Abstract

High peak power, narrow linewidth sources continue to be in high demand. Fiber amplifiers are a compelling option to scale peak power of long 100-ns-pulses because of their compact size and robustness. Unfortunately, stimulated Brillouin scattering (SBS) limits peak power of narrow linewidth fiber sources causing instability. We demonstrate SBS suppression for 130-ns pulses from a 5 MHz linewidth seed laser in a fiber amplifier by using tapered fiber with large 50 µm diameter core in the output. The longitudinal change in the core diameter induces frequency shift in the SBS gain peak and the back-travelling Stokes wave is suppressed towards smaller core. We reach 2.2 kW peak power with 18.7 dB polarization extinction ratio and record breaking 4 kW peak power by exciting both polarization states of the polarization maintaining tapered fiber. The output beam quality equals to single mode fibers with M2 = 1.08.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers

Andrey Fedotov, Teppo Noronen, Regina Gumenyuk, Vasiliy Ustimchik, Yuri Chamorovskii, Konstantin Golant, Maxim Odnoblyudov, Joona Rissanen, Tapio Niemi, and Valery Filippov
Opt. Express 26(6) 6581-6592 (2018)

High SBS-threshold, narrowband, erbium co-doped with ytterbium fiber amplifier pulses frequency-doubled to 770 nm

C. E. Dilley, M. A. Stephen, and M. P. Savage-Leuchs
Opt. Express 15(22) 14389-14395 (2007)

Single frequency, 5 ns, 200 μJ, 1553 nm fiber laser using silica based Er-doped fiber

Zhigang Zhao, Hongwen Xuan, Hironori Igarashi, Shinji Ito, Kouji Kakizaki, and Yohei Kobayashi
Opt. Express 23(23) 29764-29771 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, “High-energy in-fiber pulse amplification for coherent lidar applications,” Opt. Lett. 29(22), 2590–2592 (2004).
    [Crossref]
  2. S. Palese, E. Cheung, G. Goodno, C.-C. Shih, F. Di Teodoro, T. McComb, and M. Weber, “Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control,” Opt. Express 20(7), 7422–7435 (2012).
    [Crossref]
  3. P. Belden, D. W. Chen, and F. Di Teodoro, “Watt-level, gigahertz-linewidth difference-frequency generation in PPLN pumped by an nanosecond-pulse fiber laser source,” Opt. Lett. 40(6), 958–961 (2015).
    [Crossref]
  4. R. W. Boyd, Nonlinear optics (Academic, 2008) Chap. 9
  5. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  6. S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
    [Crossref]
  7. F. Di Teodoro, J. Morais, T. S. McComb, M. K. Hemmat, E. C. Cheung, M. Weber, and R. Moyer, “SBS-managed high-peak-power nanosecond-pulse fiber-based master oscillator power amplifier,” Opt. Lett. 38(13), 2162–2164 (2013).
    [Crossref]
  8. R. Zhu, J. Wang, J. Zhou, J. Liu, and W. Chen, “Single-frequency high-energy Yb-doped pulsed all-fiber laser,” Chin. Opt. Lett. 10(9), 091402 (2012).
    [Crossref]
  9. V. I. Kovalev and R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett. 31(2), 161–163 (2006).
    [Crossref]
  10. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001).
    [Crossref]
  11. K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
    [Crossref]
  12. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
    [Crossref]
  13. K. Schorstein and T. Walther, “A high spectral brightness Fourier-transform limited nanosecond Yb-doped fiber amplifier,” Appl. Phys. B: Lasers Opt. 97(3), 591–597 (2009).
    [Crossref]
  14. L. Lago, D. Bigourd, A. Mussot, M. Douay, and E. Hugonnot, “High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber,” Opt. Lett. 36(5), 734–736 (2011).
    [Crossref]
  15. M.-Y. Cheng, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, “High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiber amplifiers,” Opt. Lett. 30(4), 358–360 (2005).
    [Crossref]
  16. X. Shen, H. Zhang, and M. Gong, “High energy (100mJ) and high peak power (8MW) nanosecond pulses delivered by fiber lasers and self-focusing analysis based on a novel mode decomposition method,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
    [Crossref]
  17. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [Crossref]
  18. S. Wang, W. Zheng, Y. Deng, S. Yan, J. Xu, and T. Yu, “Single frequency high-peak-power fiber laser by suppression of SBS,” Laser Phys. 25(8), 085101 (2015).
    [Crossref]
  19. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
    [Crossref]
  20. A. Malinowski, K. Tri Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. Lin, and D. J. Richardson, “High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping,” Opt. Express 17(23), 20927–20937 (2009).
    [Crossref]
  21. A. Fedotov, T. Noronen, R. Gumenyuk, V. Ustimchik, Y. Chamorovskii, K. Golant, M. Odnoblyudov, J. Rissanen, T. Niemi, and V. Filippov, “Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers,” Opt. Express 26(6), 6581–6592 (2018).
    [Crossref]
  22. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [Crossref]
  23. J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber amplifier technology,” C. R. Phys. 7(2), 213–223 (2006).
    [Crossref]

2018 (3)

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

X. Shen, H. Zhang, and M. Gong, “High energy (100mJ) and high peak power (8MW) nanosecond pulses delivered by fiber lasers and self-focusing analysis based on a novel mode decomposition method,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

A. Fedotov, T. Noronen, R. Gumenyuk, V. Ustimchik, Y. Chamorovskii, K. Golant, M. Odnoblyudov, J. Rissanen, T. Niemi, and V. Filippov, “Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers,” Opt. Express 26(6), 6581–6592 (2018).
[Crossref]

2015 (2)

S. Wang, W. Zheng, Y. Deng, S. Yan, J. Xu, and T. Yu, “Single frequency high-peak-power fiber laser by suppression of SBS,” Laser Phys. 25(8), 085101 (2015).
[Crossref]

P. Belden, D. W. Chen, and F. Di Teodoro, “Watt-level, gigahertz-linewidth difference-frequency generation in PPLN pumped by an nanosecond-pulse fiber laser source,” Opt. Lett. 40(6), 958–961 (2015).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

2009 (2)

2007 (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

2006 (3)

2005 (1)

2004 (1)

2001 (1)

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1995 (1)

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[Crossref]

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

1979 (1)

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
[Crossref]

Alam, S.

Alegria, C.

Andrekson, P. A.

Augere, B.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber amplifier technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Bai, X.

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

Belden, P.

Bigourd, D.

Boyd, R. W.

R. W. Boyd, Nonlinear optics (Academic, 2008) Chap. 9

Cariou, J.-P.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber amplifier technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Chamorovskii, Y.

Chang, Y.-C.

Changkakoti, R.

Chavez-Pirson, A.

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

Chen, D. W.

Chen, K. K.

Chen, W.

Cheng, M.-Y.

Cheung, E.

Cheung, E. C.

Codemard, C.

Deng, Y.

S. Wang, W. Zheng, Y. Deng, S. Yan, J. Xu, and T. Yu, “Single frequency high-peak-power fiber laser by suppression of SBS,” Laser Phys. 25(8), 085101 (2015).
[Crossref]

Di Teodoro, F.

Douay, M.

Dross, F.

Fedotov, A.

Filippov, V.

Fu, S.

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

Galvanauskas, A.

Gatchell, P.

Ghiringhelli, F.

Golant, K.

Gong, M.

X. Shen, H. Zhang, and M. Gong, “High energy (100mJ) and high peak power (8MW) nanosecond pulses delivered by fiber lasers and self-focusing analysis based on a novel mode decomposition method,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

Goodno, G.

Gumenyuk, R.

Hansryd, J.

Harrison, R. G.

Hemmat, M. K.

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
[Crossref]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Hugonnot, E.

Jeong, Y.

Knudsen, S. N.

Kovalev, V. I.

Lago, L.

Lin, D.

Liu, J.

Malinowski, A.

Mamidipudi, P.

McComb, T.

McComb, T. S.

Morais, J.

Moyer, R.

Mussot, A.

Niemi, T.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Nilsson, J.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Noronen, T.

Odnoblyudov, M.

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Palese, S.

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Pearson, G. N.

Peyghambarian, N.

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

Philippov, V.

Richardson, D. J.

Rissanen, J.

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, “High-energy in-fiber pulse amplification for coherent lidar applications,” Opt. Lett. 29(22), 2590–2592 (2004).
[Crossref]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Schorstein, K.

K. Schorstein and T. Walther, “A high spectral brightness Fourier-transform limited nanosecond Yb-doped fiber amplifier,” Appl. Phys. B: Lasers Opt. 97(3), 591–597 (2009).
[Crossref]

Shen, X.

X. Shen, H. Zhang, and M. Gong, “High energy (100mJ) and high peak power (8MW) nanosecond pulses delivered by fiber lasers and self-focusing analysis based on a novel mode decomposition method,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

Sheng, Q.

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

Shi, C.

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

Shi, W.

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

Shih, C.-C.

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[Crossref]

Stolen, R. H.

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
[Crossref]

Tang, Z.

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[Crossref]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Tri Vu, K.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Ustimchik, V.

Valla, M.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber amplifier technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Vu, K. T.

Walther, T.

K. Schorstein and T. Walther, “A high spectral brightness Fourier-transform limited nanosecond Yb-doped fiber amplifier,” Appl. Phys. B: Lasers Opt. 97(3), 591–597 (2009).
[Crossref]

Wang, J.

Wang, S.

S. Wang, W. Zheng, Y. Deng, S. Yan, J. Xu, and T. Yu, “Single frequency high-peak-power fiber laser by suppression of SBS,” Laser Phys. 25(8), 085101 (2015).
[Crossref]

Weber, M.

Westlund, M.

Xu, J.

S. Wang, W. Zheng, Y. Deng, S. Yan, J. Xu, and T. Yu, “Single frequency high-peak-power fiber laser by suppression of SBS,” Laser Phys. 25(8), 085101 (2015).
[Crossref]

Yan, S.

S. Wang, W. Zheng, Y. Deng, S. Yan, J. Xu, and T. Yu, “Single frequency high-peak-power fiber laser by suppression of SBS,” Laser Phys. 25(8), 085101 (2015).
[Crossref]

Yao, J.

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

Yu, T.

S. Wang, W. Zheng, Y. Deng, S. Yan, J. Xu, and T. Yu, “Single frequency high-peak-power fiber laser by suppression of SBS,” Laser Phys. 25(8), 085101 (2015).
[Crossref]

Zervas, M. N.

Zhang, H.

X. Shen, H. Zhang, and M. Gong, “High energy (100mJ) and high peak power (8MW) nanosecond pulses delivered by fiber lasers and self-focusing analysis based on a novel mode decomposition method,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

Zheng, W.

S. Wang, W. Zheng, Y. Deng, S. Yan, J. Xu, and T. Yu, “Single frequency high-peak-power fiber laser by suppression of SBS,” Laser Phys. 25(8), 085101 (2015).
[Crossref]

Zhou, J.

Zhu, R.

Appl. Phys. B: Lasers Opt. (1)

K. Schorstein and T. Walther, “A high spectral brightness Fourier-transform limited nanosecond Yb-doped fiber amplifier,” Appl. Phys. B: Lasers Opt. 97(3), 591–597 (2009).
[Crossref]

C. R. Phys. (1)

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber amplifier technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Chin. Opt. Lett. (1)

Electron. Lett. (1)

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

X. Shen, H. Zhang, and M. Gong, “High energy (100mJ) and high peak power (8MW) nanosecond pulses delivered by fiber lasers and self-focusing analysis based on a novel mode decomposition method,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

J. Lightwave Technol. (3)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001).
[Crossref]

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Laser Phys. (1)

S. Wang, W. Zheng, Y. Deng, S. Yan, J. Xu, and T. Yu, “Single frequency high-peak-power fiber laser by suppression of SBS,” Laser Phys. 25(8), 085101 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Proc. SPIE (1)

S. Fu, W. Shi, Z. Tang, C. Shi, X. Bai, Q. Sheng, A. Chavez-Pirson, N. Peyghambarian, and J. Yao, “High-energy, 100-ns, single-frequency all-fiber laser at 1064nm,” Proc. SPIE 10512, 44 (2018).
[Crossref]

Other (1)

R. W. Boyd, Nonlinear optics (Academic, 2008) Chap. 9

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic picture of the MOPA-system. The distributed feedback (DFB) laser diode is used as the master oscillator and pulses are created with an acousto-optic modulator (AOM). The shape and duration of the pulse can be fully controlled with the AOM. The pre-amplifier is a dual stage design and a bandpass filter is used between stages to reduce amplified spontaneous emission. Pulse energy entering the power amplifier can be controlled by adjusting the second stage amplification. The power amplifier is constructed from an ytterbium-doped tapered fiber together with pump laser diode and cladding mode stripper.
Fig. 2.
Fig. 2. Pulse shape driving the AOM and after the pre-amplifier. The pulse forefront depletes gain from trailing edge thus experiencing more gain and shifting the peak towards forefront.
Fig. 3.
Fig. 3. (a) Output of the pre-amplifier. The power is limited by SBS at 16 mW. (b) Spectrum after dual stage pre-amplifier. The bandpass filter between amplifiers can be seen as spectral shape from 1051 nm to 1055 nm. Curve from 1010 nm to 1100 nm is ASE from the second preamplifier.
Fig. 4.
Fig. 4. (a) End face of active panda type tapered fiber. (b) Measured cladding diameter at different positions of tapered fiber. The Cladding has 10 times the diameter of the core.
Fig. 5.
Fig. 5. (a) The output pulse energy of the power amplifier. The absorbed pump power is approximately 4 dB. For fitted data, the pre-amplifier output power was 10.8 mW. Optimized pre-amplifier powers were 5.4 mW and 9.6 mW for one-mode and two-mode excitation, respectively. (b) Spectrum of the power amplifier output. Measurement was taken with optimized pre-amplifier and maximum output energy. (c) Pulse shape before and after the power amplifier.
Fig. 6.
Fig. 6. (a) Beam quality parameter M2 for both axes. The line fit has been made for 80 data points in both cases. 40 points are presented here for clarity. (b) Beam profile picture. Measurement was made from collimated beam 1 m distance from taper output. One pixel corresponds to 4.4 × 4.4 µm2.

Metrics