Abstract

A doughnut mode microchip laser was demonstrated by introducing a monolithic ceramic Nd:YAG/Cr4+:YAG chip in an unstable resonator to deliver laser pulses with an energy of 13.2 mJ and a pulse width of 476 ps, corresponding to a record peak power of 27.7 MW. The laser beam quality was characterized by M2∼6 at 10 Hz repetition rate. No significant degradation or change of beam pattern, pulse width, and M2 was confirmed during energy scaling in the case of the unstable cavity, promising for further brightness improving. In comparison with a flat-flat cavity, pulse broadening and M2 increase was observed up to ∼1.2 ns and ∼10, respectively, during energy scaling up to 18 mJ due to the beam pattern degradation. The doughnut beam was observed to have an Airy disk at the focal point, which was suitable for laser induced breakdown in air. The measured breakdown threshold of doughnut beam was comparable to a near-Gaussian beam (M2=1.3).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High beam quality and high peak power Yb:YAG/Cr:YAG microchip laser

Xiaoyang Guo, Shigeki Tokita, and Junji Kawanaka
Opt. Express 27(1) 45-54 (2019)

>1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser

Hiroshi Sakai, Hirohumi Kan, and Takunori Taira
Opt. Express 16(24) 19891-19899 (2008)

Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition

Nicolaie Pavel, Masaki Tsunekane, and Takunori Taira
Opt. Express 19(10) 9378-9384 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16(24), 1955–1957 (1991).
    [Crossref]
  2. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [Crossref]
  3. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref]
  4. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
    [Crossref]
  5. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref]
  6. T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” The 1st Laser Ignition Conference (LIC'13), Yokohama, Japan, Apr. 23–25, 2013.
  7. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
    [Crossref]
  8. H. H. Lim and T. Taira, “Sub-nanosecond laser induced air-breakdown with giant-pulse duration tuned Nd: YAG ceramic micro-laser by cavity-length control,” Opt. Express 25(6), 6320–6334 (2017).
    [Crossref]
  9. K. A. Ghany, H. A. Rafea, and M. Newishy, “Using a Nd-YAG laser and six axes robot to cut zinc-coated steel,” Int. J. Adv. Manuf. Technol. 28(11-12), 1111–1117 (2006).
    [Crossref]
  10. Z. Wang and N. Chocat, “Fiber-optic technologies in laser-based therapeutics: Threads for a cure,” Curr. Pharm. Biotechnol. 11(4), 384–397 (2010).
    [Crossref]
  11. N. Mukai, Y. Sano, M. Yoda, I. Chida, T. Uehara, and T. Yamamoto, “Preventive maintenance against stress corrosion cracking in nuclear power reactors by laser peening. Remote delivery of high-power pulsed laser,” Reza Kenkyu 33(7), 444–451 (2005).
    [Crossref]
  12. V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
    [Crossref]
  13. J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
    [Crossref]
  14. N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23(26), 33028–33037 (2015).
    [Crossref]
  15. X. Guo, S. Tokita, and J. Kawanaka, “High beam quality and high peak power Yb:YAG/Cr:YAG microchip laser,” Opt. Express 27(1), 45–54 (2019).
    [Crossref]
  16. A. E. Siegman, “Unstable optical resonators,” Appl. Opt. 13(2), 353–367 (1974).
    [Crossref]
  17. R. L. Herbst, H. Komine, and R. L. Byer, “A 200 mJ unstable resonator Nd:YAG oscillator,” Opt. Commun. 21(1), 5–7 (1977).
    [Crossref]
  18. J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226(1-6), 337–344 (2003).
    [Crossref]
  19. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
    [Crossref]
  20. W. Yu-Ye, X. De-Gang, X. Jing-Ping, W. Zhuo, W. Peng, and Y. Jian-Quan, “Numerical modelling of QCW-pumped passively Q-switched Nd:YAG lasers with Cr4+:YAG as saturable absorber,” Chin. Phys. Lett. 25(8), 2880–2883 (2008).
    [Crossref]
  21. A. Kausas and T. Taira, “Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control,” Opt. Express 24(4), 3137–3149 (2016).
    [Crossref]
  22. V. Yahia and T. Taira, “High brightness energetic pulses delivered by compact microchip-MOPA system,” Opt. Express 26(7), 8609–8618 (2018).
    [Crossref]
  23. T. Kawasaki, V. Yahia, and T. Taira, “100 Hz operation in 10 PW/sr·cm2 class Nd:YAG micro-MOPA,” Opt. Express 27(14), 19555–19561 (2019).
    [Crossref]
  24. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
    [Crossref]
  25. G. E. Slobodzian, “Beam profiling: second-moment method characterizes higher-order beam modes,” Laser Focus World 51(7), 35–38 (2015).
  26. ISO 11146-1:2005 “Test methods for laser beam widths, divergence angles and beam propagation ratios Part 1: Stigmatic and simple astigmatic beams,”
  27. ISO 11146–2:2005, “Lasers and laser-related equipment - Test methods for laser beam widths, divergence angles and beam propagation ratios - Part 2: General astigmatic beams,”
  28. ISO 11146:1999, “Lasers and laser-related equipment - Test methods for laser beam parameters – Beam widths, divergence angle and beam propagation factor,”
  29. M. Tsunekane and T. Taira, “New method of in-situ measurement of 2D laser beam profile,” in 35th Annual Meeting of the Laser Society of Japan, Tokyo, Japan, 11-12 Jan. 2015, paper 12pIX03 (in Japanese).
  30. B. Lü, X. Ji, and S. Luo, “The beam quality of annular lasers and related problems,” J. Mod. Opt. 48(7), 1171–1178 (2001).
    [Crossref]
  31. A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS Lasers: Applications and Issues, M. W. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics Series (OSA, 1998), pp. 184–199.
  32. A. Garay, “Continuous wave deuterium fluoride laser beam diagnostic system,” Proc. SPIE 0888, 17–22 (1988).
    [Crossref]
  33. L. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214–3221 (2017).
    [Crossref]

2019 (2)

2018 (2)

V. Yahia and T. Taira, “High brightness energetic pulses delivered by compact microchip-MOPA system,” Opt. Express 26(7), 8609–8618 (2018).
[Crossref]

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

2017 (2)

2016 (1)

2015 (3)

N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23(26), 33028–33037 (2015).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

G. E. Slobodzian, “Beam profiling: second-moment method characterizes higher-order beam modes,” Laser Focus World 51(7), 35–38 (2015).

2011 (1)

2010 (1)

Z. Wang and N. Chocat, “Fiber-optic technologies in laser-based therapeutics: Threads for a cure,” Curr. Pharm. Biotechnol. 11(4), 384–397 (2010).
[Crossref]

2008 (2)

W. Yu-Ye, X. De-Gang, X. Jing-Ping, W. Zhuo, W. Peng, and Y. Jian-Quan, “Numerical modelling of QCW-pumped passively Q-switched Nd:YAG lasers with Cr4+:YAG as saturable absorber,” Chin. Phys. Lett. 25(8), 2880–2883 (2008).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref]

2007 (1)

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

2006 (1)

K. A. Ghany, H. A. Rafea, and M. Newishy, “Using a Nd-YAG laser and six axes robot to cut zinc-coated steel,” Int. J. Adv. Manuf. Technol. 28(11-12), 1111–1117 (2006).
[Crossref]

2005 (1)

N. Mukai, Y. Sano, M. Yoda, I. Chida, T. Uehara, and T. Yamamoto, “Preventive maintenance against stress corrosion cracking in nuclear power reactors by laser peening. Remote delivery of high-power pulsed laser,” Reza Kenkyu 33(7), 444–451 (2005).
[Crossref]

2003 (2)

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226(1-6), 337–344 (2003).
[Crossref]

2002 (1)

2001 (2)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

B. Lü, X. Ji, and S. Luo, “The beam quality of annular lasers and related problems,” J. Mod. Opt. 48(7), 1171–1178 (2001).
[Crossref]

1994 (1)

1991 (1)

1988 (1)

A. Garay, “Continuous wave deuterium fluoride laser beam diagnostic system,” Proc. SPIE 0888, 17–22 (1988).
[Crossref]

1977 (1)

R. L. Herbst, H. Komine, and R. L. Byer, “A 200 mJ unstable resonator Nd:YAG oscillator,” Opt. Commun. 21(1), 5–7 (1977).
[Crossref]

1974 (1)

Beduneau, J. L.

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

Birtas, A.

Boicea, N.

Byer, R. L.

R. L. Herbst, H. Komine, and R. L. Byer, “A 200 mJ unstable resonator Nd:YAG oscillator,” Opt. Commun. 21(1), 5–7 (1977).
[Crossref]

Chida, I.

N. Mukai, Y. Sano, M. Yoda, I. Chida, T. Uehara, and T. Yamamoto, “Preventive maintenance against stress corrosion cracking in nuclear power reactors by laser peening. Remote delivery of high-power pulsed laser,” Reza Kenkyu 33(7), 444–451 (2005).
[Crossref]

Chocat, N.

Z. Wang and N. Chocat, “Fiber-optic technologies in laser-based therapeutics: Threads for a cure,” Curr. Pharm. Biotechnol. 11(4), 384–397 (2010).
[Crossref]

Dascalu, T.

De-Gang, X.

W. Yu-Ye, X. De-Gang, X. Jing-Ping, W. Zhuo, W. Peng, and Y. Jian-Quan, “Numerical modelling of QCW-pumped passively Q-switched Nd:YAG lasers with Cr4+:YAG as saturable absorber,” Chin. Phys. Lett. 25(8), 2880–2883 (2008).
[Crossref]

Dill, C.

Dinca, M.

Dong, J.

J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226(1-6), 337–344 (2003).
[Crossref]

Dormidonov, A. E.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Fedorov, A. N.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Garay, A.

A. Garay, “Continuous wave deuterium fluoride laser beam diagnostic system,” Proc. SPIE 0888, 17–22 (1988).
[Crossref]

Ghany, K. A.

K. A. Ghany, H. A. Rafea, and M. Newishy, “Using a Nd-YAG laser and six axes robot to cut zinc-coated steel,” Int. J. Adv. Manuf. Technol. 28(11-12), 1111–1117 (2006).
[Crossref]

Grishin, M. Y.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Guo, X.

Hayashi, S.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Herbst, R. L.

R. L. Herbst, H. Komine, and R. L. Byer, “A 200 mJ unstable resonator Nd:YAG oscillator,” Opt. Commun. 21(1), 5–7 (1977).
[Crossref]

Ikeda, Y.

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

Ikesue, A.

Ji, X.

B. Lü, X. Ji, and S. Luo, “The beam quality of annular lasers and related problems,” J. Mod. Opt. 48(7), 1171–1178 (2001).
[Crossref]

Jian-Quan, Y.

W. Yu-Ye, X. De-Gang, X. Jing-Ping, W. Zhuo, W. Peng, and Y. Jian-Quan, “Numerical modelling of QCW-pumped passively Q-switched Nd:YAG lasers with Cr4+:YAG as saturable absorber,” Chin. Phys. Lett. 25(8), 2880–2883 (2008).
[Crossref]

Jing-Ping, X.

W. Yu-Ye, X. De-Gang, X. Jing-Ping, W. Zhuo, W. Peng, and Y. Jian-Quan, “Numerical modelling of QCW-pumped passively Q-switched Nd:YAG lasers with Cr4+:YAG as saturable absorber,” Chin. Phys. Lett. 25(8), 2880–2883 (2008).
[Crossref]

Kan, H.

Kanehara, K.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” The 1st Laser Ignition Conference (LIC'13), Yokohama, Japan, Apr. 23–25, 2013.

Kausas, A.

Kawanaka, J.

Kawasaki, T.

Kawase, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Kim, B.

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

Kobayashi, T.

Komine, H.

R. L. Herbst, H. Komine, and R. L. Byer, “A 200 mJ unstable resonator Nd:YAG oscillator,” Opt. Commun. 21(1), 5–7 (1977).
[Crossref]

Kurimura, S.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Lednev, V. N.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Lim, H. H.

Lü, B.

B. Lü, X. Ji, and S. Luo, “The beam quality of annular lasers and related problems,” J. Mod. Opt. 48(7), 1171–1178 (2001).
[Crossref]

Luo, S.

B. Lü, X. Ji, and S. Luo, “The beam quality of annular lasers and related problems,” J. Mod. Opt. 48(7), 1171–1178 (2001).
[Crossref]

Lupei, V.

Minamide, H.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Morishima, S.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” The 1st Laser Ignition Conference (LIC'13), Yokohama, Japan, Apr. 23–25, 2013.

Mukai, A.

Mukai, N.

N. Mukai, Y. Sano, M. Yoda, I. Chida, T. Uehara, and T. Yamamoto, “Preventive maintenance against stress corrosion cracking in nuclear power reactors by laser peening. Remote delivery of high-power pulsed laser,” Reza Kenkyu 33(7), 444–451 (2005).
[Crossref]

Nawata, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Newishy, M.

K. A. Ghany, H. A. Rafea, and M. Newishy, “Using a Nd-YAG laser and six axes robot to cut zinc-coated steel,” Int. J. Adv. Manuf. Technol. 28(11-12), 1111–1117 (2006).
[Crossref]

Nozawa, Y.

Pavel, N.

Peng, W.

W. Yu-Ye, X. De-Gang, X. Jing-Ping, W. Zhuo, W. Peng, and Y. Jian-Quan, “Numerical modelling of QCW-pumped passively Q-switched Nd:YAG lasers with Cr4+:YAG as saturable absorber,” Chin. Phys. Lett. 25(8), 2880–2883 (2008).
[Crossref]

Pershin, S. M.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Rafea, H. A.

K. A. Ghany, H. A. Rafea, and M. Newishy, “Using a Nd-YAG laser and six axes robot to cut zinc-coated steel,” Int. J. Adv. Manuf. Technol. 28(11-12), 1111–1117 (2006).
[Crossref]

Safronova, E. S.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Sakai, H.

Salamu, G.

Sano, Y.

N. Mukai, Y. Sano, M. Yoda, I. Chida, T. Uehara, and T. Yamamoto, “Preventive maintenance against stress corrosion cracking in nuclear power reactors by laser peening. Remote delivery of high-power pulsed laser,” Reza Kenkyu 33(7), 444–451 (2005).
[Crossref]

Sato, Y.

Savvin, A. D.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Sdvizhenskii, P. A.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Shikata, J.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Shoji, I.

Siegman, A. E.

A. E. Siegman, “Unstable optical resonators,” Appl. Opt. 13(2), 353–367 (1974).
[Crossref]

A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS Lasers: Applications and Issues, M. W. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics Series (OSA, 1998), pp. 184–199.

Slobodzian, G. E.

G. E. Slobodzian, “Beam profiling: second-moment method characterizes higher-order beam modes,” Laser Focus World 51(7), 35–38 (2015).

Sugiura, A.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” The 1st Laser Ignition Conference (LIC'13), Yokohama, Japan, Apr. 23–25, 2013.

Taguchi, N.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” The 1st Laser Ignition Conference (LIC'13), Yokohama, Japan, Apr. 23–25, 2013.

Taira, T.

T. Kawasaki, V. Yahia, and T. Taira, “100 Hz operation in 10 PW/sr·cm2 class Nd:YAG micro-MOPA,” Opt. Express 27(14), 19555–19561 (2019).
[Crossref]

V. Yahia and T. Taira, “High brightness energetic pulses delivered by compact microchip-MOPA system,” Opt. Express 26(7), 8609–8618 (2018).
[Crossref]

L. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214–3221 (2017).
[Crossref]

H. H. Lim and T. Taira, “Sub-nanosecond laser induced air-breakdown with giant-pulse duration tuned Nd: YAG ceramic micro-laser by cavity-length control,” Opt. Express 25(6), 6320–6334 (2017).
[Crossref]

A. Kausas and T. Taira, “Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control,” Opt. Express 24(4), 3137–3149 (2016).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref]

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16(24), 1955–1957 (1991).
[Crossref]

M. Tsunekane and T. Taira, “New method of in-situ measurement of 2D laser beam profile,” in 35th Annual Meeting of the Laser Society of Japan, Tokyo, Japan, 11-12 Jan. 2015, paper 12pIX03 (in Japanese).

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” The 1st Laser Ignition Conference (LIC'13), Yokohama, Japan, Apr. 23–25, 2013.

Tokita, S.

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref]

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” The 1st Laser Ignition Conference (LIC'13), Yokohama, Japan, Apr. 23–25, 2013.

M. Tsunekane and T. Taira, “New method of in-situ measurement of 2D laser beam profile,” in 35th Annual Meeting of the Laser Society of Japan, Tokyo, Japan, 11-12 Jan. 2015, paper 12pIX03 (in Japanese).

Uehara, T.

N. Mukai, Y. Sano, M. Yoda, I. Chida, T. Uehara, and T. Yamamoto, “Preventive maintenance against stress corrosion cracking in nuclear power reactors by laser peening. Remote delivery of high-power pulsed laser,” Reza Kenkyu 33(7), 444–451 (2005).
[Crossref]

Wang, Z.

Z. Wang and N. Chocat, “Fiber-optic technologies in laser-based therapeutics: Threads for a cure,” Curr. Pharm. Biotechnol. 11(4), 384–397 (2010).
[Crossref]

Yahia, V.

Yamamoto, T.

N. Mukai, Y. Sano, M. Yoda, I. Chida, T. Uehara, and T. Yamamoto, “Preventive maintenance against stress corrosion cracking in nuclear power reactors by laser peening. Remote delivery of high-power pulsed laser,” Reza Kenkyu 33(7), 444–451 (2005).
[Crossref]

Yoda, M.

N. Mukai, Y. Sano, M. Yoda, I. Chida, T. Uehara, and T. Yamamoto, “Preventive maintenance against stress corrosion cracking in nuclear power reactors by laser peening. Remote delivery of high-power pulsed laser,” Reza Kenkyu 33(7), 444–451 (2005).
[Crossref]

Yoshida, K.

Yu-Ye, W.

W. Yu-Ye, X. De-Gang, X. Jing-Ping, W. Zhuo, W. Peng, and Y. Jian-Quan, “Numerical modelling of QCW-pumped passively Q-switched Nd:YAG lasers with Cr4+:YAG as saturable absorber,” Chin. Phys. Lett. 25(8), 2880–2883 (2008).
[Crossref]

Zayhowski, J. J.

Zheng, L.

Zhuo, W.

W. Yu-Ye, X. De-Gang, X. Jing-Ping, W. Zhuo, W. Peng, and Y. Jian-Quan, “Numerical modelling of QCW-pumped passively Q-switched Nd:YAG lasers with Cr4+:YAG as saturable absorber,” Chin. Phys. Lett. 25(8), 2880–2883 (2008).
[Crossref]

Zimmer, L.

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

Appl. Opt. (1)

Chin. Phys. Lett. (1)

W. Yu-Ye, X. De-Gang, X. Jing-Ping, W. Zhuo, W. Peng, and Y. Jian-Quan, “Numerical modelling of QCW-pumped passively Q-switched Nd:YAG lasers with Cr4+:YAG as saturable absorber,” Chin. Phys. Lett. 25(8), 2880–2883 (2008).
[Crossref]

Combust. Flame (1)

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

Curr. Pharm. Biotechnol. (1)

Z. Wang and N. Chocat, “Fiber-optic technologies in laser-based therapeutics: Threads for a cure,” Curr. Pharm. Biotechnol. 11(4), 384–397 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

K. A. Ghany, H. A. Rafea, and M. Newishy, “Using a Nd-YAG laser and six axes robot to cut zinc-coated steel,” Int. J. Adv. Manuf. Technol. 28(11-12), 1111–1117 (2006).
[Crossref]

J. Anal. At. Spectrom. (1)

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Y. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

J. Mod. Opt. (1)

B. Lü, X. Ji, and S. Luo, “The beam quality of annular lasers and related problems,” J. Mod. Opt. 48(7), 1171–1178 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Laser Focus World (1)

G. E. Slobodzian, “Beam profiling: second-moment method characterizes higher-order beam modes,” Laser Focus World 51(7), 35–38 (2015).

Opt. Commun. (2)

R. L. Herbst, H. Komine, and R. L. Byer, “A 200 mJ unstable resonator Nd:YAG oscillator,” Opt. Commun. 21(1), 5–7 (1977).
[Crossref]

J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226(1-6), 337–344 (2003).
[Crossref]

Opt. Express (8)

Opt. Lett. (3)

Opt. Mater. Express (1)

Proc. SPIE (1)

A. Garay, “Continuous wave deuterium fluoride laser beam diagnostic system,” Proc. SPIE 0888, 17–22 (1988).
[Crossref]

Reza Kenkyu (1)

N. Mukai, Y. Sano, M. Yoda, I. Chida, T. Uehara, and T. Yamamoto, “Preventive maintenance against stress corrosion cracking in nuclear power reactors by laser peening. Remote delivery of high-power pulsed laser,” Reza Kenkyu 33(7), 444–451 (2005).
[Crossref]

Sci. Rep. (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Other (6)

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” The 1st Laser Ignition Conference (LIC'13), Yokohama, Japan, Apr. 23–25, 2013.

A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS Lasers: Applications and Issues, M. W. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics Series (OSA, 1998), pp. 184–199.

ISO 11146-1:2005 “Test methods for laser beam widths, divergence angles and beam propagation ratios Part 1: Stigmatic and simple astigmatic beams,”

ISO 11146–2:2005, “Lasers and laser-related equipment - Test methods for laser beam widths, divergence angles and beam propagation ratios - Part 2: General astigmatic beams,”

ISO 11146:1999, “Lasers and laser-related equipment - Test methods for laser beam parameters – Beam widths, divergence angle and beam propagation factor,”

M. Tsunekane and T. Taira, “New method of in-situ measurement of 2D laser beam profile,” in 35th Annual Meeting of the Laser Society of Japan, Tokyo, Japan, 11-12 Jan. 2015, paper 12pIX03 (in Japanese).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the positive branch confocal cavity, where Mb (o) and Rb (o) is the back (output) cavity mirror and its radius curvature, respectively, Lc is the cavity length, a is the size of Mo or the hole size of doughnut mode, and b is the size of doughnut mode. (b) Schematic of the experimental cavity, where l is the length of the monolithic ceramic, LMo and L is the substrate lens for Mo and the lens for collimating the divergent beam, respectively.
Fig. 2.
Fig. 2. (a) Measured pulse shape with a FWHM of 476 ps. Inset: the measured doughnut beam pattern. (b) Measured pulse energy during a short term of 5 minutes, showing a mean energy of 13.2 mJ with a RMS stability of 1%. Inset: the measured and calculated transmittance as a function of angle of polarizer.
Fig. 3.
Fig. 3. Measured beam radius around the focal point using a lens with a focal length of 300 mm. Inset: typical beam patterns around the focal point.
Fig. 4.
Fig. 4. Measured beam patterns (a) and pulse shapes (b) of unstable and flat-flat cavity at different pulse energies, where the energies of 8.8, 11.5, and 13.2 mJ for unstable cavity are paired with 10.2, 14.3, and 18 mJ for flat-flat cavity by every pump condition, respectively. Measured pulse width (FWHM) (c), peak power (d), M2 (e), and brightness (f) of unstable and flat-flat cavity as a function of pulse energy.
Fig. 5.
Fig. 5. (a) Compared pulse shapes between doughnut (red line) and near-Gaussian beam (black line) with a width (FWHM) of 570 ps, respectively. Inset: measured beam patterns on focusing lens for doughnut (up) and near-Gaussian (down) with a diameter of 7.5 mm, respectively. (b) Measured breakdown threshold energy of doughnut (open circles) and near-Gaussian beam (closed circles) and the ratio of the threshold energy of doughnut beam Eth, d to that of near-Gaussian beam Eth, nG (blue squares) as a function of focal length.
Fig. 6.
Fig. 6. (a) Measured beam pattern of doughnut beam at a focal point showing an Airy disk and Airy pattern. (b) Cross sectional intensity distribution of the Airy disk and Airy pattern (blue symbol) compared with a Gaussian distribution with the same beam size (black line) and 0.2 times smaller beam size (red line). The Airy disk and Airy pattern were fitted by Eq. (1) (blue solid line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( r , f ) = 4 I ( 0 , f ) ( 1 1 / m 2 ) 2 [ J 1 ( k r b / f ) k r b / f 1 m 2 J 1 ( k r a / f ) k r a / f ] 2 ,

Metrics