Abstract

Most existing experiments on radiative cooling are conducted in dry climates for better performance. However, many important applications require cooling in hot and humid climates. Here we theoretically analyze the temperature reduction and cooling flux at nighttime with the ambient temperature (Tambient) ranging from 0-40 $^\circ{\textrm C}$ and the relative humidity (RH) from 0-100%. Our analysis reveals an interesting crossover: for lower (higher) RH, higher (lower) Tambient results in better cooling. Experimentally, we show that radiative cooling of 5 $^\circ{\textrm C}$ below ambient can be achieved even at Tambient = 29 $^\circ{\textrm C}$ with RH = 100%.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling

Aru Kong, Boyuan Cai, Peng Shi, and Xiao-cong Yuan
Opt. Express 27(21) 30102-30115 (2019)

Radiative cooling computed for model atmospheres

T. S. Eriksson and C. G. Granqvist
Appl. Opt. 21(23) 4381-4388 (1982)

Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments

Taqiyyah S. Safi and Jeremy N. Munday
Opt. Express 23(19) A1120-A1128 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref]
  2. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref]
  3. Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
    [Crossref]
  4. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref]
  5. W. Li and S. Fan, “Nanophotonic Control of Thermal Radiation for Energy Applications,” Opt. Express 26(12), 15995–16021 (2018).
    [Crossref]
  6. M. Ono, K. Chen, W. Li, and S. Fan, “Self-adaptive radiative cooling base on phase change materials,” Opt. Express 26(18), A777–A787 (2018).
    [Crossref]
  7. Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
    [Crossref]
  8. Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space,” Joule 3(1), 101–110 (2019).
    [Crossref]
  9. D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
    [Crossref]
  10. M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  11. A. W. Harrison and M. R. Walton, “Radiative cooling of TiO 2 white paint,” Sol. Energy 20(2), 185–188 (1978).
    [Crossref]
  12. B. W. Olesen and G. S. Brager, “A better way to predict comfort: the new ASHRAE standard 55-2004,” ASHARE J. 46(8), 20–26 (2004).
  13. A. W. Harrison, “Effect of atmospheric humidity on radiation cooling,” Sol. Energy 26(3), 243–247 (1981).
    [Crossref]
  14. T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8(5), 055124 (2018).
    [Crossref]
  15. M. M. Hossain and M. Gu, “Radiative Cooling: Principles, Progress, and Potentials,” Adv. Sci. 3(7), 1500360 (2016).
    [Crossref]
  16. B. L. a and P. G. Mccormick, “Effect of surface characteristics and atmospheric conditions on radiative heat loss to a clear sky,” Int. J. Heat Mass Transfer 23(5), 613–620 (1980).
    [Crossref]
  17. A. W. Harrison, “Atmospheric thermal emission 7-15 um,” Can. J. Phys. 54(14), 1442–1448 (1976).
    [Crossref]
  18. D. M. Gates and W. J. Harrop, “Infrared Transmission of the Atmosphere to Solar Radiation,” Appl. Opt. 2(9), 887–898 (1963).
    [Crossref]
  19. P. Berdahl and R. Fromberg, “The thermal radiance of clear skies,” Sol. Energy 29(4), 299–314 (1982).
    [Crossref]
  20. P. Berdahl and M. Martin, “Emissivity of clear skies,” Sol. Energy 32(5), 663–664 (1984).
    [Crossref]
  21. J. Khedari, J. Waewsak, S. Thepa, and J. Hirunlabh, “Field investigation of night radiation cooling under tropical climate,” Renewable Energy 20(2), 183–193 (2000).
    [Crossref]
  22. C. Y. Tso, K. C. Chan, and C. Y. H. Chao, “A field investigation of passive radiative cooling under Hong Kong’s climate,” Renewable Energy 106, 52–61 (2017).
    [Crossref]
  23. A. Jaffer, “Radiative Cooling in Hot Humid Climates,” http://people.csail.mit.edu/jaffer/cool (2006).
  24. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
    [Crossref]
  25. T. S. Eriksson and C. G. Granqvist, “Radiative cooling computed for model atmospheres,” Appl. Opt. 21(23), 4381–4388 (1982).
    [Crossref]
  26. “ATran,” https://atran.sofia.usra.edu/cgi-bin/atran/atran.cgi .
  27. A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv. Sci. 2(9), 1500119 (2015).
    [Crossref]
  28. E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
    [Crossref]
  29. A. R. Gentle and G. B. Smith, “Optimized infra-red spectral response of surfaces for sub-ambient sky cooling as a function of humidity and operating temperature,” Proc. SPIE 7725, 77250Z (2015).
    [Crossref]
  30. A. R. Gentle and G. B. Smith, “Performance comparisons of sky window spectral selective and high emittance radiant cooling systems under varying atmospheric conditions,” Solar2010, the 48th AuSES Annual Conference (2010).
  31. “Weather Underground,” https://www.wunderground.com/history/daily/cn/nanjing/ZSNJ .
  32. M. A. Mahab and T. A. Sharif, “Estimation of precipitable water at different locations using surface dew-poin,” Theor. Appl. Climatol. 51(3), 153–157 (1995).
    [Crossref]
  33. A. Maghrabi and R. Clay, “Precipitable water vapour estimation on the basis of sky temperatures measured by a single-pixel IR detector and screen temperatures under clear skies,” Meteorol. Appl. 17(3), 279–286 (2009).
    [Crossref]
  34. O. O. Parisb and T. W. Putnam, “Equations for the determination of humidity from dewpoint and psychrometric data,” NASA TN D-8407 (1977).
  35. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer, V (WILEY, 2007).
  36. J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook, IV (Dover, 2011).

2019 (2)

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space,” Joule 3(1), 101–110 (2019).
[Crossref]

D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
[Crossref]

2018 (4)

W. Li and S. Fan, “Nanophotonic Control of Thermal Radiation for Energy Applications,” Opt. Express 26(12), 15995–16021 (2018).
[Crossref]

M. Ono, K. Chen, W. Li, and S. Fan, “Self-adaptive radiative cooling base on phase change materials,” Opt. Express 26(18), A777–A787 (2018).
[Crossref]

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8(5), 055124 (2018).
[Crossref]

2017 (3)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

C. Y. Tso, K. C. Chan, and C. Y. H. Chao, “A field investigation of passive radiative cooling under Hong Kong’s climate,” Renewable Energy 106, 52–61 (2017).
[Crossref]

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

2016 (2)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

M. M. Hossain and M. Gu, “Radiative Cooling: Principles, Progress, and Potentials,” Adv. Sci. 3(7), 1500360 (2016).
[Crossref]

2015 (3)

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

A. R. Gentle and G. B. Smith, “Optimized infra-red spectral response of surfaces for sub-ambient sky cooling as a function of humidity and operating temperature,” Proc. SPIE 7725, 77250Z (2015).
[Crossref]

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

2014 (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

2013 (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

2009 (1)

A. Maghrabi and R. Clay, “Precipitable water vapour estimation on the basis of sky temperatures measured by a single-pixel IR detector and screen temperatures under clear skies,” Meteorol. Appl. 17(3), 279–286 (2009).
[Crossref]

2006 (1)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

2004 (1)

B. W. Olesen and G. S. Brager, “A better way to predict comfort: the new ASHRAE standard 55-2004,” ASHARE J. 46(8), 20–26 (2004).

2000 (1)

J. Khedari, J. Waewsak, S. Thepa, and J. Hirunlabh, “Field investigation of night radiation cooling under tropical climate,” Renewable Energy 20(2), 183–193 (2000).
[Crossref]

1995 (1)

M. A. Mahab and T. A. Sharif, “Estimation of precipitable water at different locations using surface dew-poin,” Theor. Appl. Climatol. 51(3), 153–157 (1995).
[Crossref]

1984 (1)

P. Berdahl and M. Martin, “Emissivity of clear skies,” Sol. Energy 32(5), 663–664 (1984).
[Crossref]

1982 (2)

P. Berdahl and R. Fromberg, “The thermal radiance of clear skies,” Sol. Energy 29(4), 299–314 (1982).
[Crossref]

T. S. Eriksson and C. G. Granqvist, “Radiative cooling computed for model atmospheres,” Appl. Opt. 21(23), 4381–4388 (1982).
[Crossref]

1981 (1)

A. W. Harrison, “Effect of atmospheric humidity on radiation cooling,” Sol. Energy 26(3), 243–247 (1981).
[Crossref]

1980 (1)

B. L. a and P. G. Mccormick, “Effect of surface characteristics and atmospheric conditions on radiative heat loss to a clear sky,” Int. J. Heat Mass Transfer 23(5), 613–620 (1980).
[Crossref]

1978 (1)

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO 2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

1976 (1)

A. W. Harrison, “Atmospheric thermal emission 7-15 um,” Can. J. Phys. 54(14), 1442–1448 (1976).
[Crossref]

1963 (1)

a, B. L.

B. L. a and P. G. Mccormick, “Effect of surface characteristics and atmospheric conditions on radiative heat loss to a clear sky,” Int. J. Heat Mass Transfer 23(5), 613–620 (1980).
[Crossref]

Acharya, P. K.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Adler-Golden, S. M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Aili, A.

D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
[Crossref]

Anderson, G. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Berdahl, P.

P. Berdahl and M. Martin, “Emissivity of clear skies,” Sol. Energy 32(5), 663–664 (1984).
[Crossref]

P. Berdahl and R. Fromberg, “The thermal radiance of clear skies,” Sol. Energy 29(4), 299–314 (1982).
[Crossref]

Bergman, T. L.

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer, V (WILEY, 2007).

Berk, A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Bernstein, L. S.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Borel, C. C.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Brager, G. S.

B. W. Olesen and G. S. Brager, “A better way to predict comfort: the new ASHRAE standard 55-2004,” ASHARE J. 46(8), 20–26 (2004).

Chan, K. C.

C. Y. Tso, K. C. Chan, and C. Y. H. Chao, “A field investigation of passive radiative cooling under Hong Kong’s climate,” Renewable Energy 106, 52–61 (2017).
[Crossref]

Chao, C. Y. H.

C. Y. Tso, K. C. Chan, and C. Y. H. Chao, “A field investigation of passive radiative cooling under Hong Kong’s climate,” Renewable Energy 106, 52–61 (2017).
[Crossref]

Chen, K.

Chen, Z.

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space,” Joule 3(1), 101–110 (2019).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Chetwynd, J. H.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Clay, R.

A. Maghrabi and R. Clay, “Precipitable water vapour estimation on the basis of sky temperatures measured by a single-pixel IR detector and screen temperatures under clear skies,” Meteorol. Appl. 17(3), 279–286 (2009).
[Crossref]

Cooley, T. W.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Dewitt, D. P.

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer, V (WILEY, 2007).

Eriksson, T. S.

Fan, S.

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space,” Joule 3(1), 101–110 (2019).
[Crossref]

W. Li and S. Fan, “Nanophotonic Control of Thermal Radiation for Energy Applications,” Opt. Express 26(12), 15995–16021 (2018).
[Crossref]

M. Ono, K. Chen, W. Li, and S. Fan, “Self-adaptive radiative cooling base on phase change materials,” Opt. Express 26(18), A777–A787 (2018).
[Crossref]

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Fox, M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Fromberg, R.

P. Berdahl and R. Fromberg, “The thermal radiance of clear skies,” Sol. Energy 29(4), 299–314 (1982).
[Crossref]

Gardner, J. A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Gates, D. M.

Gentle, A. R.

A. R. Gentle and G. B. Smith, “Optimized infra-red spectral response of surfaces for sub-ambient sky cooling as a function of humidity and operating temperature,” Proc. SPIE 7725, 77250Z (2015).
[Crossref]

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

A. R. Gentle and G. B. Smith, “Performance comparisons of sky window spectral selective and high emittance radiant cooling systems under varying atmospheric conditions,” Solar2010, the 48th AuSES Annual Conference (2010).

Goldstein, E. A.

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

Granqvist, C. G.

Gu, M.

M. M. Hossain and M. Gu, “Radiative Cooling: Principles, Progress, and Potentials,” Adv. Sci. 3(7), 1500360 (2016).
[Crossref]

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Harrison, A. W.

A. W. Harrison, “Effect of atmospheric humidity on radiation cooling,” Sol. Energy 26(3), 243–247 (1981).
[Crossref]

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO 2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

A. W. Harrison, “Atmospheric thermal emission 7-15 um,” Can. J. Phys. 54(14), 1442–1448 (1976).
[Crossref]

Harrop, W. J.

Hayashi, Y.

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8(5), 055124 (2018).
[Crossref]

Hirunlabh, J.

J. Khedari, J. Waewsak, S. Thepa, and J. Hirunlabh, “Field investigation of night radiation cooling under tropical climate,” Renewable Energy 20(2), 183–193 (2000).
[Crossref]

Hoke, M. L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Hossain, M. M.

M. M. Hossain and M. Gu, “Radiative Cooling: Principles, Progress, and Potentials,” Adv. Sci. 3(7), 1500360 (2016).
[Crossref]

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Incropera, F. P.

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer, V (WILEY, 2007).

Ishikawa, A.

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8(5), 055124 (2018).
[Crossref]

Jaffer, A.

A. Jaffer, “Radiative Cooling in Hot Humid Climates,” http://people.csail.mit.edu/jaffer/cool (2006).

Jia, B.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Jia, M.

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Khedari, J.

J. Khedari, J. Waewsak, S. Thepa, and J. Hirunlabh, “Field investigation of night radiation cooling under tropical climate,” Renewable Energy 20(2), 183–193 (2000).
[Crossref]

Kidd, D.

D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
[Crossref]

Lavine, A. S.

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer, V (WILEY, 2007).

Lee, J.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Lewis, P. E.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Li, W.

Lienhard, J. H.

J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook, IV (Dover, 2011).

J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook, IV (Dover, 2011).

Lockwood, R. B.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Lu, J.

D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
[Crossref]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Maghrabi, A.

A. Maghrabi and R. Clay, “Precipitable water vapour estimation on the basis of sky temperatures measured by a single-pixel IR detector and screen temperatures under clear skies,” Meteorol. Appl. 17(3), 279–286 (2009).
[Crossref]

Mahab, M. A.

M. A. Mahab and T. A. Sharif, “Estimation of precipitable water at different locations using surface dew-poin,” Theor. Appl. Climatol. 51(3), 153–157 (1995).
[Crossref]

Mandal, Y. F. J.

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Martin, M.

P. Berdahl and M. Martin, “Emissivity of clear skies,” Sol. Energy 32(5), 663–664 (1984).
[Crossref]

Mccormick, P. G.

B. L. a and P. G. Mccormick, “Effect of surface characteristics and atmospheric conditions on radiative heat loss to a clear sky,” Int. J. Heat Mass Transfer 23(5), 613–620 (1980).
[Crossref]

Muratov, L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Olesen, B. W.

B. W. Olesen and G. S. Brager, “A better way to predict comfort: the new ASHRAE standard 55-2004,” ASHARE J. 46(8), 20–26 (2004).

Ono, M.

Overvig, A.

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Parisb, O. O.

O. O. Parisb and T. W. Putnam, “Equations for the determination of humidity from dewpoint and psychrometric data,” NASA TN D-8407 (1977).

Putnam, T. W.

O. O. Parisb and T. W. Putnam, “Equations for the determination of humidity from dewpoint and psychrometric data,” NASA TN D-8407 (1977).

Raman, A.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Raman, A. P.

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Sharif, T. A.

M. A. Mahab and T. A. Sharif, “Estimation of precipitable water at different locations using surface dew-poin,” Theor. Appl. Climatol. 51(3), 153–157 (1995).
[Crossref]

Shettle, E. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Shi, N.

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Smith, G. B.

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

A. R. Gentle and G. B. Smith, “Optimized infra-red spectral response of surfaces for sub-ambient sky cooling as a function of humidity and operating temperature,” Proc. SPIE 7725, 77250Z (2015).
[Crossref]

A. R. Gentle and G. B. Smith, “Performance comparisons of sky window spectral selective and high emittance radiant cooling systems under varying atmospheric conditions,” Solar2010, the 48th AuSES Annual Conference (2010).

Suichi, T.

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8(5), 055124 (2018).
[Crossref]

Sun, K.

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Tan, G.

D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Thepa, S.

J. Khedari, J. Waewsak, S. Thepa, and J. Hirunlabh, “Field investigation of night radiation cooling under tropical climate,” Renewable Energy 20(2), 183–193 (2000).
[Crossref]

Tso, C. Y.

C. Y. Tso, K. C. Chan, and C. Y. H. Chao, “A field investigation of passive radiative cooling under Hong Kong’s climate,” Renewable Energy 106, 52–61 (2017).
[Crossref]

Tsuruta, K.

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8(5), 055124 (2018).
[Crossref]

Waewsak, J.

J. Khedari, J. Waewsak, S. Thepa, and J. Hirunlabh, “Field investigation of night radiation cooling under tropical climate,” Renewable Energy 20(2), 183–193 (2000).
[Crossref]

Walton, M. R.

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO 2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

Xiao, X.

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Yang, R.

D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yang, Y.

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Yin, X.

D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yu, N.

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Zhai, Y.

D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhao, D.

D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhou, H.

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Zhu, L.

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space,” Joule 3(1), 101–110 (2019).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Adv. Opt. Mater. (1)

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Adv. Sci. (2)

M. M. Hossain and M. Gu, “Radiative Cooling: Principles, Progress, and Potentials,” Adv. Sci. 3(7), 1500360 (2016).
[Crossref]

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

AIP Adv. (1)

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8(5), 055124 (2018).
[Crossref]

Appl. Opt. (2)

ASHARE J. (1)

B. W. Olesen and G. S. Brager, “A better way to predict comfort: the new ASHRAE standard 55-2004,” ASHARE J. 46(8), 20–26 (2004).

Can. J. Phys. (1)

A. W. Harrison, “Atmospheric thermal emission 7-15 um,” Can. J. Phys. 54(14), 1442–1448 (1976).
[Crossref]

Int. J. Heat Mass Transfer (1)

B. L. a and P. G. Mccormick, “Effect of surface characteristics and atmospheric conditions on radiative heat loss to a clear sky,” Int. J. Heat Mass Transfer 23(5), 613–620 (1980).
[Crossref]

Joule (2)

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space,” Joule 3(1), 101–110 (2019).
[Crossref]

D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, and R. Yang, “Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling,” Joule 3(1), 111–123 (2019).
[Crossref]

Meteorol. Appl. (1)

A. Maghrabi and R. Clay, “Precipitable water vapour estimation on the basis of sky temperatures measured by a single-pixel IR detector and screen temperatures under clear skies,” Meteorol. Appl. 17(3), 279–286 (2009).
[Crossref]

Nano Lett. (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Nat. Commun. (1)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Nat. Energy (1)

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

A. R. Gentle and G. B. Smith, “Optimized infra-red spectral response of surfaces for sub-ambient sky cooling as a function of humidity and operating temperature,” Proc. SPIE 7725, 77250Z (2015).
[Crossref]

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[Crossref]

Renewable Energy (2)

J. Khedari, J. Waewsak, S. Thepa, and J. Hirunlabh, “Field investigation of night radiation cooling under tropical climate,” Renewable Energy 20(2), 183–193 (2000).
[Crossref]

C. Y. Tso, K. C. Chan, and C. Y. H. Chao, “A field investigation of passive radiative cooling under Hong Kong’s climate,” Renewable Energy 106, 52–61 (2017).
[Crossref]

Science (2)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Y. F. J. Mandal, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Sol. Energy (4)

A. W. Harrison, “Effect of atmospheric humidity on radiation cooling,” Sol. Energy 26(3), 243–247 (1981).
[Crossref]

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO 2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

P. Berdahl and R. Fromberg, “The thermal radiance of clear skies,” Sol. Energy 29(4), 299–314 (1982).
[Crossref]

P. Berdahl and M. Martin, “Emissivity of clear skies,” Sol. Energy 32(5), 663–664 (1984).
[Crossref]

Theor. Appl. Climatol. (1)

M. A. Mahab and T. A. Sharif, “Estimation of precipitable water at different locations using surface dew-poin,” Theor. Appl. Climatol. 51(3), 153–157 (1995).
[Crossref]

Other (7)

A. Jaffer, “Radiative Cooling in Hot Humid Climates,” http://people.csail.mit.edu/jaffer/cool (2006).

“ATran,” https://atran.sofia.usra.edu/cgi-bin/atran/atran.cgi .

A. R. Gentle and G. B. Smith, “Performance comparisons of sky window spectral selective and high emittance radiant cooling systems under varying atmospheric conditions,” Solar2010, the 48th AuSES Annual Conference (2010).

“Weather Underground,” https://www.wunderground.com/history/daily/cn/nanjing/ZSNJ .

O. O. Parisb and T. W. Putnam, “Equations for the determination of humidity from dewpoint and psychrometric data,” NASA TN D-8407 (1977).

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer, V (WILEY, 2007).

J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook, IV (Dover, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Atmospheric transmittance, calculated using ModTran at different (a) RH and zenith angle (θ) or (b) ${T_{ambient}}$. Both the first window (8 - 13 µm) and the second window (16–25 µm) gradually close as RH, θ, or ${T_{ambient}}$ increases. Note that we use these spectral directional transmittance in our theoretical analysis.
Fig. 2.
Fig. 2. Maximum Temperature reduction, ${\Delta }T = {T_{ambient}} - {T_{emitter}}$, as a function of RH at two representative ${T_{ambient}}: 0 \,{^\circ{\textrm C}}$ (solid lines), and $30 \,^\circ{\textrm C}$ (dashed lines), for the three emitters (columns) under two scenarios, $h = 0\; \textrm{W}{\textrm{m}^{ - 2}}{\textrm{K}^{ - 1}}$ (upper low) and $8\; \textrm{W}{\textrm{m}^{ - 2}}{\textrm{K}^{ - 1}}$ (lower row). Crossovers between the solid and the dashed lines, more clear for the black emitter and ESR in a zoom-in plot in Fig. 10 of Appendix D, emphasize opposite trends: at lower (higher) RH, higher (lower) Tambient results in better cooling. These crossovers move towards higher RH as h increases.
Fig. 3.
Fig. 3. Contour plots of (a) maximum temperature reduction (${\Delta }{ T} = {{ T}_{{{ambient}}}} - {{ T}_{{{emitter}}}}$), and (b) maximum cooling flux (Qcooling) as a function of RH (x-axis) and $ T_{ambient}$ (y-axis) for the three emitters (columns). The first and second rows assume ${ h} = 0\; {\ W}{{\ m}^{ - 2}}{{\ K}^{ - 1}}$ and $8\; {W}{{m}^{ - 2}}{{\ K}^{ - 1}}$, respectively. While the near-ideal emitter can achieve much higher ${\Delta }{ T}$, the black emitter has higher Qcooling.
Fig. 4.
Fig. 4. Experimental demonstration. (a) Schematic and in-situ setup. Polyethylene (PE) is infrared transparent. (b) Emissivity of the ESR (blue) and the aluminized mylar (grey), as well as the transmittance of the PE film (yellow), all measured using FTIR. The atmospheric transmittance along the zero zenith angle (black), calculated using ModTran at ${T_{ambient}} = 30 \, ^\circ{\textrm C}$ with RH = 60 %, is for reference here. (c) A typical measurement under a clear night sky.
Fig. 5.
Fig. 5. Comparison between experiments and model. Measured ΔT (points) as a function of RH at ${T_{ambient}} = 27, \,29, \,31 \,\textrm{and} \,32^\circ{\textrm C}$, respectively. The error bars are estimated based on the K-type thermocouple and a standard humidiometer. The grey shaded area represents the uncertainty of the model resulting from the uncertainty in estimating the parasitic heat transfer coefficient (for details, see Appendix C)
Fig. 6.
Fig. 6. Precipitable water vapor (PWV) as a function of relative humidity (RH) at three representative ambient temperatures: Tambient = 10 °C, 20 °C, and 40 °C, respectively.
Fig. 7.
Fig. 7. Reproduction of the contours of the maximum cooling flux in Fig. 3(b) by replacing RH with PWV. The shaded areas are inaccessible, because the corresponding RH exceeds 100% in these regimes.
Fig. 8.
Fig. 8. Cooling flux (${Q_{cooling}}$) as a function of the emitter temperature ${T_{emitter}}$ for the three emitters (near-ideal, black and ESR) under two typical scenarios (h = 2 and 8 Wm-2K-1). Note that the calculation is based on a typical hot and humid climate at ${T_{ambient}} = 30 \,^\circ{C}$ with RH = 80%.
Fig. 9.
Fig. 9. Schematic of the enclosure used in our experiment, and the corresponding thermal circuit to analyze the parasitic heat loss.
Fig. 10.
Fig. 10. Zoom-in plots of Fig. 2 of the main text to clearly show the crossovers for black emitter (left column) and ESR (right column) under two scenarios, $h = 0\; \textrm{W}{\textrm{m}^{ - 2}}{\textrm{K}^{ - 1}}$ (upper low) and $8\; \textrm{W}{\textrm{m}^{ - 2}}{\textrm{K}^{ - 1}}$ (lower row). The crossover moves towards higher RH as h increases. Note that the x-axis in the upper row is from 0% - 1%.
Fig. 11.
Fig. 11. Graphical interpretation of the right-shift of the crossover. At the crossover in Fig. 2 or Fig. 10, ${\Delta }T$ is the same for the two Tambient (solid vs. dashed lines). Thus, higher Tambient results in higher Temitter, and smaller $\left|{\frac{{d{\Delta }T}}{{dh}}} \right|$ from Eq. (11). This leads to the right-shift of the crossover as h increases. Here we anchor the x-axis intercept of both the solid and dashed lines, because h has less effect on ${\Delta }T$ in high RH regime than in low RH regime, as evident from Fig. 2 of the main text.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

AH ( RH , T a m b i e n t ) = n 1 T a m b i e n t 1 e s × RH,
R 1 = 1 h P E , u p p e r s u r f a c e ,
R 2 = L g a p k ,
R 3 = ( L g a p k ) ( R r a d n ) ,
R 4 = δ P S k P S ,
R r a d n = 1 / ε E S R + 1 / ε m y l a r 1 4 σ T a v g 3 ,
h P E , n a t u r a l c o n v e c t i o n = 0.27 R a L c 1 4 k L c ,
h P E , f o r c e d c o n v e c t i o n = 0.664 R e L 1 2 P r 1 3 k L ,
ε a t m σ T a m b i e n t 4 + h ( T a m b i e n t T e m i t t e r ) = σ T e m i t t e r 4 .
d T e m i t t e r d h = Δ T h r a d n + h ,
| d Δ T d h | = Δ T 4 σ T e m i t t e r 3 + h ,