.

Marcuse, D.

Matsui, T.

Matsuo, S.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
[Crossref]

Mora, J.

Mori, T.

Nagashima, T.

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication, Torino, 2010, pp. 1–3.

Nakajima, K.

Nasir, A. A.

A. A. Nasir, S. Durrani, and R. A. Kennedy, “Blind timing and carrier synchronisation in distributed multiple input multiple output communication systems,” IET Communications 5(7), 1028–1037 (2011).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Saitoh, K.

Sakamoto, T.

Sales, S.

Sancho, J.

Sasaki, T.

T. Hayashi, T. Sasaki, E. Sasaoka, K. Saitoh, and M. Koshiba, “Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend,” Opt. Express 21(5), 5401–5412 (2013).
[Crossref]

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication, Torino, 2010, pp. 1–3.

Sasaoka, E.

T. Hayashi, T. Sasaki, E. Sasaoka, K. Saitoh, and M. Koshiba, “Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend,” Opt. Express 21(5), 5401–5412 (2013).
[Crossref]

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication, Torino, 2010, pp. 1–3.

Shimakawa, O.

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication, Torino, 2010, pp. 1–3.

Smith, A. M.

Takenaga, K.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
[Crossref]

Ureña, M.

S. García, M. Ureña, R. Guillem, and I. Gasulla, “Multicore fiber delay line performance against bending and twisting effects,” in Proceedings of 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Wada, M.

Yamamoto, F.

Yamamoto, T.

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
[Crossref]

IEEE Photonics J. (2)

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
[Crossref]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

IET Communications (1)

A. A. Nasir, S. Durrani, and R. A. Kennedy, “Blind timing and carrier synchronisation in distributed multiple input multiple output communication systems,” IET Communications 5(7), 1028–1037 (2011).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (5)

Other (3)

S. Garcia and I. Gasulla, “Universal characteristic equation for multi-layer optical fibers,” submitted to Opt. Express (2019).

S. García, M. Ureña, R. Guillem, and I. Gasulla, “Multicore fiber delay line performance against bending and twisting effects,” in Proceedings of 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication, Torino, 2010, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Multicore fiber curvature with a bending radius Rb and local polar coordinates (r,θ) indicated in the MCF cross section. (b) Effect of the fiber curvature on the refractive index profile of cores 1, 2 and 5 as compared to the straight condition.
Fig. 2.
Fig. 2. Computed differential group delay (DGD) as a function of the twist rate (rad/km) for a 1-km MCF link and different bending radii (Rb = 50, 75, 150 mm), comparing the results from Eqs. (4) and (9).
Fig. 3.
Fig. 3. Experimental setup for the measure of the DGD between central and outer cores.
Fig. 4.
Fig. 4. (a) Interference pattern (optical power) measured by the OSA when the fiber is bent at a 25-mm radius (upper) and in straight condition (lower); and (b) temporal waveforms obtained from the inverse Fourier Transform of the interference patterns when the fiber is bent at a 25-mm radius (blue) and in straight condition (orange).
Fig. 5.
Fig. 5. (a) Measured core differential group delays between bent and unbent fiber for a bending radius of 35 mm with and without twist. (b) Differential group delay dependence on the bending radius: Solid and dashed lines correspond to the worst-case computed theoretical responses without twist, while error bars represent the worst-case experimental values (red bars: no twist, blue bars: forced twist).
Fig. 6.
Fig. 6. Setup scheme for the experimental measure of MWP signal filtering response.
Fig. 7.
Fig. 7. Measured filter response for: (solid blue) fiber bent with high twist, (dash-dotted red) fiber bent with low twist; and different radius: a) 25 mm b) 35 mm c) 50 mm.

Tables (1)

Tables Icon

Table 1. Normalized inter-core DGD (ps/m) values measured between pair of cores for different bending and twisting conditions

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n e q , m = [ n m 2 ( 1 + 2 r m R b cos θ m ) ] 1 / 2 n m ( 1 + r m R b cos θ m ) ,
β e q , m = k 0 n e f f e q , m = k 0 2 n e q , m 2 u e q 2 a m 2 ,
τ e q , m L = d β e q , m d ω = 1 c β e q , m [ k 0 n e q , m 2 2 π n e q , m d n e q , m d λ + 2 π a m 2 k 0 2 u e q d u e q d λ ] ,
D G D a c c u m u l a t e d = 0 L D G D ( z ) d z = 1 c 0 L [ 1 β e q , m ( k 0 n e q , m 2 2 π n e q , m d n e q , m d λ + 2 π a m 2 k 0 2 u e q d u e q d λ ) 1 β m ( k 0 n m 2 2 π n m d n m d λ + 2 π a m 2 k 0 2 u d u d λ ) ] d z .
n e f f e q , m n e f f ( 1 + r m R b cos θ m ) .
τ e q , m τ m ( 1 + r m R b cos θ m ) ,
D G D ( z )   =   τ e q , m   τ m = τ m r m R b cos ( θ m , i + γ z ) ,
D G D a c c u m u l a t e d = 0 L D G D ( z ) d z = τ m r m R b γ sin ( θ m , i + γ L ) .
D G D W o r s t   c a s e ,   a c c u m u l a t e d = τ m r m L R b sinc ( γ L ) ( 1 ) k .
D G D 2 cos ( 60 θ c ) = D G D 7 cos ( θ c ) ,

Metrics