Abstract

A diode-pumped Yb:Y2O3 ceramic thin-rod amplifier which operates in the femtosecond regime is studied here. In a single-stage and direct four-pass amplification scheme, the amplifier delivers maximum output power of 8.1 W at a center wavelength of 1030.5 nm and spectral bandwidth of 4.8 nm. Assume a sech2-shaped pulse, a pulse duration of 239 fs is measured, exhibiting a time-bandwidth product value of 0.324. To the best of our knowledge, our Yb:Y2O3 ceramic thin-rod femtosecond amplifier exhibits the shortest pulse duration with Watt-level output power among all Yb:Y2O3-based femtosecond amplifiers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sub-picosecond regenerative amplifier of Yb-doped Y2O3 ceramic thin disk

Momoko Maruyama, Hajime Okada, Yoshihiro Ochi, and Keisuke Nagashima
Opt. Express 24(2) 1685-1692 (2016)

Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator

Masaki Tokurakawa, Akira Shirakawa, Ken-ichi Ueda, Hideki Yagi, Meichin Noriyuki, Takagimi Yanagitani, and Alexander A. Kaminskii
Opt. Express 17(5) 3353-3361 (2009)

Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser

Masaki Tokurakawa, Akira Shirakawa, Ken-ichi Ueda, Hideki Yagi, Takagimi Yanagitani, Alexander A. Kaminskii, Kolja Beil, Christian Kränkel, and Günter Huber
Opt. Express 20(10) 10847-10853 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
    [Crossref]
  2. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
    [Crossref]
  3. A. Ehlersa, I. Riemann, S. Martin, R. L. Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007).
    [Crossref]
  4. A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24(14), 996–998 (1999).
    [Crossref]
  5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  6. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
    [Crossref]
  7. W. F. Krupke, “Ytterbium Solid-State Lasers—The First Decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [Crossref]
  8. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
    [Crossref]
  9. C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
    [Crossref]
  10. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
    [Crossref]
  11. W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-µJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3,” Opt. Lett. 39(23), 6604–6607 (2014).
    [Crossref]
  12. K. Kowalewski, J. Zembek, V. Envid, and D. C. Brown, “201 W picosecond green laser using a mode-locked fiber laser driven cryogenic Yb:YAG amplifier system,” Opt. Lett. 37(22), 4633–4635 (2012).
    [Crossref]
  13. M. Maruyama, H. Okada, Y. Ochi, and K. Nagashima, “Sub-picosecond regenerative amplifier of Yb-doped Y2O3 ceramic thin disk,” Opt. Express 24(2), 1685–1692 (2016).
    [Crossref]
  14. A. Shirakawa, K. Takaichi, H. Yagi, J.-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
    [Crossref]
  15. M. Tokurakawa, K. Takaichi, A. Shirakawa, K.-I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
    [Crossref]
  16. M. Tokurakawa, A. Shirakawa, K.-I. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
    [Crossref]
  17. M. Tokurakawa, A. Shirakawa, K.-I. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
    [Crossref]
  18. M. Endo, I. Ito, and Y. Kobayashi, “Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y2O3 ceramic laser,” Opt. Express 23(2), 1276–1282 (2015).
    [Crossref]
  19. V. V. Petrov, E. V. Pestryakov, V. A. Petrov, G. V. Kuptsov, and A. V. Laptev, “The design of Yb:Y2O3 ceramic diode-pumped multipass amplifier operating at cryogenic temperatures,” Laser Phys. 24(7), 074014 (2014).
    [Crossref]
  20. M. R. Volkov, I. I. Kuznetsov, I. B. Mukhin, O. V. Palashov, A. V. Konyashchenko, S. Y. Tenyakov, and R. A. Liventsov, “Thin-rod active elements for amplification of femtosecond pulses,” Quantum Electron. 49(4), 350–353 (2019).
    [Crossref]
  21. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  22. X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
    [Crossref]
  23. V. Markovic, A. Rohrbacher, P. Hofmann, W. Pallmann, S. Pierrot, and B. Resan, “160 W 800 fs Yb:YAG single crystal fiber amplifier without CPA,” Opt. Express 23(20), 25883–25888 (2015).
    [Crossref]
  24. B. Lee, S. A. Chizhov, E. G. Sall, J. W. Kim, I. I. Kuznetsov, I. B. Mukhin, O. V. Palashov, G. H. Kim, V. E. Yashin, and O. L. Vadimova, “Laser amplification in Yb:YAG thin rods of different geometries: simulation and experiment,” J. Opt. Soc. Am. B 35(10), 2594–2599 (2018).
    [Crossref]
  25. I. I. Kuznetsov, I. B. Mikhin, O. V. Palashov, and K.-I. Ueda, “Thin-rod Yb:YAG amplifiers for high average and peak power lasers,” Opt. Lett. 43(16), 3941–3944 (2018).
    [Crossref]
  26. G. H. Kim, J. Yang, D. S. Lee, A. V. Kulik, E. G. Sall, S. A. Chizhov, V. E. Yashin, and U. Kang, “High-power efficient cw and pulsed lasers based on bulk Yb:KYW crystals with end diode pumping,” Quantum Electron. 42(4), 292–297 (2012).
    [Crossref]
  27. G. H. Kim, J. Yang, S. A. Chizhov, E. G. Sall, A. V. Kulik, V. E. Yashin, D. S. Lee, and U. Kang, “High average-power ultrafast CPA Yb:KYW laser system with dual-slab amplifier,” Opt. Express 20(4), 3434–3442 (2012).
    [Crossref]

2019 (1)

M. R. Volkov, I. I. Kuznetsov, I. B. Mukhin, O. V. Palashov, A. V. Konyashchenko, S. Y. Tenyakov, and R. A. Liventsov, “Thin-rod active elements for amplification of femtosecond pulses,” Quantum Electron. 49(4), 350–353 (2019).
[Crossref]

2018 (2)

2016 (1)

2015 (2)

2014 (2)

V. V. Petrov, E. V. Pestryakov, V. A. Petrov, G. V. Kuptsov, and A. V. Laptev, “The design of Yb:Y2O3 ceramic diode-pumped multipass amplifier operating at cryogenic temperatures,” Laser Phys. 24(7), 074014 (2014).
[Crossref]

W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-µJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3,” Opt. Lett. 39(23), 6604–6607 (2014).
[Crossref]

2013 (3)

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
[Crossref]

2012 (4)

2011 (1)

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (2)

A. Ehlersa, I. Riemann, S. Martin, R. L. Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007).
[Crossref]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K.-I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[Crossref]

2003 (1)

2000 (1)

W. F. Krupke, “Ytterbium Solid-State Lasers—The First Decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

1999 (2)

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24(14), 996–998 (1999).
[Crossref]

1995 (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Artigas, D.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

Aubry, N.

Aviles-Espinosa, R.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

Balembois, F.

Barbarin, Y.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

Bartels, A.

A. Ehlersa, I. Riemann, S. Martin, R. L. Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007).
[Crossref]

A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24(14), 996–998 (1999).
[Crossref]

Baum, P.

Beil, K.

Bisson, J.-F.

Biswal, S.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Braun, A.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Brown, D. C.

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Chizhov, S. A.

Dekorsy, T.

Délen, X.

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Didierjean, J.

Du, D.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Ehlersa, A.

A. Ehlersa, I. Riemann, S. Martin, R. L. Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007).
[Crossref]

Endo, M.

Envid, V.

Filippidis, G.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

Fülöp, J. A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Genoud, F. M.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Georges, P.

Giesen, A.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Graf, M.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Hamilton, C.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

Han, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref]

Harzic, R. L.

A. Ehlersa, I. Riemann, S. Martin, R. L. Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007).
[Crossref]

Hoffmann, H. D.

Hofmann, P.

Hönninger, C.

X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
[Crossref]

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Huber, G.

Ito, I.

Janke, C.

A. Ehlersa, I. Riemann, S. Martin, R. L. Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007).
[Crossref]

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Johannsen, I.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Kaminskii, A. A.

Kang, U.

G. H. Kim, J. Yang, D. S. Lee, A. V. Kulik, E. G. Sall, S. A. Chizhov, V. E. Yashin, and U. Kang, “High-power efficient cw and pulsed lasers based on bulk Yb:KYW crystals with end diode pumping,” Quantum Electron. 42(4), 292–297 (2012).
[Crossref]

G. H. Kim, J. Yang, S. A. Chizhov, E. G. Sall, A. V. Kulik, V. E. Yashin, D. S. Lee, and U. Kang, “High average-power ultrafast CPA Yb:KYW laser system with dual-slab amplifier,” Opt. Express 20(4), 3434–3442 (2012).
[Crossref]

Keller, U.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Kim, G. H.

Kim, J. W.

Kobayashi, Y.

König, K.

A. Ehlersa, I. Riemann, S. Martin, R. L. Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007).
[Crossref]

Konyashchenko, A. V.

M. R. Volkov, I. I. Kuznetsov, I. B. Mukhin, O. V. Palashov, A. V. Konyashchenko, S. Y. Tenyakov, and R. A. Liventsov, “Thin-rod active elements for amplification of femtosecond pulses,” Quantum Electron. 49(4), 350–353 (2019).
[Crossref]

Kowalewski, K.

Kränkel, C.

Krupke, W. F.

W. F. Krupke, “Ytterbium Solid-State Lasers—The First Decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Kulik, A. V.

G. H. Kim, J. Yang, S. A. Chizhov, E. G. Sall, A. V. Kulik, V. E. Yashin, D. S. Lee, and U. Kang, “High average-power ultrafast CPA Yb:KYW laser system with dual-slab amplifier,” Opt. Express 20(4), 3434–3442 (2012).
[Crossref]

G. H. Kim, J. Yang, D. S. Lee, A. V. Kulik, E. G. Sall, S. A. Chizhov, V. E. Yashin, and U. Kang, “High-power efficient cw and pulsed lasers based on bulk Yb:KYW crystals with end diode pumping,” Quantum Electron. 42(4), 292–297 (2012).
[Crossref]

Kuptsov, G. V.

V. V. Petrov, E. V. Pestryakov, V. A. Petrov, G. V. Kuptsov, and A. V. Laptev, “The design of Yb:Y2O3 ceramic diode-pumped multipass amplifier operating at cryogenic temperatures,” Laser Phys. 24(7), 074014 (2014).
[Crossref]

Kurz, H.

Kuznetsov, I. I.

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Laptev, A. V.

V. V. Petrov, E. V. Pestryakov, V. A. Petrov, G. V. Kuptsov, and A. V. Laptev, “The design of Yb:Y2O3 ceramic diode-pumped multipass amplifier operating at cryogenic temperatures,” Laser Phys. 24(7), 074014 (2014).
[Crossref]

Lee, B.

Lee, D. S.

G. H. Kim, J. Yang, D. S. Lee, A. V. Kulik, E. G. Sall, S. A. Chizhov, V. E. Yashin, and U. Kang, “High-power efficient cw and pulsed lasers based on bulk Yb:KYW crystals with end diode pumping,” Quantum Electron. 42(4), 292–297 (2012).
[Crossref]

G. H. Kim, J. Yang, S. A. Chizhov, E. G. Sall, A. V. Kulik, V. E. Yashin, D. S. Lee, and U. Kang, “High average-power ultrafast CPA Yb:KYW laser system with dual-slab amplifier,” Opt. Express 20(4), 3434–3442 (2012).
[Crossref]

Limpert, J.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Liu, X.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref]

Liventsov, R. A.

M. R. Volkov, I. I. Kuznetsov, I. B. Mukhin, O. V. Palashov, A. V. Konyashchenko, S. Y. Tenyakov, and R. A. Liventsov, “Thin-rod active elements for amplification of femtosecond pulses,” Quantum Electron. 49(4), 350–353 (2019).
[Crossref]

Lombosi, C.

Loza-Alvarez, P.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

Lu, H.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref]

Lu, J.

Major, Z.

Malcolm, G.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

Mans, T.

Mao, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref]

Markovic, V.

Martial, I.

Martin, S.

A. Ehlersa, I. Riemann, S. Martin, R. L. Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007).
[Crossref]

Maruyama, M.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Metzger, T.

Mikhin, I. B.

Moser, M.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Mottay, E.

Mourou, G.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Mourou, G. A.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Mukhin, I. B.

M. R. Volkov, I. I. Kuznetsov, I. B. Mukhin, O. V. Palashov, A. V. Konyashchenko, S. Y. Tenyakov, and R. A. Liventsov, “Thin-rod active elements for amplification of femtosecond pulses,” Quantum Electron. 49(4), 350–353 (2019).
[Crossref]

B. Lee, S. A. Chizhov, E. G. Sall, J. W. Kim, I. I. Kuznetsov, I. B. Mukhin, O. V. Palashov, G. H. Kim, V. E. Yashin, and O. L. Vadimova, “Laser amplification in Yb:YAG thin rods of different geometries: simulation and experiment,” J. Opt. Soc. Am. B 35(10), 2594–2599 (2018).
[Crossref]

Musha, M.

Nagashima, K.

Nees, J.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Noriyuki, M.

Ochi, Y.

Okada, H.

Palashov, O. V.

Pallmann, W.

Paschotta, R.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Pestryakov, E. V.

V. V. Petrov, E. V. Pestryakov, V. A. Petrov, G. V. Kuptsov, and A. V. Laptev, “The design of Yb:Y2O3 ceramic diode-pumped multipass amplifier operating at cryogenic temperatures,” Laser Phys. 24(7), 074014 (2014).
[Crossref]

Petrov, T. S.

Petrov, V. A.

V. V. Petrov, E. V. Pestryakov, V. A. Petrov, G. V. Kuptsov, and A. V. Laptev, “The design of Yb:Y2O3 ceramic diode-pumped multipass amplifier operating at cryogenic temperatures,” Laser Phys. 24(7), 074014 (2014).
[Crossref]

Petrov, V. V.

V. V. Petrov, E. V. Pestryakov, V. A. Petrov, G. V. Kuptsov, and A. V. Laptev, “The design of Yb:Y2O3 ceramic diode-pumped multipass amplifier operating at cryogenic temperatures,” Laser Phys. 24(7), 074014 (2014).
[Crossref]

Pierrot, S.

Poprawe, R.

Pronko, P. P.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Resan, B.

Riemann, I.

A. Ehlersa, I. Riemann, S. Martin, R. L. Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007).
[Crossref]

Rohrbacher, A.

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Russbueldt, P.

Ryabov, A.

Sall, E. G.

Santos, S. I. C. O.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

Schneider, W.

Seeber, W.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Shirakawa, A.

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Südmeyer, T.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

Sun, Z.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref]

Takaichi, K.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K.-I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[Crossref]

A. Shirakawa, K. Takaichi, H. Yagi, J.-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[Crossref]

Tenyakov, S. Y.

M. R. Volkov, I. I. Kuznetsov, I. B. Mukhin, O. V. Palashov, A. V. Konyashchenko, S. Y. Tenyakov, and R. A. Liventsov, “Thin-rod active elements for amplification of femtosecond pulses,” Quantum Electron. 49(4), 350–353 (2019).
[Crossref]

Tokurakawa, M.

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Ueda, K.

Ueda, K.-I.

Vadimova, O. L.

Volkov, M. R.

M. R. Volkov, I. I. Kuznetsov, I. B. Mukhin, O. V. Palashov, A. V. Konyashchenko, S. Y. Tenyakov, and R. A. Liventsov, “Thin-rod active elements for amplification of femtosecond pulses,” Quantum Electron. 49(4), 350–353 (2019).
[Crossref]

Wang, F.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref]

Wang, G.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref]

Weingarten, K. J.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

Weitenberg, J.

Yagi, H.

Yanagitani, T.

Yang, J.

G. H. Kim, J. Yang, D. S. Lee, A. V. Kulik, E. G. Sall, S. A. Chizhov, V. E. Yashin, and U. Kang, “High-power efficient cw and pulsed lasers based on bulk Yb:KYW crystals with end diode pumping,” Quantum Electron. 42(4), 292–297 (2012).
[Crossref]

G. H. Kim, J. Yang, S. A. Chizhov, E. G. Sall, A. V. Kulik, V. E. Yashin, D. S. Lee, and U. Kang, “High average-power ultrafast CPA Yb:KYW laser system with dual-slab amplifier,” Opt. Express 20(4), 3434–3442 (2012).
[Crossref]

Yashin, V. E.

Zaouter, Y.

Zembek, J.

Zhang, G.

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

C. Hönninger, R. Paschotta, M. Graf, F. M. Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Appl. Phys. Lett. (1)

M. Tokurakawa, K. Takaichi, A. Shirakawa, K.-I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. F. Krupke, “Ytterbium Solid-State Lasers—The First Decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

J. Appl. Phys. (1)

A. Ehlersa, I. Riemann, S. Martin, R. L. Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

V. V. Petrov, E. V. Pestryakov, V. A. Petrov, G. V. Kuptsov, and A. V. Laptev, “The design of Yb:Y2O3 ceramic diode-pumped multipass amplifier operating at cryogenic temperatures,” Laser Phys. 24(7), 074014 (2014).
[Crossref]

Nat. Photonics (2)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Opt. Express (8)

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Opt. Express 2(4), 739–747 (2011).
[Crossref]

M. Tokurakawa, A. Shirakawa, K.-I. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
[Crossref]

M. Tokurakawa, A. Shirakawa, K.-I. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
[Crossref]

M. Endo, I. Ito, and Y. Kobayashi, “Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y2O3 ceramic laser,” Opt. Express 23(2), 1276–1282 (2015).
[Crossref]

M. Maruyama, H. Okada, Y. Ochi, and K. Nagashima, “Sub-picosecond regenerative amplifier of Yb-doped Y2O3 ceramic thin disk,” Opt. Express 24(2), 1685–1692 (2016).
[Crossref]

A. Shirakawa, K. Takaichi, H. Yagi, J.-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[Crossref]

V. Markovic, A. Rohrbacher, P. Hofmann, W. Pallmann, S. Pierrot, and B. Resan, “160 W 800 fs Yb:YAG single crystal fiber amplifier without CPA,” Opt. Express 23(20), 25883–25888 (2015).
[Crossref]

G. H. Kim, J. Yang, S. A. Chizhov, E. G. Sall, A. V. Kulik, V. E. Yashin, D. S. Lee, and U. Kang, “High average-power ultrafast CPA Yb:KYW laser system with dual-slab amplifier,” Opt. Express 20(4), 3434–3442 (2012).
[Crossref]

Opt. Lett. (6)

Quantum Electron. (2)

G. H. Kim, J. Yang, D. S. Lee, A. V. Kulik, E. G. Sall, S. A. Chizhov, V. E. Yashin, and U. Kang, “High-power efficient cw and pulsed lasers based on bulk Yb:KYW crystals with end diode pumping,” Quantum Electron. 42(4), 292–297 (2012).
[Crossref]

M. R. Volkov, I. I. Kuznetsov, I. B. Mukhin, O. V. Palashov, A. V. Konyashchenko, S. Y. Tenyakov, and R. A. Liventsov, “Thin-rod active elements for amplification of femtosecond pulses,” Quantum Electron. 49(4), 350–353 (2019).
[Crossref]

Sci. Rep. (1)

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of the Yb:Y2O3 thin-rod amplifier: L1, plano-convex lens with f = 400mm; λ/2, half-wave plate; F-iso, Faraday isolator; TFP, thin-film polarizer; CM, concave mirror with ROC=-250mm; LWPF, long-wave-pass filter; Pump LD, 976nm, 150 W fiber-coupled laser diode; L2, L3, achromatic doublet convex lens with f = 50mm, 100mm, 125mm, 150mm; Yb:Y2O3 thin-rod, 0.5 at. % doping ratio, 1-mm-diameter, 27-mm-long Yb:Y2O3 thin-rod module; λ/4 quarter-wave plate.
Fig. 2.
Fig. 2. Yb:Y2O3 thin-rod amplifier: (a) output power as the beam diameter with the four-pass amplification scheme, and (b) transmitted pump power corresponding to a beam diameter of 200 µm (without seed beam).
Fig. 3.
Fig. 3. (a) Output powers with one- two-, four-pass amplification corresponding to a beam size of 200 µm, (b) M2 and far-field beam profile measurements corresponding to the maximum output power of four-pass amplification.
Fig. 4.
Fig. 4. (a) Spectrum and (b) corresponding autocorrelation trace at an applied dispersion of + 0 fs2 (blue) and -30000 fs2 (red).
Fig. 5.
Fig. 5. Output power and gain as a seed power.

Metrics