Abstract

The electromagnetic field theory for a step-index fiber geometry is developed to sense a surrounding chiral drug via long-period fiber gratings (LPFGs). This theory employs Debye potentials and electromagnetic fields for cladding modes in the LPFGs by introducing constitutive relations for a chiral drug. The fields in the chiral drug are transformed and decomposed into right- and left-hand circularly polarized components to account for the magnetoelectric coupling due to the chirality. The solving process for complex propagation constants is given. Numerical results show that responses of the LPFGs to refractive index and chirality changes are different. The two minimum transmissions of a coated LPFG are very sensitive to the variation of the complex chirality. On the other hand, the two resonance wavelengths keep invariant as real and imaginary parts of the comparatively small chirality change. This work enriches the electromagnetic field theory for better design of LPFGs against the highly sensitive chirality detection.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design and analysis of long-period fiber gratings in tapered multimode chalcogenide glass fiber for temperature measurement

Leilei Wang, Wenqiang Ma, Peiqing Zhang, Dandan Yang, Liang Zhu, Xunsi Wang, and Shixun Dai
J. Opt. Soc. Am. B 36(7) 1792-1798 (2019)

Torsion characteristics of long-period fiber gratings induced by high-frequency CO2 laser pulses

Yi-Ping Wang, Jian-Ping Chen, and Yun-Jiang Rao
J. Opt. Soc. Am. B 22(6) 1167-1172 (2005)

Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection

Jianchun Yang, Chuanyi Tao, Xueming Li, Guangqin Zhu, and Weimin Chen
Opt. Express 19(15) 14696-14706 (2011)

References

  • View by:
  • |
  • |
  • |

  1. I. Del Villar, “Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point,” Opt. Express 23(7), 8389–8398 (2015).
    [Crossref] [PubMed]
  2. X. W. Shu and D. X. Huang, “Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-μm-period fiber grating,” Opt. Commun. 171(1–3), 65–69 (1999).
    [Crossref]
  3. F. Chiavaioli, F. Baldini, and C. Trono, “Manufacturing and spectral features of different types of long period fiber gratings: phase-shifted, turn-around point, internally tilted, and pseudo-random,” Fibers (Basel) 5(3), 29 (2017).
    [Crossref]
  4. I. Del Villar, O. Fuentes, F. Chiavaioli, J. M. Corres, and I. R. Matias, “Optimized strain long-period fiber grating (LPFG) sensors operating at the dispersion turning point,” J. Lightwave Technol. 36(11), 2240–2247 (2018).
    [Crossref]
  5. S. Bandyopadhyay, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
    [Crossref] [PubMed]
  6. A. Celebanska, Y. Chiniforooshan, M. Janik, P. Mikulic, B. Sellamuthu, R. Walsh, J. Perreault, and W. J. Bock, “Label-free cocaine aptasensor based on a long-period fiber grating,” Opt. Lett. 44(10), 2482–2485 (2019).
    [Crossref] [PubMed]
  7. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
    [Crossref] [PubMed]
  8. J. Yang, C. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19(15), 14696–14706 (2011).
    [Crossref] [PubMed]
  9. F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
  10. F. Tian, J. Min, J. Kanka, X. Li, P. T. Hammond, and H. Du, “Lab-on-fiber optofluidic platform for in situ monitoring of drug release from therapeutic eluting polyelectrolyte multilayers,” Opt. Express 23(15), 20132–20142 (2015).
    [Crossref] [PubMed]
  11. S. Zuppolini, G. Quero, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Cutolo, A. Cusano, and A. Borriello, “Label-free fiber optic optrode for the detection of class C β-lactamases expressed by drug resistant bacteria,” Biomed. Opt. Express 8(11), 5191–5205 (2017).
    [Crossref] [PubMed]
  12. K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Simultaneous measurement of displacement and temperature based on a balloon-shaped bent SMF structure incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
    [Crossref]
  13. J. M. Auñón and M. Nieto-Vesperinas, “Partially coherent fluctuating sources that produce the same optical force as a laser beam,” Opt. Lett. 38(15), 2869–2872 (2013).
    [Crossref] [PubMed]
  14. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
    [Crossref] [PubMed]
  15. M. J. Yin, B. Huang, S. Gao, A. P. Zhang, and X. Ye, “Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection,” Biomed. Opt. Express 7(5), 2067–2077 (2016).
    [Crossref] [PubMed]
  16. Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46(9), 666–670 (2008).
    [Crossref]
  17. B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23(25), 32429–32440 (2015).
    [Crossref] [PubMed]
  18. F. Chiavaioli, D. Laneve, D. Farnesi, M. C. Falconi, G. Nunzi Conti, F. Baldini, and F. Prudenzano, “Long period grating-based fiber coupling to WGM microresonators,” Micromachines (Basel) 9(7), 366 (2018).
    [Crossref] [PubMed]
  19. F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 23 (2017).
    [Crossref] [PubMed]
  20. F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
    [Crossref] [PubMed]
  21. Y. K. Liu, B. H. Liang, X. J. Zhang, N. Hu, K. W. Li, F. Chiavaioli, X. C. Gui, and T. Guo, “Plasmonic fiber-optic photothermal anemometers with carbon nanotube coatings,” J. Lightwave Technol. 37(13), 3373–3380 (2019).
    [Crossref]
  22. K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Design, fabrication and characterisation of silica-titania thin film coated over coupled long period fibre gratings: Towards bio-sensing applications,” Sensor. Actuat. Biol. Chem. 253, 418–427 (2017).
  23. M. Arjmand, F. Chiavaioli, S. Berneschi, F. Baldini, M. Soltanolkotabi, and C. Trono, “Effect of induced inner curvature on refractive index sensitivity in internally tilted long-period gratings,” Opt. Lett. 41(7), 1443–1446 (2016).
    [Crossref] [PubMed]
  24. I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol. 23(12), 4192–4199 (2005).
    [Crossref]
  25. Y. P. Xu, Z. T. Gu, and J. B. Chen, “Effect of surface film optical parameters on the characteristic of long-period fiber grating,” Chin. J. Lasers 32(11), 1519–1524 (2005).
  26. M. Deng, J. Xu, Z. Zhang, Z. Bai, S. Liu, Y. Wang, Y. Zhang, C. Liao, W. Jin, G. Peng, and Y. Wang, “Long period fiber grating based on periodically screw-type distortions for torsion sensing,” Opt. Express 25(13), 14308–14316 (2017).
    [Crossref] [PubMed]
  27. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Biisotropic Media (Artech House, 1994).
  28. Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
    [Crossref] [PubMed]
  29. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
    [Crossref]
  30. M. Wang, H. Li, D. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express 23(13), 16546–16553 (2015).
    [Crossref] [PubMed]
  31. Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), 4436 (2018).
    [Crossref] [PubMed]
  32. S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg. 2(1), 24 (2015).
    [Crossref] [PubMed]
  33. S. Droulias and L. Bougas, “A surface plasmon platform for angle-resolved chiral sensing,” ACS Photonics 6(6), 1485–1492 (2019).
    [Crossref]
  34. A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
    [Crossref]
  35. M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic spherical heterodimers: reversal of optical binding force based on the forced breaking of symmetry,” Sci. Rep. 8(1), 3164 (2018).
    [Crossref] [PubMed]
  36. E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3(3), e1603044 (2017).
    [Crossref] [PubMed]
  37. A. Berthod, Chiral Recognition in Separation Methods Mechanisms and Applications (Springer, 2010).
  38. M. Y. Wang, H. L. Li, T. Xu, M. X. Yu, G. P. Li, H. Zheng, J. Wu, and J. Xu, “Sensing and manipulation of bianisotropic biomolecules using a surface pasmon resonance based optical fiber sensor,” J. Lightwave Technol. 36(24), 5927–5934 (2018).
    [Crossref]
  39. M. Wang, H. Li, T. Xu, H. Zheng, M. Yu, G. Li, J. Xu, and J. Wu, “Probing bianisotropic biomolecules via a surface plasmon resonance sensor,” Opt. Express 26(22), 28277–28287 (2018).
    [Crossref] [PubMed]
  40. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  41. C. Y. H. Tsao, D. N. Payne, and W. A. Gambling, “Modal characteristics of three-layered optical fiber waveguides: a modified approach,” J. Opt. Soc. Am. A 6(4), 555–563 (1989).
    [Crossref]
  42. S. G. Zhou, H. L. Li, L. Y. Fu, and M. Y. Wang, “Preliminary study on active modulation of polar mesosphere summer echoes with the radio propagation in layered space dusty plasma,” Plasma Sci. Technol. 18(6), 607–610 (2016).
    [Crossref]
  43. C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
    [Crossref]
  44. L. Cao and B. Wei, “Near-field coupling characteristics analysis of radome over half-space under HPEM,” IEEE Trans. Electromagn. C. 57(6), 1637–1644 (2015).
    [Crossref]
  45. K. S. Zheng, Z. M. Mu, H. Luo, and G. Wei, “Electromagnetic properties from moving dielectric in high speed with Lorentz-FDTD,” IEEE Antenn. Wirel. Pr. 15, 934–937 (2016).
    [Crossref]
  46. C. X. Lei and Z. S. Wu, “A study of radiative properties of randomly distributed soot aggregates,” Wuli Xuebao 59(8), 5692–5699 (2010).
  47. X. M. Sun, S. Xiao, H. H. Wang, and S. J. Long, “Transportation of gaussian light beam in two-layer clouds by monte carlo simulation,” Wuli Xuebao 64(18), 184204 (2015).
  48. F. Wang and B. Wei, “Propagation matrix of plane wave stratified lossy chiral incident obliquely on medium,” Wuli Xuebao 66(6), 064101 (2017).
  49. Y. Zhang, Z. Bai, C. Fu, S. Liu, J. Tang, J. Yu, C. Liao, Y. Wang, J. He, and Y. Wang, “Polarization-independent orbital angular momentum generator based on a chiral fiber grating,” Opt. Lett. 44(1), 61–64 (2019).
    [Crossref] [PubMed]
  50. M. Dong, X. Lu, C. Zhao, Y. Cai, and Y. Yang, “Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam,” Opt. Express 26(25), 33035–33043 (2018).
    [Crossref] [PubMed]
  51. T. Zhang, Y. D. Liu, K. Yang, J. Wang, P. Liu, and Y. Yang, “Restriction on orbital angular momentum distribution: a role of media in vortex beams propagation,” Opt. Express 26(13), 17227–17235 (2018).
    [Crossref] [PubMed]
  52. M. Kumar and A. Kumar, “A simple and accurate method to analyze lossy optical waveguides: applications to surface plasmon resonance based devices,” J. Lightwave Technol. 32(5), 947–951 (2014).
    [Crossref]
  53. Y. H. Zhao, T. X. Wang, C. B. Mou, Z. J. Yan, Y. Q. Liu, and T. Y. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonic. Tech. L. 30(8), 752–755 (2018).
    [Crossref]
  54. H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38(11), 1978–1980 (2013).
    [Crossref] [PubMed]
  55. Y. Cao and J. Li, “Transverse electromagnetic modes in chiral negatively refractive fibers and a new type of space-division multiplexing,” Opt. Lett. 39(2), 255–258 (2014).
    [Crossref] [PubMed]
  56. L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
    [Crossref] [PubMed]
  57. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

2019 (4)

2018 (10)

I. Del Villar, O. Fuentes, F. Chiavaioli, J. M. Corres, and I. R. Matias, “Optimized strain long-period fiber grating (LPFG) sensors operating at the dispersion turning point,” J. Lightwave Technol. 36(11), 2240–2247 (2018).
[Crossref]

T. Zhang, Y. D. Liu, K. Yang, J. Wang, P. Liu, and Y. Yang, “Restriction on orbital angular momentum distribution: a role of media in vortex beams propagation,” Opt. Express 26(13), 17227–17235 (2018).
[Crossref] [PubMed]

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Simultaneous measurement of displacement and temperature based on a balloon-shaped bent SMF structure incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
[Crossref]

M. Wang, H. Li, T. Xu, H. Zheng, M. Yu, G. Li, J. Xu, and J. Wu, “Probing bianisotropic biomolecules via a surface plasmon resonance sensor,” Opt. Express 26(22), 28277–28287 (2018).
[Crossref] [PubMed]

M. Dong, X. Lu, C. Zhao, Y. Cai, and Y. Yang, “Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam,” Opt. Express 26(25), 33035–33043 (2018).
[Crossref] [PubMed]

M. Y. Wang, H. L. Li, T. Xu, M. X. Yu, G. P. Li, H. Zheng, J. Wu, and J. Xu, “Sensing and manipulation of bianisotropic biomolecules using a surface pasmon resonance based optical fiber sensor,” J. Lightwave Technol. 36(24), 5927–5934 (2018).
[Crossref]

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), 4436 (2018).
[Crossref] [PubMed]

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic spherical heterodimers: reversal of optical binding force based on the forced breaking of symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref] [PubMed]

F. Chiavaioli, D. Laneve, D. Farnesi, M. C. Falconi, G. Nunzi Conti, F. Baldini, and F. Prudenzano, “Long period grating-based fiber coupling to WGM microresonators,” Micromachines (Basel) 9(7), 366 (2018).
[Crossref] [PubMed]

Y. H. Zhao, T. X. Wang, C. B. Mou, Z. J. Yan, Y. Q. Liu, and T. Y. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonic. Tech. L. 30(8), 752–755 (2018).
[Crossref]

2017 (11)

F. Wang and B. Wei, “Propagation matrix of plane wave stratified lossy chiral incident obliquely on medium,” Wuli Xuebao 66(6), 064101 (2017).

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 23 (2017).
[Crossref] [PubMed]

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Design, fabrication and characterisation of silica-titania thin film coated over coupled long period fibre gratings: Towards bio-sensing applications,” Sensor. Actuat. Biol. Chem. 253, 418–427 (2017).

F. Chiavaioli, F. Baldini, and C. Trono, “Manufacturing and spectral features of different types of long period fiber gratings: phase-shifted, turn-around point, internally tilted, and pseudo-random,” Fibers (Basel) 5(3), 29 (2017).
[Crossref]

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref] [PubMed]

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3(3), e1603044 (2017).
[Crossref] [PubMed]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref] [PubMed]

M. Deng, J. Xu, Z. Zhang, Z. Bai, S. Liu, Y. Wang, Y. Zhang, C. Liao, W. Jin, G. Peng, and Y. Wang, “Long period fiber grating based on periodically screw-type distortions for torsion sensing,” Opt. Express 25(13), 14308–14316 (2017).
[Crossref] [PubMed]

S. Zuppolini, G. Quero, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Cutolo, A. Cusano, and A. Borriello, “Label-free fiber optic optrode for the detection of class C β-lactamases expressed by drug resistant bacteria,” Biomed. Opt. Express 8(11), 5191–5205 (2017).
[Crossref] [PubMed]

S. Bandyopadhyay, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
[Crossref] [PubMed]

2016 (4)

M. Arjmand, F. Chiavaioli, S. Berneschi, F. Baldini, M. Soltanolkotabi, and C. Trono, “Effect of induced inner curvature on refractive index sensitivity in internally tilted long-period gratings,” Opt. Lett. 41(7), 1443–1446 (2016).
[Crossref] [PubMed]

M. J. Yin, B. Huang, S. Gao, A. P. Zhang, and X. Ye, “Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection,” Biomed. Opt. Express 7(5), 2067–2077 (2016).
[Crossref] [PubMed]

S. G. Zhou, H. L. Li, L. Y. Fu, and M. Y. Wang, “Preliminary study on active modulation of polar mesosphere summer echoes with the radio propagation in layered space dusty plasma,” Plasma Sci. Technol. 18(6), 607–610 (2016).
[Crossref]

K. S. Zheng, Z. M. Mu, H. Luo, and G. Wei, “Electromagnetic properties from moving dielectric in high speed with Lorentz-FDTD,” IEEE Antenn. Wirel. Pr. 15, 934–937 (2016).
[Crossref]

2015 (9)

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

L. Cao and B. Wei, “Near-field coupling characteristics analysis of radome over half-space under HPEM,” IEEE Trans. Electromagn. C. 57(6), 1637–1644 (2015).
[Crossref]

X. M. Sun, S. Xiao, H. H. Wang, and S. J. Long, “Transportation of gaussian light beam in two-layer clouds by monte carlo simulation,” Wuli Xuebao 64(18), 184204 (2015).

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg. 2(1), 24 (2015).
[Crossref] [PubMed]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

I. Del Villar, “Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point,” Opt. Express 23(7), 8389–8398 (2015).
[Crossref] [PubMed]

M. Wang, H. Li, D. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express 23(13), 16546–16553 (2015).
[Crossref] [PubMed]

F. Tian, J. Min, J. Kanka, X. Li, P. T. Hammond, and H. Du, “Lab-on-fiber optofluidic platform for in situ monitoring of drug release from therapeutic eluting polyelectrolyte multilayers,” Opt. Express 23(15), 20132–20142 (2015).
[Crossref] [PubMed]

B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23(25), 32429–32440 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

2011 (1)

2010 (1)

C. X. Lei and Z. S. Wu, “A study of radiative properties of randomly distributed soot aggregates,” Wuli Xuebao 59(8), 5692–5699 (2010).

2008 (1)

Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46(9), 666–670 (2008).
[Crossref]

2007 (1)

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

2006 (1)

2005 (2)

I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol. 23(12), 4192–4199 (2005).
[Crossref]

Y. P. Xu, Z. T. Gu, and J. B. Chen, “Effect of surface film optical parameters on the characteristic of long-period fiber grating,” Chin. J. Lasers 32(11), 1519–1524 (2005).

2003 (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

1999 (1)

X. W. Shu and D. X. Huang, “Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-μm-period fiber grating,” Opt. Commun. 171(1–3), 65–69 (1999).
[Crossref]

1997 (1)

1989 (1)

Achaerandio, M.

Alù, A.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref] [PubMed]

Arjmand, M.

Arregui, F. J.

Askarpour, A. N.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref] [PubMed]

Auñón, J. M.

Baaske, M. D.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3(3), e1603044 (2017).
[Crossref] [PubMed]

Bai, Z.

Baldini, F.

F. Chiavaioli, D. Laneve, D. Farnesi, M. C. Falconi, G. Nunzi Conti, F. Baldini, and F. Prudenzano, “Long period grating-based fiber coupling to WGM microresonators,” Micromachines (Basel) 9(7), 366 (2018).
[Crossref] [PubMed]

F. Chiavaioli, F. Baldini, and C. Trono, “Manufacturing and spectral features of different types of long period fiber gratings: phase-shifted, turn-around point, internally tilted, and pseudo-random,” Fibers (Basel) 5(3), 29 (2017).
[Crossref]

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 23 (2017).
[Crossref] [PubMed]

S. Bandyopadhyay, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
[Crossref] [PubMed]

M. Arjmand, F. Chiavaioli, S. Berneschi, F. Baldini, M. Soltanolkotabi, and C. Trono, “Effect of induced inner curvature on refractive index sensitivity in internally tilted long-period gratings,” Opt. Lett. 41(7), 1443–1446 (2016).
[Crossref] [PubMed]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Bandyopadhyay, S.

Basumallick, N.

S. Bandyopadhyay, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
[Crossref] [PubMed]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Bera, S.

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Berneschi, S.

Biswas, P.

S. Bandyopadhyay, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
[Crossref] [PubMed]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Bock, W. J.

Borriello, A.

Bougas, L.

S. Droulias and L. Bougas, “A surface plasmon platform for angle-resolved chiral sensing,” ACS Photonics 6(6), 1485–1492 (2019).
[Crossref]

Cai, Y.

Campopiano, S.

Cao, L.

L. Cao and B. Wei, “Near-field coupling characteristics analysis of radome over half-space under HPEM,” IEEE Trans. Electromagn. C. 57(6), 1637–1644 (2015).
[Crossref]

Cao, Y.

Celebanska, A.

Chen, J. B.

Y. P. Xu, Z. T. Gu, and J. B. Chen, “Effect of surface film optical parameters on the characteristic of long-period fiber grating,” Chin. J. Lasers 32(11), 1519–1524 (2005).

Chen, W.

Cheong, F. C.

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

Chiavaioli, F.

Y. K. Liu, B. H. Liang, X. J. Zhang, N. Hu, K. W. Li, F. Chiavaioli, X. C. Gui, and T. Guo, “Plasmonic fiber-optic photothermal anemometers with carbon nanotube coatings,” J. Lightwave Technol. 37(13), 3373–3380 (2019).
[Crossref]

I. Del Villar, O. Fuentes, F. Chiavaioli, J. M. Corres, and I. R. Matias, “Optimized strain long-period fiber grating (LPFG) sensors operating at the dispersion turning point,” J. Lightwave Technol. 36(11), 2240–2247 (2018).
[Crossref]

F. Chiavaioli, D. Laneve, D. Farnesi, M. C. Falconi, G. Nunzi Conti, F. Baldini, and F. Prudenzano, “Long period grating-based fiber coupling to WGM microresonators,” Micromachines (Basel) 9(7), 366 (2018).
[Crossref] [PubMed]

F. Chiavaioli, F. Baldini, and C. Trono, “Manufacturing and spectral features of different types of long period fiber gratings: phase-shifted, turn-around point, internally tilted, and pseudo-random,” Fibers (Basel) 5(3), 29 (2017).
[Crossref]

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 23 (2017).
[Crossref] [PubMed]

S. Bandyopadhyay, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
[Crossref] [PubMed]

M. Arjmand, F. Chiavaioli, S. Berneschi, F. Baldini, M. Soltanolkotabi, and C. Trono, “Effect of induced inner curvature on refractive index sensitivity in internally tilted long-period gratings,” Opt. Lett. 41(7), 1443–1446 (2016).
[Crossref] [PubMed]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Chiniforooshan, Y.

Chowdhury, A. B.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic spherical heterodimers: reversal of optical binding force based on the forced breaking of symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref] [PubMed]

Consales, M.

Contessa, L.

Corres, J. M.

Costi, M. P.

Cusano, A.

Cutolo, A.

Danesh, M.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic spherical heterodimers: reversal of optical binding force based on the forced breaking of symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref] [PubMed]

Del Villar, I.

Deng, M.

Dey, T. K.

Ding, W.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic spherical heterodimers: reversal of optical binding force based on the forced breaking of symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref] [PubMed]

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref] [PubMed]

Ding, W. Q.

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

Ding, X.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref] [PubMed]

Diodato, L.

Dogariu, A.

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

Dong, M.

Droulias, S.

S. Droulias and L. Bougas, “A surface plasmon platform for angle-resolved chiral sensing,” ACS Photonics 6(6), 1485–1492 (2019).
[Crossref]

Du, H.

Erdogan, T.

Falconi, M. C.

F. Chiavaioli, D. Laneve, D. Farnesi, M. C. Falconi, G. Nunzi Conti, F. Baldini, and F. Prudenzano, “Long period grating-based fiber coupling to WGM microresonators,” Micromachines (Basel) 9(7), 366 (2018).
[Crossref] [PubMed]

Fang, N. X.

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), 4436 (2018).
[Crossref] [PubMed]

Farnesi, D.

F. Chiavaioli, D. Laneve, D. Farnesi, M. C. Falconi, G. Nunzi Conti, F. Baldini, and F. Prudenzano, “Long period grating-based fiber coupling to WGM microresonators,” Micromachines (Basel) 9(7), 366 (2018).
[Crossref] [PubMed]

Farrell, G.

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Simultaneous measurement of displacement and temperature based on a balloon-shaped bent SMF structure incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
[Crossref]

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Design, fabrication and characterisation of silica-titania thin film coated over coupled long period fibre gratings: Towards bio-sensing applications,” Sensor. Actuat. Biol. Chem. 253, 418–427 (2017).

Fu, C.

Fu, L. Y.

S. G. Zhou, H. L. Li, L. Y. Fu, and M. Y. Wang, “Preliminary study on active modulation of polar mesosphere summer echoes with the radio propagation in layered space dusty plasma,” Plasma Sci. Technol. 18(6), 607–610 (2016).
[Crossref]

Fuentes, O.

Gambling, W. A.

Gao, D.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref] [PubMed]

M. Wang, H. Li, D. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express 23(13), 16546–16553 (2015).
[Crossref] [PubMed]

Gao, D. L.

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

Gao, L.

Gao, S.

Giannetti, A.

S. Bandyopadhyay, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
[Crossref] [PubMed]

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Giordano, M.

Gouveia, C. A. J.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 23 (2017).
[Crossref] [PubMed]

Gu, Z. T.

Y. P. Xu, Z. T. Gu, and J. B. Chen, “Effect of surface film optical parameters on the characteristic of long-period fiber grating,” Chin. J. Lasers 32(11), 1519–1524 (2005).

Gui, X. C.

Guo, T.

Hammond, P. T.

He, J.

Hess, O.

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg. 2(1), 24 (2015).
[Crossref] [PubMed]

Hu, N.

Huang, B.

Huang, D. X.

X. W. Shu and D. X. Huang, “Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-μm-period fiber grating,” Opt. Commun. 171(1–3), 65–69 (1999).
[Crossref]

Iadicicco, A.

Jana, S.

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Janik, M.

Jin, W.

Jorge, P. A. S.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 23 (2017).
[Crossref] [PubMed]

Kanka, J.

Kim, E.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3(3), e1603044 (2017).
[Crossref] [PubMed]

Kumar, A.

Kumar, M.

Laneve, D.

F. Chiavaioli, D. Laneve, D. Farnesi, M. C. Falconi, G. Nunzi Conti, F. Baldini, and F. Prudenzano, “Long period grating-based fiber coupling to WGM microresonators,” Micromachines (Basel) 9(7), 366 (2018).
[Crossref] [PubMed]

Lei, C. X.

C. X. Lei and Z. S. Wu, “A study of radiative properties of randomly distributed soot aggregates,” Wuli Xuebao 59(8), 5692–5699 (2010).

Lewis, E.

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Simultaneous measurement of displacement and temperature based on a balloon-shaped bent SMF structure incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
[Crossref]

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Design, fabrication and characterisation of silica-titania thin film coated over coupled long period fibre gratings: Towards bio-sensing applications,” Sensor. Actuat. Biol. Chem. 253, 418–427 (2017).

Li, G.

Li, G. P.

Li, H.

Li, H. L.

M. Y. Wang, H. L. Li, T. Xu, M. X. Yu, G. P. Li, H. Zheng, J. Wu, and J. Xu, “Sensing and manipulation of bianisotropic biomolecules using a surface pasmon resonance based optical fiber sensor,” J. Lightwave Technol. 36(24), 5927–5934 (2018).
[Crossref]

S. G. Zhou, H. L. Li, L. Y. Fu, and M. Y. Wang, “Preliminary study on active modulation of polar mesosphere summer echoes with the radio propagation in layered space dusty plasma,” Plasma Sci. Technol. 18(6), 607–610 (2016).
[Crossref]

Li, J.

Li, K. W.

Li, X.

Li, Z. Y.

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), 4436 (2018).
[Crossref] [PubMed]

Liang, B. H.

Liao, C.

Lim, C.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref] [PubMed]

Lim, C. T.

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

Liu, P.

Liu, S.

Liu, Y.

Liu, Y. D.

Liu, Y. K.

Liu, Y. Q.

Y. H. Zhao, T. X. Wang, C. B. Mou, Z. J. Yan, Y. Q. Liu, and T. Y. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonic. Tech. L. 30(8), 752–755 (2018).
[Crossref]

Liu, Z.

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), 4436 (2018).
[Crossref] [PubMed]

Long, S. J.

X. M. Sun, S. Xiao, H. H. Wang, and S. J. Long, “Transportation of gaussian light beam in two-layer clouds by monte carlo simulation,” Wuli Xuebao 64(18), 184204 (2015).

Lu, L.

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), 4436 (2018).
[Crossref] [PubMed]

Lu, X.

Luo, B.

Luo, H.

K. S. Zheng, Z. M. Mu, H. Luo, and G. Wei, “Electromagnetic properties from moving dielectric in high speed with Lorentz-FDTD,” IEEE Antenn. Wirel. Pr. 15, 934–937 (2016).
[Crossref]

Mahdy, M. R. C.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic spherical heterodimers: reversal of optical binding force based on the forced breaking of symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref] [PubMed]

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

Mallick, A.

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Maslovski, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

Matias, I. R.

Mehmood, M. Q.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic spherical heterodimers: reversal of optical binding force based on the forced breaking of symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref] [PubMed]

Mikulic, P.

Min, J.

Mou, C. B.

Y. H. Zhao, T. X. Wang, C. B. Mou, Z. J. Yan, Y. Q. Liu, and T. Y. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonic. Tech. L. 30(8), 752–755 (2018).
[Crossref]

Mu, Z. M.

K. S. Zheng, Z. M. Mu, H. Luo, and G. Wei, “Electromagnetic properties from moving dielectric in high speed with Lorentz-FDTD,” IEEE Antenn. Wirel. Pr. 15, 934–937 (2016).
[Crossref]

Nefedov, I.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

Nieto-Vesperinas, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref] [PubMed]

J. M. Auñón and M. Nieto-Vesperinas, “Partially coherent fluctuating sources that produce the same optical force as a laser beam,” Opt. Lett. 38(15), 2869–2872 (2013).
[Crossref] [PubMed]

Nunzi Conti, G.

F. Chiavaioli, D. Laneve, D. Farnesi, M. C. Falconi, G. Nunzi Conti, F. Baldini, and F. Prudenzano, “Long period grating-based fiber coupling to WGM microresonators,” Micromachines (Basel) 9(7), 366 (2018).
[Crossref] [PubMed]

Oh, S. S.

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg. 2(1), 24 (2015).
[Crossref] [PubMed]

Payne, D. N.

Peng, G.

Perreault, J.

Pilla, P.

Prudenzano, F.

F. Chiavaioli, D. Laneve, D. Farnesi, M. C. Falconi, G. Nunzi Conti, F. Baldini, and F. Prudenzano, “Long period grating-based fiber coupling to WGM microresonators,” Micromachines (Basel) 9(7), 366 (2018).
[Crossref] [PubMed]

Qiu, C. W.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref] [PubMed]

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

M. Wang, H. Li, D. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express 23(13), 16546–16553 (2015).
[Crossref] [PubMed]

Quero, G.

Rahman, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref] [PubMed]

Rivy, H. M.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic spherical heterodimers: reversal of optical binding force based on the forced breaking of symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref] [PubMed]

Santucci, M.

Schuldes, I.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3(3), e1603044 (2017).
[Crossref] [PubMed]

Sellamuthu, B.

Shi, J.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref] [PubMed]

Shu, X. W.

X. W. Shu and D. X. Huang, “Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-μm-period fiber grating,” Opt. Commun. 171(1–3), 65–69 (1999).
[Crossref]

Sihvola, A.

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

Simovski, C.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

Soltanolkotabi, M.

Spyrakis, F.

Sun, L.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref] [PubMed]

Sun, X. M.

X. M. Sun, S. Xiao, H. H. Wang, and S. J. Long, “Transportation of gaussian light beam in two-layer clouds by monte carlo simulation,” Wuli Xuebao 64(18), 184204 (2015).

Sun, Z.

Tang, J.

Tao, C.

Tian, F.

Tian, K.

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Simultaneous measurement of displacement and temperature based on a balloon-shaped bent SMF structure incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
[Crossref]

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Design, fabrication and characterisation of silica-titania thin film coated over coupled long period fibre gratings: Towards bio-sensing applications,” Sensor. Actuat. Biol. Chem. 253, 418–427 (2017).

Tombelli, S.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).

S. Bandyopadhyay, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
[Crossref] [PubMed]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Tretyakov, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

Trono, C.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).

F. Chiavaioli, F. Baldini, and C. Trono, “Manufacturing and spectral features of different types of long period fiber gratings: phase-shifted, turn-around point, internally tilted, and pseudo-random,” Fibers (Basel) 5(3), 29 (2017).
[Crossref]

S. Bandyopadhyay, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
[Crossref] [PubMed]

M. Arjmand, F. Chiavaioli, S. Berneschi, F. Baldini, M. Soltanolkotabi, and C. Trono, “Effect of induced inner curvature on refractive index sensitivity in internally tilted long-period gratings,” Opt. Lett. 41(7), 1443–1446 (2016).
[Crossref] [PubMed]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Tsao, C. Y. H.

Vaiano, P.

Venturelli, A.

Vollmer, F.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3(3), e1603044 (2017).
[Crossref] [PubMed]

Walsh, R.

Wang, F.

F. Wang and B. Wei, “Propagation matrix of plane wave stratified lossy chiral incident obliquely on medium,” Wuli Xuebao 66(6), 064101 (2017).

Wang, H. H.

X. M. Sun, S. Xiao, H. H. Wang, and S. J. Long, “Transportation of gaussian light beam in two-layer clouds by monte carlo simulation,” Wuli Xuebao 64(18), 184204 (2015).

Wang, J.

Wang, M.

Wang, M. Y.

M. Y. Wang, H. L. Li, T. Xu, M. X. Yu, G. P. Li, H. Zheng, J. Wu, and J. Xu, “Sensing and manipulation of bianisotropic biomolecules using a surface pasmon resonance based optical fiber sensor,” J. Lightwave Technol. 36(24), 5927–5934 (2018).
[Crossref]

S. G. Zhou, H. L. Li, L. Y. Fu, and M. Y. Wang, “Preliminary study on active modulation of polar mesosphere summer echoes with the radio propagation in layered space dusty plasma,” Plasma Sci. Technol. 18(6), 607–610 (2016).
[Crossref]

Wang, P.

Wang, P. F.

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Simultaneous measurement of displacement and temperature based on a balloon-shaped bent SMF structure incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
[Crossref]

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Design, fabrication and characterisation of silica-titania thin film coated over coupled long period fibre gratings: Towards bio-sensing applications,” Sensor. Actuat. Biol. Chem. 253, 418–427 (2017).

Wang, T. X.

Y. H. Zhao, T. X. Wang, C. B. Mou, Z. J. Yan, Y. Q. Liu, and T. Y. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonic. Tech. L. 30(8), 752–755 (2018).
[Crossref]

Wang, T. Y.

Y. H. Zhao, T. X. Wang, C. B. Mou, Z. J. Yan, Y. Q. Liu, and T. Y. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonic. Tech. L. 30(8), 752–755 (2018).
[Crossref]

Wang, X. F.

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Simultaneous measurement of displacement and temperature based on a balloon-shaped bent SMF structure incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
[Crossref]

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Design, fabrication and characterisation of silica-titania thin film coated over coupled long period fibre gratings: Towards bio-sensing applications,” Sensor. Actuat. Biol. Chem. 253, 418–427 (2017).

Wang, Y.

Wang, Z.

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

Wei, B.

F. Wang and B. Wei, “Propagation matrix of plane wave stratified lossy chiral incident obliquely on medium,” Wuli Xuebao 66(6), 064101 (2017).

L. Cao and B. Wei, “Near-field coupling characteristics analysis of radome over half-space under HPEM,” IEEE Trans. Electromagn. C. 57(6), 1637–1644 (2015).
[Crossref]

Wei, G.

K. S. Zheng, Z. M. Mu, H. Luo, and G. Wei, “Electromagnetic properties from moving dielectric in high speed with Lorentz-FDTD,” IEEE Antenn. Wirel. Pr. 15, 934–937 (2016).
[Crossref]

Wilsch, P. S.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3(3), e1603044 (2017).
[Crossref] [PubMed]

Wu, J.

Wu, Z. S.

C. X. Lei and Z. S. Wu, “A study of radiative properties of randomly distributed soot aggregates,” Wuli Xuebao 59(8), 5692–5699 (2010).

Xian, L.

Xiao, S.

X. M. Sun, S. Xiao, H. H. Wang, and S. J. Long, “Transportation of gaussian light beam in two-layer clouds by monte carlo simulation,” Wuli Xuebao 64(18), 184204 (2015).

Xu, H.

Xu, J.

Xu, T.

Xu, Y. P.

Y. P. Xu, Z. T. Gu, and J. B. Chen, “Effect of surface film optical parameters on the characteristic of long-period fiber grating,” Chin. J. Lasers 32(11), 1519–1524 (2005).

Yan, Z.

Yan, Z. J.

Y. H. Zhao, T. X. Wang, C. B. Mou, Z. J. Yan, Y. Q. Liu, and T. Y. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonic. Tech. L. 30(8), 752–755 (2018).
[Crossref]

Yang, J.

Yang, K.

Yang, L.

Yang, W. L.

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Simultaneous measurement of displacement and temperature based on a balloon-shaped bent SMF structure incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
[Crossref]

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Design, fabrication and characterisation of silica-titania thin film coated over coupled long period fibre gratings: Towards bio-sensing applications,” Sensor. Actuat. Biol. Chem. 253, 418–427 (2017).

Yang, Y.

Ye, X.

Yeh, Y. L.

Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46(9), 666–670 (2008).
[Crossref]

Yin, M. J.

Yu, J.

Yu, M.

Yu, M. X.

Zhang, A. P.

Zhang, L.

Zhang, T.

T. Zhang, Y. D. Liu, K. Yang, J. Wang, P. Liu, and Y. Yang, “Restriction on orbital angular momentum distribution: a role of media in vortex beams propagation,” Opt. Express 26(13), 17227–17235 (2018).
[Crossref] [PubMed]

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic spherical heterodimers: reversal of optical binding force based on the forced breaking of symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref] [PubMed]

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref] [PubMed]

Zhang, T. H.

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

Zhang, X. J.

Zhang, Y.

Zhang, Z.

Zhao, C.

Zhao, M.

Zhao, Y.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref] [PubMed]

Zhao, Y. H.

Y. H. Zhao, T. X. Wang, C. B. Mou, Z. J. Yan, Y. Q. Liu, and T. Y. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonic. Tech. L. 30(8), 752–755 (2018).
[Crossref]

Zheng, H.

Zheng, K. S.

K. S. Zheng, Z. M. Mu, H. Luo, and G. Wei, “Electromagnetic properties from moving dielectric in high speed with Lorentz-FDTD,” IEEE Antenn. Wirel. Pr. 15, 934–937 (2016).
[Crossref]

Zhou, S. G.

S. G. Zhou, H. L. Li, L. Y. Fu, and M. Y. Wang, “Preliminary study on active modulation of polar mesosphere summer echoes with the radio propagation in layered space dusty plasma,” Plasma Sci. Technol. 18(6), 607–610 (2016).
[Crossref]

Zhu, G.

Zuppolini, S.

ACS Photonics (1)

S. Droulias and L. Bougas, “A surface plasmon platform for angle-resolved chiral sensing,” ACS Photonics 6(6), 1485–1492 (2019).
[Crossref]

Anal. Chem. (1)

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87(24), 12024–12031 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Biosensors (Basel) (1)

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 23 (2017).
[Crossref] [PubMed]

Chin. J. Lasers (1)

Y. P. Xu, Z. T. Gu, and J. B. Chen, “Effect of surface film optical parameters on the characteristic of long-period fiber grating,” Chin. J. Lasers 32(11), 1519–1524 (2005).

Fibers (Basel) (1)

F. Chiavaioli, F. Baldini, and C. Trono, “Manufacturing and spectral features of different types of long period fiber gratings: phase-shifted, turn-around point, internally tilted, and pseudo-random,” Fibers (Basel) 5(3), 29 (2017).
[Crossref]

IEEE Antenn. Wirel. Pr. (1)

K. S. Zheng, Z. M. Mu, H. Luo, and G. Wei, “Electromagnetic properties from moving dielectric in high speed with Lorentz-FDTD,” IEEE Antenn. Wirel. Pr. 15, 934–937 (2016).
[Crossref]

IEEE Photonic. Tech. L. (1)

Y. H. Zhao, T. X. Wang, C. B. Mou, Z. J. Yan, Y. Q. Liu, and T. Y. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonic. Tech. L. 30(8), 752–755 (2018).
[Crossref]

IEEE Trans. Electromagn. C. (1)

L. Cao and B. Wei, “Near-field coupling characteristics analysis of radome over half-space under HPEM,” IEEE Trans. Electromagn. C. 57(6), 1637–1644 (2015).
[Crossref]

J. Electromagn. Wave (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. A (2)

Light Sci. Appl. (2)

C. W. Qiu, W. Q. Ding, M. R. C. Mahdy, D. L. Gao, T. H. Zhang, F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, “Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams,” Light Sci. Appl. 4(4), e278 (2015).
[Crossref]

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref] [PubMed]

Metamaterials (Amst.) (1)

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

Micromachines (Basel) (1)

F. Chiavaioli, D. Laneve, D. Farnesi, M. C. Falconi, G. Nunzi Conti, F. Baldini, and F. Prudenzano, “Long period grating-based fiber coupling to WGM microresonators,” Micromachines (Basel) 9(7), 366 (2018).
[Crossref] [PubMed]

Nano Converg. (1)

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg. 2(1), 24 (2015).
[Crossref] [PubMed]

Nanophotonics (1)

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).

Nat. Commun. (1)

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref] [PubMed]

Opt. Commun. (1)

X. W. Shu and D. X. Huang, “Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-μm-period fiber grating,” Opt. Commun. 171(1–3), 65–69 (1999).
[Crossref]

Opt. Express (11)

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[Crossref] [PubMed]

J. Yang, C. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19(15), 14696–14706 (2011).
[Crossref] [PubMed]

M. Wang, H. Li, T. Xu, H. Zheng, M. Yu, G. Li, J. Xu, and J. Wu, “Probing bianisotropic biomolecules via a surface plasmon resonance sensor,” Opt. Express 26(22), 28277–28287 (2018).
[Crossref] [PubMed]

M. Dong, X. Lu, C. Zhao, Y. Cai, and Y. Yang, “Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam,” Opt. Express 26(25), 33035–33043 (2018).
[Crossref] [PubMed]

T. Zhang, Y. D. Liu, K. Yang, J. Wang, P. Liu, and Y. Yang, “Restriction on orbital angular momentum distribution: a role of media in vortex beams propagation,” Opt. Express 26(13), 17227–17235 (2018).
[Crossref] [PubMed]

L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
[Crossref] [PubMed]

I. Del Villar, “Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point,” Opt. Express 23(7), 8389–8398 (2015).
[Crossref] [PubMed]

M. Wang, H. Li, D. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express 23(13), 16546–16553 (2015).
[Crossref] [PubMed]

F. Tian, J. Min, J. Kanka, X. Li, P. T. Hammond, and H. Du, “Lab-on-fiber optofluidic platform for in situ monitoring of drug release from therapeutic eluting polyelectrolyte multilayers,” Opt. Express 23(15), 20132–20142 (2015).
[Crossref] [PubMed]

B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23(25), 32429–32440 (2015).
[Crossref] [PubMed]

M. Deng, J. Xu, Z. Zhang, Z. Bai, S. Liu, Y. Wang, Y. Zhang, C. Liao, W. Jin, G. Peng, and Y. Wang, “Long period fiber grating based on periodically screw-type distortions for torsion sensing,” Opt. Express 25(13), 14308–14316 (2017).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46(9), 666–670 (2008).
[Crossref]

Opt. Lett. (6)

Plasma Sci. Technol. (1)

S. G. Zhou, H. L. Li, L. Y. Fu, and M. Y. Wang, “Preliminary study on active modulation of polar mesosphere summer echoes with the radio propagation in layered space dusty plasma,” Plasma Sci. Technol. 18(6), 607–610 (2016).
[Crossref]

Sci. Adv. (2)

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), 4436 (2018).
[Crossref] [PubMed]

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3(3), e1603044 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic spherical heterodimers: reversal of optical binding force based on the forced breaking of symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref] [PubMed]

Sensor. Actuat. Biol. Chem. (1)

K. Tian, G. Farrell, W. L. Yang, X. F. Wang, E. Lewis, and P. F. Wang, “Design, fabrication and characterisation of silica-titania thin film coated over coupled long period fibre gratings: Towards bio-sensing applications,” Sensor. Actuat. Biol. Chem. 253, 418–427 (2017).

Wuli Xuebao (3)

C. X. Lei and Z. S. Wu, “A study of radiative properties of randomly distributed soot aggregates,” Wuli Xuebao 59(8), 5692–5699 (2010).

X. M. Sun, S. Xiao, H. H. Wang, and S. J. Long, “Transportation of gaussian light beam in two-layer clouds by monte carlo simulation,” Wuli Xuebao 64(18), 184204 (2015).

F. Wang and B. Wei, “Propagation matrix of plane wave stratified lossy chiral incident obliquely on medium,” Wuli Xuebao 66(6), 064101 (2017).

Other (3)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

A. Berthod, Chiral Recognition in Separation Methods Mechanisms and Applications (Springer, 2010).

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Biisotropic Media (Artech House, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Transverse index profile of the LPFG.
Fig. 2
Fig. 2 Transmission spectra of an uncoated LPFG versus the working wavelength for various medium parameters.
Fig. 3
Fig. 3 Mode effective index of the coated LPFG versus the working wavelength and chirality of the chiral drug. (a) Re(neff) versus λ and Re(γ), (b) Im(neff) versus λ and Re(γ), (c) Re(neff) versus λ and Im(γ), (d) Im(neff) versus λ and Im(γ).
Fig. 4
Fig. 4 Transmission spectra of the coated LPFG structure versus the working wavelength for various medium parameters. (a) γi = 0, (b) n = 1.35.
Fig. 5
Fig. 5 Resonance wavelengths and minimum transmissions of the coated LPFG structure for different chirality and refractive indices. (a) Resonance wavelengths, (b) Minimum transmissions.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

D=εE+jγH,B=μHjγE.
E=( E R + E L ),H=j ε/μ ( E R E L ).
E = 2 ( E R + E L )/2, E =j 2 ( E R E L )/2.
Ψ 4 =[ A 4 K v ( w 4R r)+ B 4 K v ( w 4L r) ] f v (jvφ), Φ 4 =[ A 4 K v ( w 4R r) B 4 K v ( w 4L r) ] f v (jvφ).
w 4R = k 0 2 [ n eff 2 ( n 4 +γ) 2 ] , w 4L = k 0 2 [ n eff 2 ( n 4 γ) 2 ] .
E=[ Ψ/rφ(β/ω ε i )Φ/r ]r[ Ψ/r+(β/ω ε i )Φ/rφ ]φ [ ( k 0 2 n i 2 β 2 )/jω ε i ]Φz, H=[ Φ/rφ+(β/ω μ i )Ψ/r ]r[ Φ/r(β/ω μ i )Ψ/rφ ]φ +[ ( k 0 2 n i 2 β 2 )/jω μ i ]Ψz.
e z ={ u 1 2 A 1 J v ( u 1 r) e jvφ /(jω ε 1 ),r r 1 , u 2 2 [ A 2 J v ( u 2 r)+ B 2 Y v ( u 2 r) ] e jvφ /(jω ε 2 ), r 1 r r 2 , u 3 2 [ A 3 J v ( u 3 r)+ B 3 Y v ( u 3 r) ] e jvφ /(jω ε 3 ), r 2 r r 3 , [ w 4R 2 A 4 K v ( w 4R r)/(jω ε 4 ) w 4L 2 B 4 K v ( w 4L r)/(jω ε 4 ) ] e jvφ ,r> r 3 ,
h z ={ u 1 2 C 1 J v ( u 1 r) e jvφ /(jω μ 1 ),r r 1 , u 2 2 [ C 2 J v ( u 2 r)+ D 2 Y v ( u 2 r) ] e jvφ /(jω μ 2 ), r 1 r r 2 , u 3 2 [ C 3 J v ( u 3 r)+ D 3 Y v ( u 3 r) ] e jvφ /(jω μ 3 ), r 2 r r 3 , [ w 4R 2 A 4 K v ( w 4R r)/(jω μ 4 ) w 4L 2 B 4 K v ( w 4L r)/(jω μ 4 ) ] e jvφ ,r> r 3 ,
M 12×12 [ A 1 , C 1 , A 2 , B 2 , C 2 , D 2 , A 3 , B 3 , C 3 , D 3 , A 4 , B 4 ]=0,
M 2 [ A 2 B 2 C 2 D 2 ] T = M 1 [ A 1 C 1 00 ] T , M 6 [ A 4 B 4 00 ] T = M 5 [ A 3 B 3 C 3 D 3 ] T , M 4 [ A 3 B 3 C 3 D 3 ] T = M 3 [ A 2 B 2 C 2 D 2 ] T .
M 1 =[ σ 2 J v ( U 1 )/( n 1 2 r 1 ) u 1 J v ( U 1 )00 u 1 J v ( U 1 ) σ 1 J v ( U 1 )/( μ r1 r 1 )00 u 1 2 J v ( U 1 )/ n 1 2 000 0 u 1 2 J v ( U 1 )/ μ r1 00 ],
M 2 =[ σ 2 J v ( U 2 )/( n 2 2 r 1 ) σ 2 Y v ( U 2 )/( n 2 2 r 1 ) u 2 J v ( U 2 ) u 2 Y v ( U 2 ) u 2 J v ( U 2 ) u 2 Y v ( U 2 ) σ 1 J v ( U 2 )/( μ r2 r 1 ) σ 1 Y v ( U 2 )/( μ r2 r 1 ) u 2 2 J v ( U 2 )/ n 2 2 u 2 2 Y v ( U 2 )/ n 2 2 00 00 u 2 2 J v ( U 2 )/ μ r2 u 2 2 Y v ( U 2 )/ μ r2 ],
M 3 =[ σ 2 J v ( U 3 )/( n 2 2 r 2 ) σ 2 Y v ( U 3 )/( n 2 2 r 2 ) u 2 J v ( U 3 ) u 2 Y v ( U 3 ) u 2 J v ( U 3 ) u 2 Y v ( U 3 ) σ 1 J v ( U 3 )/( μ r2 r 2 ) σ 1 Y v ( U 3 )/( μ r2 r 2 ) u 2 2 J v ( U 3 )/ n 2 2 u 2 2 Y v ( U 3 )/ n 2 2 00 00 u 2 2 J v ( U 3 )/ μ r2 u 2 2 Y v ( U 3 )/ μ r2 ],
M 4 =[ σ 2 J v ( U 4 )/( n 3 2 r 2 ) σ 2 Y v ( U 4 )/( n 3 2 r 2 ) u 3 J v ( U 4 ) u 3 Y v ( U 4 ) u 3 J v ( U 4 ) u 3 Y v ( U 4 ) σ 1 J v ( U 4 )/( μ r3 r 2 ) σ 1 Y v ( U 4 )/( μ r3 r 2 ) u 3 2 J v ( U 4 )/ n 3 2 u 3 2 Y v ( U 4 )/ n 3 2 00 00 u 3 2 J v ( U 4 )/ μ r3 u 3 2 Y v ( U 4 )/ μ r3 ],
M 5 =[ σ 2 J v ( U 5 )/( n 3 2 r 3 ) σ 2 Y v ( U 5 )/( n 3 2 r 3 ) u 3 J v ( U 5 ) u 3 Y v ( U 5 ) 00 u 3 2 J v ( U 5 )/ μ r3 u 3 2 Y v ( U 5 )/ μ r3 u 3 J v ( U 5 ) u 3 Y v ( U 5 ) σ 1 J v ( U 5 )/( μ r3 r 3 ) σ 1 Y v ( U 5 )/( μ r3 r 3 ) u 3 2 J v ( U 5 )/ n 3 2 u 3 2 Y v ( U 5 )/ n 3 2 00 ],
M 6 =[ w 4R K v ( U 6R )+ σ 2 K v ( U 6R )/( n 4 2 r 3 ) w 4L K v ( U 6L ) σ 2 K v ( U 6L )/( n 4 2 r 3 )00 w 4R 2 K v ( U 6R )/ μ r4 w 4L 2 K v ( U 6L )/ μ r4 00 σ 1 K v ( U 6R )/( μ r4 r 3 ) w 4R K v ( U 6R ) σ 1 K v ( U 6L )/( μ r4 r 3 )+ w 4L K v ( U 6L )00 w 4R 2 K v ( U 6R )/ n 4 2 w 4L 2 K v ( U 6L )/ n 4 2 00 ],
u 1 2 = k 0 2 ( n 1 2 n eff 2 ), u 2 2 = k 0 2 ( n 2 2 n eff 2 ), u 3 2 = k 0 2 ( n 3 2 n eff 2 ), U 1 = u 1 r 1 , U 2 = u 2 r 1 , U 3 = u 2 r 2 , U 4 = u 3 r 2 , U 5 = u 3 r 3 , U 6R = w 4R r 3 , U 6L = w 4L r 3 ,β= n eff k 0 , σ 1 =βjv/(ω μ 0 ), σ 2 =βjv/(ω ε 0 ).
M 6 [ A 4 B 4 00 ] T = M 5 [ M 4 ] + M 3 [ M 2 ] + M 1 [ A 1 C 1 00 ] T .

Metrics