Abstract

We investigate the impact of the growth conditions of AlGaAsSb cladding layers on the properties of interband cascade lasers (ICLs). For an optimized structure emitting at 3.3 µm, we achieve an internal quantum efficiency of 65% per stage in good agreement with conventional ICL using InAs/AlSb superlattice cladding layers, in spite of internal losses of 15 cm−1 due to higher optical losses in the n-type AlGaAsSb alloys. Finally, we report a narrow ridge ICL emitting at 3.33 µm operating in continuous wave up to 80°C that produces 1 mW/uncoated facet at 80 °C, 10 mW at 40 °C and more than 12 mW at 20°C.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interband cascade lasers with AlGaAsSb bulk cladding layers

Robert Weih, Adam Bauer, Martin Kamp, and Sven Höfling
Opt. Mater. Express 3(10) 1624-1631 (2013)

Thermal conductivity tensors of the cladding and active layers of antimonide infrared lasers and detectors

Chuanle Zhou, I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, A. Hoang, A. Haddadi, M. Razeghi, and M. Grayson
Opt. Mater. Express 3(10) 1632-1640 (2013)

Pulsed and CW performance of 7-stage interband cascade lasers

Chadwick L. Canedy, Joshua Abell, Charles D. Merritt, William W. Bewley, Chul Soo Kim, Mijin Kim, Igor Vurgaftman, and Jerry R. Meyer
Opt. Express 22(7) 7702-7710 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Soibel, M. W. Wright, W. H. Farr, S. A. Keo, C. J. Hill, R. Q. Yang, and H. C. Liu, “Midinfrared Interband cascade Laser for Free Space Communication,” IEEE Photonics Technol. Lett. 22(2), 121–123 (2010).
    [Crossref]
  2. M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 µm antimonide laser,” Appl. Phys. B: Lasers Opt. 106(2), 483–489 (2012).
    [Crossref]
  3. M. Dagan, B. Thomas, B. Gross, and F. Moshary, “Implementation of micropulse LIDAR at 4.5 µm and 1.55 µm for aerosol and cloud study,” in Proceedings of 27th International Laser Radar Conference, 119, (EPJ Web of Conferences, 2016), UNSP 06001.
  4. R. Ghorbani and F. M. Schmidt, “ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes,” Opt. Express 25(11), 12743 (2017).
    [Crossref]
  5. R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17(1), 77–83 (1995).
    [Crossref]
  6. I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
    [Crossref]
  7. M. Razeghi, “High-performance InP based mid-IR Quantum Cascade Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 941–951 (2009).
    [Crossref]
  8. Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-Infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  9. A. Sahli, Y. Rouillard, J. Angellier, and M. Garcia, “Very-low-threshold 2.4-µm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime,” IEEE Photonics Technol. Lett. 16(11), 2424–2426 (2004).
    [Crossref]
  10. L. Shterengas, G. Belenky, G. Kipshidze, and T. Hososda, “Room temperature operated 3.1 µm type-I GaSb-based diode lasers with 80 mW continuous-wave output power,” Appl. Phys. Lett. 92(17), 171111 (2008).
    [Crossref]
  11. C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
    [Crossref]
  12. R. Weih, M. Kamp, and S. Höfling, “Interband cascade lasers with room temperature threshold current densities below 100 A/cm2,” Appl. Phys. Lett. 102(23), 231123 (2013).
    [Crossref]
  13. C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22(7), 7702–7710 (2014).
    [Crossref]
  14. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. RamMohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett. 67(6), 757–759 (1995).
    [Crossref]
  15. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
    [Crossref]
  16. S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-Infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1-XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
    [Crossref]
  17. R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3(10), 1624–1631 (2013).
    [Crossref]
  18. T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
    [Crossref]
  19. C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
    [Crossref]
  20. A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
    [Crossref]
  21. T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-based laser diodes operating in 3.1- to 3.3 µm wavelength range,” IEEE Photonics Technol. Lett. 22(10), 718–720 (2010).
    [Crossref]
  22. K. Vizbaras and M. C. Amann, “Room temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
    [Crossref]
  23. L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
    [Crossref]
  24. S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
    [Crossref]
  25. C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
    [Crossref]
  26. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
    [Crossref]
  27. A. S. Bracker, M. J. Yang, B. R. Bennett, J. C. Culbertson, and W. J. Moore, “Surface reconstruction phase diagrams for InAs, AlSb, and GaSb,” J. Cryst. Growth 220(4), 384–392 (2000).
    [Crossref]
  28. S. Roux, L. Cerutti, E. Tournié, B. Gérard, G. Patriarche, A. Grisard, and E. Lallier, “Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion,” Opt. Mater. Express 7(8), 3011–3016 (2017).
    [Crossref]
  29. M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
    [Crossref]
  30. See www.nextnano.com/index.php for “Nextnano GmbH - semiconductor software solutions.”
  31. W. Barvosa-carter, M. E. Twigg, M. J. Yang, and L. J. Whitman, “Microscopic characterization of InAs/In0.28Ga0.72Sb/InAs/AlSb laser structure interfaces,” Phys. Rev. B 63(24), 245311 (2001).
    [Crossref]
  32. C. D. Merritt, W. W. Bewley, C. S. Kim, C. L. Canedy, I. Vurgaftman, J. R. Meyer, and M. Kim, “Gain and loss as a function of current density and temperature in interband cascade lasers,” Appl. Opt. 54(31), F1–F7 (2015).
    [Crossref]
  33. W. J. Turner and W. E. Reese, “Infrared Absorption in n-Type Aluminum Antimonide,” Phys. Rev. 117(4), 1003–1004 (1960).
    [Crossref]
  34. W. Jost, M. Kunzer, and U. Kaufmann, “Bistability of the Te donor in AlSb: Te bulk crystals,” Phys. Rev. B 50(7), 4341–4344 (1994).
    [Crossref]
  35. M. Kim, W. W. Bewley, C. L. Canedy, C. S. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power continuous-wave interband cascade lasers with 10 actives stages,” Opt. Express 23(8), 9664–9672 (2015).
    [Crossref]
  36. A. Subekti, V. W. L. Chin, and T. L. Tansley, “Ohmic contacts to n-type and p-type GaSb,” Solid-State Electron. 39(3), 329–332 (1996).
    [Crossref]

2017 (2)

2015 (5)

M. Kim, W. W. Bewley, C. L. Canedy, C. S. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power continuous-wave interband cascade lasers with 10 actives stages,” Opt. Express 23(8), 9664–9672 (2015).
[Crossref]

C. D. Merritt, W. W. Bewley, C. S. Kim, C. L. Canedy, I. Vurgaftman, J. R. Meyer, and M. Kim, “Gain and loss as a function of current density and temperature in interband cascade lasers,” Appl. Opt. 54(31), F1–F7 (2015).
[Crossref]

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-Infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1-XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

2014 (2)

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22(7), 7702–7710 (2014).
[Crossref]

2013 (2)

R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3(10), 1624–1631 (2013).
[Crossref]

R. Weih, M. Kamp, and S. Höfling, “Interband cascade lasers with room temperature threshold current densities below 100 A/cm2,” Appl. Phys. Lett. 102(23), 231123 (2013).
[Crossref]

2012 (4)

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-Infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
[Crossref]

K. Vizbaras and M. C. Amann, “Room temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 µm antimonide laser,” Appl. Phys. B: Lasers Opt. 106(2), 483–489 (2012).
[Crossref]

2011 (2)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

2010 (4)

A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
[Crossref]

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-based laser diodes operating in 3.1- to 3.3 µm wavelength range,” IEEE Photonics Technol. Lett. 22(10), 718–720 (2010).
[Crossref]

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

A. Soibel, M. W. Wright, W. H. Farr, S. A. Keo, C. J. Hill, R. Q. Yang, and H. C. Liu, “Midinfrared Interband cascade Laser for Free Space Communication,” IEEE Photonics Technol. Lett. 22(2), 121–123 (2010).
[Crossref]

2009 (1)

M. Razeghi, “High-performance InP based mid-IR Quantum Cascade Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 941–951 (2009).
[Crossref]

2008 (1)

L. Shterengas, G. Belenky, G. Kipshidze, and T. Hososda, “Room temperature operated 3.1 µm type-I GaSb-based diode lasers with 80 mW continuous-wave output power,” Appl. Phys. Lett. 92(17), 171111 (2008).
[Crossref]

2004 (1)

A. Sahli, Y. Rouillard, J. Angellier, and M. Garcia, “Very-low-threshold 2.4-µm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime,” IEEE Photonics Technol. Lett. 16(11), 2424–2426 (2004).
[Crossref]

2002 (1)

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

2001 (1)

W. Barvosa-carter, M. E. Twigg, M. J. Yang, and L. J. Whitman, “Microscopic characterization of InAs/In0.28Ga0.72Sb/InAs/AlSb laser structure interfaces,” Phys. Rev. B 63(24), 245311 (2001).
[Crossref]

2000 (1)

A. S. Bracker, M. J. Yang, B. R. Bennett, J. C. Culbertson, and W. J. Moore, “Surface reconstruction phase diagrams for InAs, AlSb, and GaSb,” J. Cryst. Growth 220(4), 384–392 (2000).
[Crossref]

1999 (2)

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

1996 (1)

A. Subekti, V. W. L. Chin, and T. L. Tansley, “Ohmic contacts to n-type and p-type GaSb,” Solid-State Electron. 39(3), 329–332 (1996).
[Crossref]

1995 (2)

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. RamMohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett. 67(6), 757–759 (1995).
[Crossref]

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17(1), 77–83 (1995).
[Crossref]

1994 (1)

W. Jost, M. Kunzer, and U. Kaufmann, “Bistability of the Te donor in AlSb: Te bulk crystals,” Phys. Rev. B 50(7), 4341–4344 (1994).
[Crossref]

1960 (1)

W. J. Turner and W. E. Reese, “Infrared Absorption in n-Type Aluminum Antimonide,” Phys. Rev. 117(4), 1003–1004 (1960).
[Crossref]

Abell, J.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, W. W. Bewley, C. L. Canedy, C. S. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power continuous-wave interband cascade lasers with 10 actives stages,” Opt. Express 23(8), 9664–9672 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22(7), 7702–7710 (2014).
[Crossref]

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

Aifer, E. H.

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

Amann, M. C.

K. Vizbaras and M. C. Amann, “Room temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

Angellier, J.

A. Sahli, Y. Rouillard, J. Angellier, and M. Garcia, “Very-low-threshold 2.4-µm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime,” IEEE Photonics Technol. Lett. 16(11), 2424–2426 (2004).
[Crossref]

Balocchi, A.

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

Barritault, P.

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-Infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1-XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Bartoli, F. J.

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. RamMohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett. 67(6), 757–759 (1995).
[Crossref]

Barvosa-carter, W.

W. Barvosa-carter, M. E. Twigg, M. J. Yang, and L. J. Whitman, “Microscopic characterization of InAs/In0.28Ga0.72Sb/InAs/AlSb laser structure interfaces,” Phys. Rev. B 63(24), 245311 (2001).
[Crossref]

Bauer, A.

R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3(10), 1624–1631 (2013).
[Crossref]

A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
[Crossref]

Belenky, G.

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-based laser diodes operating in 3.1- to 3.3 µm wavelength range,” IEEE Photonics Technol. Lett. 22(10), 718–720 (2010).
[Crossref]

L. Shterengas, G. Belenky, G. Kipshidze, and T. Hososda, “Room temperature operated 3.1 µm type-I GaSb-based diode lasers with 80 mW continuous-wave output power,” Appl. Phys. Lett. 92(17), 171111 (2008).
[Crossref]

Benett, B. R.

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

Bennett, B. R.

A. S. Bracker, M. J. Yang, B. R. Bennett, J. C. Culbertson, and W. J. Moore, “Surface reconstruction phase diagrams for InAs, AlSb, and GaSb,” J. Cryst. Growth 220(4), 384–392 (2000).
[Crossref]

Bewley, W. W.

C. D. Merritt, W. W. Bewley, C. S. Kim, C. L. Canedy, I. Vurgaftman, J. R. Meyer, and M. Kim, “Gain and loss as a function of current density and temperature in interband cascade lasers,” Appl. Opt. 54(31), F1–F7 (2015).
[Crossref]

M. Kim, W. W. Bewley, C. L. Canedy, C. S. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power continuous-wave interband cascade lasers with 10 actives stages,” Opt. Express 23(8), 9664–9672 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22(7), 7702–7710 (2014).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

Borca-Tasciuc, T.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

Bracker, A. S.

A. S. Bracker, M. J. Yang, B. R. Bennett, J. C. Culbertson, and W. J. Moore, “Surface reconstruction phase diagrams for InAs, AlSb, and GaSb,” J. Cryst. Growth 220(4), 384–392 (2000).
[Crossref]

Canedy, C. L.

M. Kim, W. W. Bewley, C. L. Canedy, C. S. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power continuous-wave interband cascade lasers with 10 actives stages,” Opt. Express 23(8), 9664–9672 (2015).
[Crossref]

C. D. Merritt, W. W. Bewley, C. S. Kim, C. L. Canedy, I. Vurgaftman, J. R. Meyer, and M. Kim, “Gain and loss as a function of current density and temperature in interband cascade lasers,” Appl. Opt. 54(31), F1–F7 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22(7), 7702–7710 (2014).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

Castellano, A.

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

Cerutti, L.

S. Roux, L. Cerutti, E. Tournié, B. Gérard, G. Patriarche, A. Grisard, and E. Lallier, “Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion,” Opt. Mater. Express 7(8), 3011–3016 (2017).
[Crossref]

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-Infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1-XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Chin, V. W. L.

A. Subekti, V. W. L. Chin, and T. L. Tansley, “Ohmic contacts to n-type and p-type GaSb,” Solid-State Electron. 39(3), 329–332 (1996).
[Crossref]

Cross, J. O.

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

Cui, B.

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

Culbertson, J. C.

A. S. Bracker, M. J. Yang, B. R. Bennett, J. C. Culbertson, and W. J. Moore, “Surface reconstruction phase diagrams for InAs, AlSb, and GaSb,” J. Cryst. Growth 220(4), 384–392 (2000).
[Crossref]

Dagan, M.

M. Dagan, B. Thomas, B. Gross, and F. Moshary, “Implementation of micropulse LIDAR at 4.5 µm and 1.55 µm for aerosol and cloud study,” in Proceedings of 27th International Laser Radar Conference, 119, (EPJ Web of Conferences, 2016), UNSP 06001.

Dallner, M.

A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
[Crossref]

Farr, W. H.

A. Soibel, M. W. Wright, W. H. Farr, S. A. Keo, C. J. Hill, R. Q. Yang, and H. C. Liu, “Midinfrared Interband cascade Laser for Free Space Communication,” IEEE Photonics Technol. Lett. 22(2), 121–123 (2010).
[Crossref]

Felix, C. L.

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

Forchel, A.

A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
[Crossref]

Fuchs, F.

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

Garcia, M.

A. Sahli, Y. Rouillard, J. Angellier, and M. Garcia, “Very-low-threshold 2.4-µm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime,” IEEE Photonics Technol. Lett. 16(11), 2424–2426 (2004).
[Crossref]

Gérard, B.

S. Roux, L. Cerutti, E. Tournié, B. Gérard, G. Patriarche, A. Grisard, and E. Lallier, “Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion,” Opt. Mater. Express 7(8), 3011–3016 (2017).
[Crossref]

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-Infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1-XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Ghorbani, R.

Gmachl, C.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-Infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Grayson, M.

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

Grisard, A.

S. Roux, L. Cerutti, E. Tournié, B. Gérard, G. Patriarche, A. Grisard, and E. Lallier, “Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion,” Opt. Mater. Express 7(8), 3011–3016 (2017).
[Crossref]

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-Infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1-XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Gross, B.

M. Dagan, B. Thomas, B. Gross, and F. Moshary, “Implementation of micropulse LIDAR at 4.5 µm and 1.55 µm for aerosol and cloud study,” in Proceedings of 27th International Laser Radar Conference, 119, (EPJ Web of Conferences, 2016), UNSP 06001.

Herres, N.

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

Herrmann, A.

A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
[Crossref]

Hill, C. J.

A. Soibel, M. W. Wright, W. H. Farr, S. A. Keo, C. J. Hill, R. Q. Yang, and H. C. Liu, “Midinfrared Interband cascade Laser for Free Space Communication,” IEEE Photonics Technol. Lett. 22(2), 121–123 (2010).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-Infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hoffman, C. A.

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. RamMohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett. 67(6), 757–759 (1995).
[Crossref]

Höfling, S.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

R. Weih, M. Kamp, and S. Höfling, “Interband cascade lasers with room temperature threshold current densities below 100 A/cm2,” Appl. Phys. Lett. 102(23), 231123 (2013).
[Crossref]

R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3(10), 1624–1631 (2013).
[Crossref]

A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
[Crossref]

Hosoda, T.

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-based laser diodes operating in 3.1- to 3.3 µm wavelength range,” IEEE Photonics Technol. Lett. 22(10), 718–720 (2010).
[Crossref]

Hososda, T.

L. Shterengas, G. Belenky, G. Kipshidze, and T. Hososda, “Room temperature operated 3.1 µm type-I GaSb-based diode lasers with 80 mW continuous-wave output power,” Appl. Phys. Lett. 92(17), 171111 (2008).
[Crossref]

Jackson, E. M.

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

Jahjah, M.

M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 µm antimonide laser,” Appl. Phys. B: Lasers Opt. 106(2), 483–489 (2012).
[Crossref]

Jost, W.

W. Jost, M. Kunzer, and U. Kaufmann, “Bistability of the Te donor in AlSb: Te bulk crystals,” Phys. Rev. B 50(7), 4341–4344 (1994).
[Crossref]

Kamp, M.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

R. Weih, M. Kamp, and S. Höfling, “Interband cascade lasers with room temperature threshold current densities below 100 A/cm2,” Appl. Phys. Lett. 102(23), 231123 (2013).
[Crossref]

R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3(10), 1624–1631 (2013).
[Crossref]

A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
[Crossref]

Kaufmann, U.

W. Jost, M. Kunzer, and U. Kaufmann, “Bistability of the Te donor in AlSb: Te bulk crystals,” Phys. Rev. B 50(7), 4341–4344 (1994).
[Crossref]

Keo, S. A.

A. Soibel, M. W. Wright, W. H. Farr, S. A. Keo, C. J. Hill, R. Q. Yang, and H. C. Liu, “Midinfrared Interband cascade Laser for Free Space Communication,” IEEE Photonics Technol. Lett. 22(2), 121–123 (2010).
[Crossref]

Kiefer, R.

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

Kim, C. S.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, W. W. Bewley, C. L. Canedy, C. S. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power continuous-wave interband cascade lasers with 10 actives stages,” Opt. Express 23(8), 9664–9672 (2015).
[Crossref]

C. D. Merritt, W. W. Bewley, C. S. Kim, C. L. Canedy, I. Vurgaftman, J. R. Meyer, and M. Kim, “Gain and loss as a function of current density and temperature in interband cascade lasers,” Appl. Opt. 54(31), F1–F7 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22(7), 7702–7710 (2014).
[Crossref]

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

Kim, M.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, W. W. Bewley, C. L. Canedy, C. S. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power continuous-wave interband cascade lasers with 10 actives stages,” Opt. Express 23(8), 9664–9672 (2015).
[Crossref]

C. D. Merritt, W. W. Bewley, C. S. Kim, C. L. Canedy, I. Vurgaftman, J. R. Meyer, and M. Kim, “Gain and loss as a function of current density and temperature in interband cascade lasers,” Appl. Opt. 54(31), F1–F7 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22(7), 7702–7710 (2014).
[Crossref]

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

Kipshidze, G.

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-based laser diodes operating in 3.1- to 3.3 µm wavelength range,” IEEE Photonics Technol. Lett. 22(10), 718–720 (2010).
[Crossref]

L. Shterengas, G. Belenky, G. Kipshidze, and T. Hososda, “Room temperature operated 3.1 µm type-I GaSb-based diode lasers with 80 mW continuous-wave output power,” Appl. Phys. Lett. 92(17), 171111 (2008).
[Crossref]

Kunzer, M.

W. Jost, M. Kunzer, and U. Kaufmann, “Bistability of the Te donor in AlSb: Te bulk crystals,” Phys. Rev. B 50(7), 4341–4344 (1994).
[Crossref]

Lallier, E.

Largeau, L.

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

Lartigue, O.

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-Infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1-XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Lee, H.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

Lehnhardt, T.

A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
[Crossref]

Lelarge, F.

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

Liu, H. C.

A. Soibel, M. W. Wright, W. H. Farr, S. A. Keo, C. J. Hill, R. Q. Yang, and H. C. Liu, “Midinfrared Interband cascade Laser for Free Space Communication,” IEEE Photonics Technol. Lett. 22(2), 121–123 (2010).
[Crossref]

Madiomanana, K.

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

Maier, M.

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

Manfra, M. J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

Marie, X.

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

Martinelli, R. U.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

Meritt, C. D.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

Mermelstein, C.

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

Merritt, C. D.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, W. W. Bewley, C. L. Canedy, C. S. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power continuous-wave interband cascade lasers with 10 actives stages,” Opt. Express 23(8), 9664–9672 (2015).
[Crossref]

C. D. Merritt, W. W. Bewley, C. S. Kim, C. L. Canedy, I. Vurgaftman, J. R. Meyer, and M. Kim, “Gain and loss as a function of current density and temperature in interband cascade lasers,” Appl. Opt. 54(31), F1–F7 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22(7), 7702–7710 (2014).
[Crossref]

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

Meyer, J. R.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, W. W. Bewley, C. L. Canedy, C. S. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power continuous-wave interband cascade lasers with 10 actives stages,” Opt. Express 23(8), 9664–9672 (2015).
[Crossref]

C. D. Merritt, W. W. Bewley, C. S. Kim, C. L. Canedy, I. Vurgaftman, J. R. Meyer, and M. Kim, “Gain and loss as a function of current density and temperature in interband cascade lasers,” Appl. Opt. 54(31), F1–F7 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22(7), 7702–7710 (2014).
[Crossref]

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. RamMohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett. 67(6), 757–759 (1995).
[Crossref]

Moore, W. J.

A. S. Bracker, M. J. Yang, B. R. Bennett, J. C. Culbertson, and W. J. Moore, “Surface reconstruction phase diagrams for InAs, AlSb, and GaSb,” J. Cryst. Growth 220(4), 384–392 (2000).
[Crossref]

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

Moshary, F.

M. Dagan, B. Thomas, B. Gross, and F. Moshary, “Implementation of micropulse LIDAR at 4.5 µm and 1.55 µm for aerosol and cloud study,” in Proceedings of 27th International Laser Radar Conference, 119, (EPJ Web of Conferences, 2016), UNSP 06001.

Nolde, J. A.

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

Nosho, B. Z.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

Patriarche, G.

S. Roux, L. Cerutti, E. Tournié, B. Gérard, G. Patriarche, A. Grisard, and E. Lallier, “Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion,” Opt. Mater. Express 7(8), 3011–3016 (2017).
[Crossref]

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

RamMohan, L. R.

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. RamMohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett. 67(6), 757–759 (1995).
[Crossref]

Razeghi, M.

M. Razeghi, “High-performance InP based mid-IR Quantum Cascade Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 941–951 (2009).
[Crossref]

Reese, W. E.

W. J. Turner and W. E. Reese, “Infrared Absorption in n-Type Aluminum Antimonide,” Phys. Rev. 117(4), 1003–1004 (1960).
[Crossref]

Rodriguez, J. B.

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

Rouillard, Y.

M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 µm antimonide laser,” Appl. Phys. B: Lasers Opt. 106(2), 483–489 (2012).
[Crossref]

A. Sahli, Y. Rouillard, J. Angellier, and M. Garcia, “Very-low-threshold 2.4-µm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime,” IEEE Photonics Technol. Lett. 16(11), 2424–2426 (2004).
[Crossref]

Roux, S.

S. Roux, L. Cerutti, E. Tournié, B. Gérard, G. Patriarche, A. Grisard, and E. Lallier, “Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion,” Opt. Mater. Express 7(8), 3011–3016 (2017).
[Crossref]

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-Infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1-XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Sahli, A.

A. Sahli, Y. Rouillard, J. Angellier, and M. Garcia, “Very-low-threshold 2.4-µm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime,” IEEE Photonics Technol. Lett. 16(11), 2424–2426 (2004).
[Crossref]

Schmidt, F. M.

Schmitz, J.

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

Shanabrook, B. V.

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

Shen, G.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

Shterengas, L.

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-based laser diodes operating in 3.1- to 3.3 µm wavelength range,” IEEE Photonics Technol. Lett. 22(10), 718–720 (2010).
[Crossref]

L. Shterengas, G. Belenky, G. Kipshidze, and T. Hososda, “Room temperature operated 3.1 µm type-I GaSb-based diode lasers with 80 mW continuous-wave output power,” Appl. Phys. Lett. 92(17), 171111 (2008).
[Crossref]

Simanowsky, S.

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

Soibel, A.

A. Soibel, M. W. Wright, W. H. Farr, S. A. Keo, C. J. Hill, R. Q. Yang, and H. C. Liu, “Midinfrared Interband cascade Laser for Free Space Communication,” IEEE Photonics Technol. Lett. 22(2), 121–123 (2010).
[Crossref]

Song, D. W.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

Subekti, A.

A. Subekti, V. W. L. Chin, and T. L. Tansley, “Ohmic contacts to n-type and p-type GaSb,” Solid-State Electron. 39(3), 329–332 (1996).
[Crossref]

Tansley, T. L.

A. Subekti, V. W. L. Chin, and T. L. Tansley, “Ohmic contacts to n-type and p-type GaSb,” Solid-State Electron. 39(3), 329–332 (1996).
[Crossref]

Thomas, B.

M. Dagan, B. Thomas, B. Gross, and F. Moshary, “Implementation of micropulse LIDAR at 4.5 µm and 1.55 µm for aerosol and cloud study,” in Proceedings of 27th International Laser Radar Conference, 119, (EPJ Web of Conferences, 2016), UNSP 06001.

Tisher, J. G.

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

Tournié, E.

S. Roux, L. Cerutti, E. Tournié, B. Gérard, G. Patriarche, A. Grisard, and E. Lallier, “Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion,” Opt. Mater. Express 7(8), 3011–3016 (2017).
[Crossref]

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-Infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1-XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

Tsvid, G.

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-based laser diodes operating in 3.1- to 3.3 µm wavelength range,” IEEE Photonics Technol. Lett. 22(10), 718–720 (2010).
[Crossref]

Turner, G. W.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

Turner, W. J.

W. J. Turner and W. E. Reese, “Infrared Absorption in n-Type Aluminum Antimonide,” Phys. Rev. 117(4), 1003–1004 (1960).
[Crossref]

Twigg, M. E.

W. Barvosa-carter, M. E. Twigg, M. J. Yang, and L. J. Whitman, “Microscopic characterization of InAs/In0.28Ga0.72Sb/InAs/AlSb laser structure interfaces,” Phys. Rev. B 63(24), 245311 (2001).
[Crossref]

Vicet, A.

M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 µm antimonide laser,” Appl. Phys. B: Lasers Opt. 106(2), 483–489 (2012).
[Crossref]

Vizbaras, K.

K. Vizbaras and M. C. Amann, “Room temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

Vurgaftman, I.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

C. D. Merritt, W. W. Bewley, C. S. Kim, C. L. Canedy, I. Vurgaftman, J. R. Meyer, and M. Kim, “Gain and loss as a function of current density and temperature in interband cascade lasers,” Appl. Opt. 54(31), F1–F7 (2015).
[Crossref]

M. Kim, W. W. Bewley, C. L. Canedy, C. S. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power continuous-wave interband cascade lasers with 10 actives stages,” Opt. Express 23(8), 9664–9672 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22(7), 7702–7710 (2014).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

Wagner, J.

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

Walther, M.

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

Weih, R.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

R. Weih, M. Kamp, and S. Höfling, “Interband cascade lasers with room temperature threshold current densities below 100 A/cm2,” Appl. Phys. Lett. 102(23), 231123 (2013).
[Crossref]

R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3(10), 1624–1631 (2013).
[Crossref]

Weimann, G.

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

Whitman, L. J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

W. Barvosa-carter, M. E. Twigg, M. J. Yang, and L. J. Whitman, “Microscopic characterization of InAs/In0.28Ga0.72Sb/InAs/AlSb laser structure interfaces,” Phys. Rev. B 63(24), 245311 (2001).
[Crossref]

Worschech, L.

A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
[Crossref]

Wright, M. W.

A. Soibel, M. W. Wright, W. H. Farr, S. A. Keo, C. J. Hill, R. Q. Yang, and H. C. Liu, “Midinfrared Interband cascade Laser for Free Space Communication,” IEEE Photonics Technol. Lett. 22(2), 121–123 (2010).
[Crossref]

Yang, M. J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

W. Barvosa-carter, M. E. Twigg, M. J. Yang, and L. J. Whitman, “Microscopic characterization of InAs/In0.28Ga0.72Sb/InAs/AlSb laser structure interfaces,” Phys. Rev. B 63(24), 245311 (2001).
[Crossref]

A. S. Bracker, M. J. Yang, B. R. Bennett, J. C. Culbertson, and W. J. Moore, “Surface reconstruction phase diagrams for InAs, AlSb, and GaSb,” J. Cryst. Growth 220(4), 384–392 (2000).
[Crossref]

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

Yang, R. Q.

A. Soibel, M. W. Wright, W. H. Farr, S. A. Keo, C. J. Hill, R. Q. Yang, and H. C. Liu, “Midinfrared Interband cascade Laser for Free Space Communication,” IEEE Photonics Technol. Lett. 22(2), 121–123 (2010).
[Crossref]

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17(1), 77–83 (1995).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-Infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Zhou, C.

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

M. Jahjah, A. Vicet, and Y. Rouillard, “A QEPAS based methane sensor with a 2.35 µm antimonide laser,” Appl. Phys. B: Lasers Opt. 106(2), 483–489 (2012).
[Crossref]

Appl. Phys. Lett. (7)

L. Shterengas, G. Belenky, G. Kipshidze, and T. Hososda, “Room temperature operated 3.1 µm type-I GaSb-based diode lasers with 80 mW continuous-wave output power,” Appl. Phys. Lett. 92(17), 171111 (2008).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101(6), 061104 (2012).
[Crossref]

R. Weih, M. Kamp, and S. Höfling, “Interband cascade lasers with room temperature threshold current densities below 100 A/cm2,” Appl. Phys. Lett. 102(23), 231123 (2013).
[Crossref]

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. RamMohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett. 67(6), 757–759 (1995).
[Crossref]

S. Roux, P. Barritault, O. Lartigue, L. Cerutti, E. Tournié, B. Gérard, and A. Grisard, “Mid-Infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1-XAsSb waveguides,” Appl. Phys. Lett. 107(17), 171901 (2015).
[Crossref]

C. Zhou, B. Cui, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, and M. Grayson, “Thermal conductivity tensors of the cladding and active layers of interband cascade lasers,” Appl. Phys. Lett. 105(26), 261905 (2014).
[Crossref]

L. Cerutti, A. Castellano, J. B. Rodriguez, L. Largeau, A. Balocchi, K. Madiomanana, F. Lelarge, G. Patriarche, X. Marie, and E. Tournié, “GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55 µm,” Appl. Phys. Lett. 106(10), 101102 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

M. Razeghi, “High-performance InP based mid-IR Quantum Cascade Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 941–951 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Soibel, M. W. Wright, W. H. Farr, S. A. Keo, C. J. Hill, R. Q. Yang, and H. C. Liu, “Midinfrared Interband cascade Laser for Free Space Communication,” IEEE Photonics Technol. Lett. 22(2), 121–123 (2010).
[Crossref]

A. Sahli, Y. Rouillard, J. Angellier, and M. Garcia, “Very-low-threshold 2.4-µm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime,” IEEE Photonics Technol. Lett. 16(11), 2424–2426 (2004).
[Crossref]

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-based laser diodes operating in 3.1- to 3.3 µm wavelength range,” IEEE Photonics Technol. Lett. 22(10), 718–720 (2010).
[Crossref]

J. Appl. Phys. (2)

M. J. Yang, W. J. Moore, B. R. Benett, B. V. Shanabrook, J. O. Cross, W. W. Bewley, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “Optimum growth parameters for type-II infrared lasers,” J. Appl. Phys. 86(4), 1796–1799 (1999).
[Crossref]

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Shen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92(9), 4994–4998 (2002).
[Crossref]

J. Cryst. Growth (2)

S. Simanowsky, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, “Arsenic incorporation in molecular beam epitaxy (MBE) layers 2.0-2.5 µm laser structures on GaSb substrates,” J. Cryst. Growth 201-202, 849–853 (1999).
[Crossref]

A. S. Bracker, M. J. Yang, B. R. Bennett, J. C. Culbertson, and W. J. Moore, “Surface reconstruction phase diagrams for InAs, AlSb, and GaSb,” J. Cryst. Growth 220(4), 384–392 (2000).
[Crossref]

J. Phys. D: Appl. Phys. (1)

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

J. Vac. Sci. Technol., B (1)

C. L. Canedy, J. Abell, W. W. Bewley, E. H. Aifer, C. S. Kim, J. A. Nolde, M. Kim, J. G. Tisher, J. R. Lindle, E. M. Jackson, I. Vurgaftman, and J. R. Meyer, “Molecular beam epitaxial growth effects on type-II antimonide lasers and photodiodes,” J. Vac. Sci. Technol., B 28(3), C3G8–C3G12 (2010).
[Crossref]

Nanotechnology (1)

A. Bauer, M. Dallner, A. Herrmann, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices,” Nanotechnology 21(45), 455603 (2010).
[Crossref]

Nat. Commun. (1)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Meritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2(1), 585 (2011).
[Crossref]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-Infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (2)

Phys. Rev. (1)

W. J. Turner and W. E. Reese, “Infrared Absorption in n-Type Aluminum Antimonide,” Phys. Rev. 117(4), 1003–1004 (1960).
[Crossref]

Phys. Rev. B (2)

W. Jost, M. Kunzer, and U. Kaufmann, “Bistability of the Te donor in AlSb: Te bulk crystals,” Phys. Rev. B 50(7), 4341–4344 (1994).
[Crossref]

W. Barvosa-carter, M. E. Twigg, M. J. Yang, and L. J. Whitman, “Microscopic characterization of InAs/In0.28Ga0.72Sb/InAs/AlSb laser structure interfaces,” Phys. Rev. B 63(24), 245311 (2001).
[Crossref]

Semicond. Sci. Technol. (1)

K. Vizbaras and M. C. Amann, “Room temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

Solid-State Electron. (1)

A. Subekti, V. W. L. Chin, and T. L. Tansley, “Ohmic contacts to n-type and p-type GaSb,” Solid-State Electron. 39(3), 329–332 (1996).
[Crossref]

Superlattices Microstruct. (1)

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17(1), 77–83 (1995).
[Crossref]

Other (2)

M. Dagan, B. Thomas, B. Gross, and F. Moshary, “Implementation of micropulse LIDAR at 4.5 µm and 1.55 µm for aerosol and cloud study,” in Proceedings of 27th International Laser Radar Conference, 119, (EPJ Web of Conferences, 2016), UNSP 06001.

See www.nextnano.com/index.php for “Nextnano GmbH - semiconductor software solutions.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Scheme of the ICL structure with two AlGaAsSb cladding layers.
Fig. 2.
Fig. 2. ω-2θ HRXRD scans at the (0 0 4) reflection for the ICL structures with top cladding layers grown at different temperatures and simulation of the targeted ICL. Inset: Evolution of the average FWHM value of the satellite peaks versus the substrate growth temperature of the top cladding layers.
Fig. 3.
Fig. 3. Electro-optical properties of 100 µm x 2 mm ICLs with top cladding layers respectively grown at 490°C (red), 475°C (purple), 460°C (green) and 435°C (blue). (a) Laser emission spectra. (b) Light-current characteristics in pulsed injection regime.
Fig. 4.
Fig. 4. Evolution of the threshold current density and emission wavelength with the growth temperature of the top cladding layer.
Fig. 5.
Fig. 5. Calculated band alignment and wavefunction of the type-II “W” AlSb/InAs/GaInSb/InAs/AlSb QW used in the ICL, without (a), with 0.5 nm (b) and 1 nm (c) broad intermixing at the interfaces.
Fig. 6.
Fig. 6. Pulsed (300 ns/100 KHz) light-current-voltage characteristic of a 2-mm-long 100-µm-wide laser at 25°C.
Fig. 7.
Fig. 7. Reciprocal differential quantum efficiency versus the cavity length in pulsed regime (300 ns/100 kHz) at 25°C. Each datapoint represents averaged measurements from several devices (4-5) except for the 4 mm cavity length which only features the 2 best results.
Fig. 8.
Fig. 8. CW light-current-voltage curves at different temperatures between 20°C and 80°C from a 7 µm ridge width and 2 mm long cavity ICL with AlGaAsSb cladding layers.
Fig. 9.
Fig. 9. CW laser emission spectra taken at 150 mA at different temperatures (25°C, 40°C and 55°C).

Metrics