Abstract

In this paper, we propose double junction tandem organic solar cells with PTB7:PC70BM and PDPPSDTPS:PC60BM as the polymeric active materials to cover the wide solar spectrum from 300 nm to 1150 nm. We present novel designs and finite-difference time-domain (FDTD) simulation results of plasmonic double junction tandem OSCs in which Ag nanospheres are present over the top surface of the OSC and Ag nanostars are present in the bottom subcell which substantially enhance the absorption, short circuit current density, and efficiency of the OSC as compared to the reference tandem OSCs that do not contain any nanoparticles. Different geometries of the plasmonic nanoparticles such as nanospheres and nanostars were used in the top subcell and the bottom subcell, respectively, so that the absorption in the different spectral regimes — corresponding to the bandgaps of the active layers in the two subcells (PTB7:PC70BM in the top subcell and LBG:PC60BM in the bottom subcell) — could be enhanced. The thickness of the bottom subcell active layer as well as the geometries of the plasmonic nanoparticles were optimized such that the short circuit current densities in the two subcells could be matched in the tandem OSC. An overall enhancement of 26% in the short circuit current density was achieved in a tandem OSC containing the optimized Ag nanospheres over the top surface and Ag nanostars inside the bottom subcell active layer. The presence of plasmonic nanoparticles along with the wide spectrum absorption band of the active materials in the tandem OSC leads to a typical power conversion efficiency of ∼ 15.4%, which is higher than that of a reference tandem organic solar cell (12.25%) that does not contain any nanoparticles.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping plasmonic butterfly-wing-shaped nanostructures for enhanced absorption and efficiency in organic solar cells

Kamal Kumar, Uttam K. Kumawat, R. Mital, and A. Dhawan
J. Opt. Soc. Am. B 36(4) 978-990 (2019)

Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode

Xuanru Zhang, Qiuping Huang, Jigang Hu, Randy J. Knize, and Yalin Lu
Opt. Express 22(S6) A1400-A1411 (2014)

Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles

Di Qu, Fang Liu, Yidong Huang, Wanlu Xie, and Qi Xu
Opt. Express 19(24) 24795-24803 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
    [Crossref]
  2. M. I. Alonso and M. Campoy-Quiles, “Organic solar cells,” Springer Ser. Opt. Sci. 212(3), 439–461 (2019).
    [Crossref]
  3. C. Liu, C. Zhao, X. Zhang, W. Guo, K. Liu, and S. Ruan, “Unique Gold Nanorods Embedded Active Layer Enabling Strong Plasmonic Effect to Improve the Performance of Polymer Photovoltaic Devices,” J. Phys. Chem. C 120(11), 6198–6205 (2016).
    [Crossref]
  4. Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
    [Crossref]
  5. M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
    [Crossref]
  6. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells,” J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
    [Crossref]
  7. X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, “Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers,” Adv. Mater. 30(3), 1703973 (2018).
    [Crossref]
  8. M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1–2), 298–300 (2005).
    [Crossref]
  9. Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Adv. Mater. 20(15), 2952–2958 (2008).
    [Crossref]
  10. S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
    [Crossref]
  11. S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
    [Crossref]
  12. K. Q. Le, J. Bai, and P. Y. Chen, “Dielectric antireflection fiber arrays for absorption enhancement in thin-film organic tandem solar cells,” IEEE J. Sel. Top. Quantum Electron. 22(1), 1–6 (2016).
    [Crossref]
  13. A. Hadipour, B. de Boer, and P. W. M. Blom, “Device operation of organic tandem solar cells,” Org. Electron. 9(5), 617–624 (2008).
    [Crossref]
  14. L. Zuo, J. Yu, X. Shi, F. Lin, W. Tang, and A. K. Y. Jen, “High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration,” Adv. Mater. 29(34), 1702547 (2017).
    [Crossref]
  15. T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, “Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes,” ACS Nano 9(4), 4165–4172 (2015).
    [Crossref]
  16. I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19(S1), A64–A71 (2011).
    [Crossref]
  17. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
    [Crossref]
  18. Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
    [Crossref]
  19. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
    [Crossref]
  20. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
    [Crossref]
  21. D. Qu, F. Liu, Y. Huang, W. Xie, and Q. Xu, “Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles,” Opt. Express 19(24), 24795–24803 (2011).
    [Crossref]
  22. L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
    [Crossref]
  23. D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
    [Crossref]
  24. F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
    [Crossref]
  25. I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
    [Crossref]
  26. V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
    [Crossref]
  27. S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
    [Crossref]
  28. I. Kim, D. Seok Jeong, T. Seong Lee, W. Seong Lee, and K. S. Lee, “Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer,” J. Appl. Phys. 111(10), 103121 (2012).
    [Crossref]
  29. F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(S2), A207–A220 (2010).
    [Crossref]
  30. I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express 21(S4), A669–A676 (2013).
    [Crossref]
  31. B. Cai, Y. Peng, Y.-B. Cheng, and M. Gu, “4-Fold Photocurrent Enhancement in Ultrathin Nanoplasmonic Perovskite Solar Cells,” Opt. Express 23(24), A1700–A1706 (2015).
    [Crossref]
  32. S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, and F. Yan, “Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement,” Energy Environ. Sci. 9(3), 898–905 (2016).
    [Crossref]
  33. Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express 20(S6), A898–A907 (2012).
    [Crossref]
  34. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
    [Crossref]
  35. Y. Taff, B. Apter, E. A. Katz, and U. Efron, “Modeling plasmonic efficiency enhancement in organic photovoltaics,” Appl. Opt. 54(26), 7957–7961 (2015).
    [Crossref]
  36. R. S. Kim, J. Zhu, J. H. Park, L. Li, Z. Yu, H. Shen, M. Xue, K. L. Wang, G. Park, T. J. Anderson, and Q. Pei, “E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model,” Opt. Express 20(12), 12649–12657 (2012).
    [Crossref]
  37. C.-H. Poh, L. Rosa, S. Juodkazis, and P. Dastoor, “FDTD modeling to enhance the performance of an organic solar cell embedded with gold nanoparticles,” Opt. Mater. Express 1(7), 1326–1331 (2011).
    [Crossref]
  38. B. Cai, X. Li, Y. Zhang, and B. Jia, “Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles,” Nanotechnology 27(19), 195401 (2016).
    [Crossref]
  39. C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
    [Crossref]
  40. K. H. Hendriks, W. Li, M. M. Wienk, and R. A. J. Janssen, “Small-bandgap semiconducting polymers with high near-infrared photoresponse,” J. Am. Chem. Soc. 136(34), 12130–12136 (2014).
    [Crossref]
  41. A. Hadipour, D. Cheyns, P. Heremans, and B. P. Rand, “Electrode considerations for the optical enhancement of organic bulk heterojunction solar cells,” Adv. Energy Mater. 1(5), 930–935 (2011).
    [Crossref]
  42. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006).
    [Crossref]
  43. H. Liang, W. Wang, Y. Huang, S. Zhang, H. Wei, and H. Xu, “Controlled synthesis of uniform silver nanospheres,” J. Phys. Chem. C 114(16), 7427–7431 (2010).
    [Crossref]
  44. Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
    [Crossref]
  45. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref]
  46. A. Garcia-Leis, J. V. Garcia-Ramos, and S. Sanchez-Cortes, “Silver nanostars with high SERS performance,” J. Phys. Chem. C 117(15), 7791–7795 (2013).
    [Crossref]
  47. Y. Hsiangkuo, G. K. Christopher, H. Hanjun, M. W. Christy, A. G. Gerald, and V.-D. Tuan, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
    [Crossref]
  48. K. Kumar, U. K. Kumawat, R. Mital, and A. Dhawan, “Light trapping plasmonic butterfly-wing-shaped nanostructures for enhanced absorption and efficiency in organic solar cells,” J. Opt. Soc. Am. B 36(4), 978–990 (2019).
    [Crossref]
  49. S. M. Sze and K. K. Ng, Physics of Semiconducting Devices (John Wiley and Sons, 2007).
  50. Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
    [Crossref]

2019 (2)

2018 (2)

X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, “Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers,” Adv. Mater. 30(3), 1703973 (2018).
[Crossref]

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

2017 (6)

L. Zuo, J. Yu, X. Shi, F. Lin, W. Tang, and A. K. Y. Jen, “High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration,” Adv. Mater. 29(34), 1702547 (2017).
[Crossref]

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells,” J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
[Crossref]

F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
[Crossref]

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

2016 (4)

S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, and F. Yan, “Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement,” Energy Environ. Sci. 9(3), 898–905 (2016).
[Crossref]

B. Cai, X. Li, Y. Zhang, and B. Jia, “Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles,” Nanotechnology 27(19), 195401 (2016).
[Crossref]

C. Liu, C. Zhao, X. Zhang, W. Guo, K. Liu, and S. Ruan, “Unique Gold Nanorods Embedded Active Layer Enabling Strong Plasmonic Effect to Improve the Performance of Polymer Photovoltaic Devices,” J. Phys. Chem. C 120(11), 6198–6205 (2016).
[Crossref]

K. Q. Le, J. Bai, and P. Y. Chen, “Dielectric antireflection fiber arrays for absorption enhancement in thin-film organic tandem solar cells,” IEEE J. Sel. Top. Quantum Electron. 22(1), 1–6 (2016).
[Crossref]

2015 (4)

T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, “Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes,” ACS Nano 9(4), 4165–4172 (2015).
[Crossref]

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

Y. Taff, B. Apter, E. A. Katz, and U. Efron, “Modeling plasmonic efficiency enhancement in organic photovoltaics,” Appl. Opt. 54(26), 7957–7961 (2015).
[Crossref]

B. Cai, Y. Peng, Y.-B. Cheng, and M. Gu, “4-Fold Photocurrent Enhancement in Ultrathin Nanoplasmonic Perovskite Solar Cells,” Opt. Express 23(24), A1700–A1706 (2015).
[Crossref]

2014 (3)

C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
[Crossref]

K. H. Hendriks, W. Li, M. M. Wienk, and R. A. J. Janssen, “Small-bandgap semiconducting polymers with high near-infrared photoresponse,” J. Am. Chem. Soc. 136(34), 12130–12136 (2014).
[Crossref]

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

2013 (4)

V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
[Crossref]

A. Garcia-Leis, J. V. Garcia-Ramos, and S. Sanchez-Cortes, “Silver nanostars with high SERS performance,” J. Phys. Chem. C 117(15), 7791–7795 (2013).
[Crossref]

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express 21(S4), A669–A676 (2013).
[Crossref]

2012 (7)

R. S. Kim, J. Zhu, J. H. Park, L. Li, Z. Yu, H. Shen, M. Xue, K. L. Wang, G. Park, T. J. Anderson, and Q. Pei, “E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model,” Opt. Express 20(12), 12649–12657 (2012).
[Crossref]

Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express 20(S6), A898–A907 (2012).
[Crossref]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Y. Hsiangkuo, G. K. Christopher, H. Hanjun, M. W. Christy, A. G. Gerald, and V.-D. Tuan, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[Crossref]

I. Kim, D. Seok Jeong, T. Seong Lee, W. Seong Lee, and K. S. Lee, “Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer,” J. Appl. Phys. 111(10), 103121 (2012).
[Crossref]

2011 (5)

2010 (4)

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
[Crossref]

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(S2), A207–A220 (2010).
[Crossref]

H. Liang, W. Wang, Y. Huang, S. Zhang, H. Wei, and H. Xu, “Controlled synthesis of uniform silver nanospheres,” J. Phys. Chem. C 114(16), 7427–7431 (2010).
[Crossref]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref]

2008 (2)

A. Hadipour, B. de Boer, and P. W. M. Blom, “Device operation of organic tandem solar cells,” Org. Electron. 9(5), 617–624 (2008).
[Crossref]

Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Adv. Mater. 20(15), 2952–2958 (2008).
[Crossref]

2007 (2)

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref]

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref]

2006 (1)

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006).
[Crossref]

2005 (2)

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[Crossref]

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1–2), 298–300 (2005).
[Crossref]

2003 (1)

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[Crossref]

Airo, M.

F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
[Crossref]

Aizpurua, J.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Alonso, M. I.

M. I. Alonso and M. Campoy-Quiles, “Organic solar cells,” Springer Ser. Opt. Sci. 212(3), 439–461 (2019).
[Crossref]

Anderson, T. J.

Apter, B.

Bai, J.

K. Q. Le, J. Bai, and P. Y. Chen, “Dielectric antireflection fiber arrays for absorption enhancement in thin-film organic tandem solar cells,” IEEE J. Sel. Top. Quantum Electron. 22(1), 1–6 (2016).
[Crossref]

Barnard, J. S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Baumberg, J. J.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Beek, W. J. E.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[Crossref]

Beliatis, M. J.

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

Berkovitch, N.

Bi, Z.

X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, “Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers,” Adv. Mater. 30(3), 1703973 (2018).
[Crossref]

Blom, P. W. M.

A. Hadipour, B. de Boer, and P. W. M. Blom, “Device operation of organic tandem solar cells,” Org. Electron. 9(5), 617–624 (2008).
[Crossref]

Brabec, C. J.

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006).
[Crossref]

Cai, B.

B. Cai, X. Li, Y. Zhang, and B. Jia, “Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles,” Nanotechnology 27(19), 195401 (2016).
[Crossref]

B. Cai, Y. Peng, Y.-B. Cheng, and M. Gu, “4-Fold Photocurrent Enhancement in Ultrathin Nanoplasmonic Perovskite Solar Cells,” Opt. Express 23(24), A1700–A1706 (2015).
[Crossref]

Campoy-Quiles, M.

M. I. Alonso and M. Campoy-Quiles, “Organic solar cells,” Springer Ser. Opt. Sci. 212(3), 439–461 (2019).
[Crossref]

Cao, Y.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref]

Chang, J. P.

V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
[Crossref]

Chang, S.

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[Crossref]

Chang, W. H.

C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
[Crossref]

Chen, C. C.

C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
[Crossref]

Chen, F. C.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref]

Chen, P.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref]

Chen, P. Y.

K. Q. Le, J. Bai, and P. Y. Chen, “Dielectric antireflection fiber arrays for absorption enhancement in thin-film organic tandem solar cells,” IEEE J. Sel. Top. Quantum Electron. 22(1), 1–6 (2016).
[Crossref]

Chen, T.

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[Crossref]

Chen, X.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Chen, Y.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Cheng, Y.-B.

Cheung, P.

V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
[Crossref]

Cheyns, D.

A. Hadipour, D. Cheyns, P. Heremans, and B. P. Rand, “Electrode considerations for the optical enhancement of organic bulk heterojunction solar cells,” Adv. Energy Mater. 1(5), 930–935 (2011).
[Crossref]

Chien, F. C.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref]

Choy, W. C. H.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Christopher, G. K.

Y. Hsiangkuo, G. K. Christopher, H. Hanjun, M. W. Christy, A. G. Gerald, and V.-D. Tuan, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref]

Christy, M. W.

Y. Hsiangkuo, G. K. Christopher, H. Hanjun, M. W. Christy, A. G. Gerald, and V.-D. Tuan, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref]

Chu, B.

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

Cui, Y.

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

Dastoor, P.

de Boer, B.

A. Hadipour, B. de Boer, and P. W. M. Blom, “Device operation of organic tandem solar cells,” Org. Electron. 9(5), 617–624 (2008).
[Crossref]

Deng, X.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Denk, P.

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006).
[Crossref]

Dhawan, A.

Ding, B.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Diukman, I.

Dou, L.

V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
[Crossref]

Duché, D.

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

Efron, U.

Erasmus, R. M.

F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
[Crossref]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref]

Feng, H.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Futamata, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[Crossref]

Gandhi, K. K.

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

Gao, B.

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

Gao, J.

C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
[Crossref]

Gao, K.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Garcia-Leis, A.

A. Garcia-Leis, J. V. Garcia-Ramos, and S. Sanchez-Cortes, “Silver nanostars with high SERS performance,” J. Phys. Chem. C 117(15), 7791–7795 (2013).
[Crossref]

Garcia-Ramos, J. V.

A. Garcia-Leis, J. V. Garcia-Ramos, and S. Sanchez-Cortes, “Silver nanostars with high SERS performance,” J. Phys. Chem. C 117(15), 7791–7795 (2013).
[Crossref]

Gerald, A. G.

Y. Hsiangkuo, G. K. Christopher, H. Hanjun, M. W. Christy, A. G. Gerald, and V.-D. Tuan, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref]

Glatthaar, M.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1–2), 298–300 (2005).
[Crossref]

Gourgon, C.

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

Gu, M.

B. Cai, Y. Peng, Y.-B. Cheng, and M. Gu, “4-Fold Photocurrent Enhancement in Ultrathin Nanoplasmonic Perovskite Solar Cells,” Opt. Express 23(24), A1700–A1706 (2015).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

Günes, S.

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref]

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref]

Guo, W.

C. Liu, C. Zhao, X. Zhang, W. Guo, K. Liu, and S. Ruan, “Unique Gold Nanorods Embedded Active Layer Enabling Strong Plasmonic Effect to Improve the Performance of Polymer Photovoltaic Devices,” J. Phys. Chem. C 120(11), 6198–6205 (2016).
[Crossref]

Guo, X.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Hadipour, A.

A. Hadipour, D. Cheyns, P. Heremans, and B. P. Rand, “Electrode considerations for the optical enhancement of organic bulk heterojunction solar cells,” Adv. Energy Mater. 1(5), 930–935 (2011).
[Crossref]

A. Hadipour, B. de Boer, and P. W. M. Blom, “Device operation of organic tandem solar cells,” Org. Electron. 9(5), 617–624 (2008).
[Crossref]

Halas, N. J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref]

Hanjun, H.

Y. Hsiangkuo, G. K. Christopher, H. Hanjun, M. W. Christy, A. G. Gerald, and V.-D. Tuan, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref]

He, C.

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

Heeger, A. J.

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006).
[Crossref]

Hendriks, K. H.

K. H. Hendriks, W. Li, M. M. Wienk, and R. A. J. Janssen, “Small-bandgap semiconducting polymers with high near-infrared photoresponse,” J. Am. Chem. Soc. 136(34), 12130–12136 (2014).
[Crossref]

Heremans, P.

A. Hadipour, D. Cheyns, P. Heremans, and B. P. Rand, “Electrode considerations for the optical enhancement of organic bulk heterojunction solar cells,” Adv. Energy Mater. 1(5), 930–935 (2011).
[Crossref]

Herrmann, L. O.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Hinsch, A.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1–2), 298–300 (2005).
[Crossref]

Hong, Z.

C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
[Crossref]

Hou, J.

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells,” J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
[Crossref]

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Hsiangkuo, Y.

Y. Hsiangkuo, G. K. Christopher, H. Hanjun, M. W. Christy, A. G. Gerald, and V.-D. Tuan, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref]

Hsiao, Y. S.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref]

Hsu, C. S.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref]

Huang, J.-J.

Huang, M. H.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref]

Huang, S.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Huang, Y.

Huo, L.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Ishikawa, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[Crossref]

Jankovic, V.

V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
[Crossref]

Janssen, R. A. J.

K. H. Hendriks, W. Li, M. M. Wienk, and R. A. J. Janssen, “Small-bandgap semiconducting polymers with high near-infrared photoresponse,” J. Am. Chem. Soc. 136(34), 12130–12136 (2014).
[Crossref]

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[Crossref]

Jen, A. K. Y.

L. Zuo, J. Yu, X. Shi, F. Lin, W. Tang, and A. K. Y. Jen, “High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration,” Adv. Mater. 29(34), 1702547 (2017).
[Crossref]

Jeong, D. S.

Jia, B.

B. Cai, X. Li, Y. Zhang, and B. Jia, “Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles,” Nanotechnology 27(19), 195401 (2016).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

Jiang, R.

S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, and F. Yan, “Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement,” Energy Environ. Sci. 9(3), 898–905 (2016).
[Crossref]

Juodkazis, S.

Kan, B.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Kasera, S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Katz, E. A.

Kawawaki, T.

T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, “Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes,” ACS Nano 9(4), 4165–4172 (2015).
[Crossref]

Kemerink, M.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[Crossref]

Kiang, Y.-W.

Kim, I.

I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express 21(S4), A669–A676 (2013).
[Crossref]

I. Kim, D. Seok Jeong, T. Seong Lee, W. Seong Lee, and K. S. Lee, “Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer,” J. Appl. Phys. 111(10), 103121 (2012).
[Crossref]

Kim, R. S.

Kim, W. M.

Koppe, M.

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006).
[Crossref]

Kubo, T.

T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, “Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes,” ACS Nano 9(4), 4165–4172 (2015).
[Crossref]

Kumar, K.

Kumawat, U. K.

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref]

Kuo, C. H.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref]

Laskarakis, A.

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref]

Le, K. Q.

K. Q. Le, J. Bai, and P. Y. Chen, “Dielectric antireflection fiber arrays for absorption enhancement in thin-film organic tandem solar cells,” IEEE J. Sel. Top. Quantum Electron. 22(1), 1–6 (2016).
[Crossref]

Le Rouzo, J.

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

Lee, J.-Y.

Lee, K. S.

I. Kim, D. Seok Jeong, T. Seong Lee, W. Seong Lee, and K. S. Lee, “Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer,” J. Appl. Phys. 111(10), 103121 (2012).
[Crossref]

Lee, K.-S.

Lee, T. S.

Lee, W. S.

Lewer, P.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1–2), 298–300 (2005).
[Crossref]

Li, L.

Li, M.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Li, Q.

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[Crossref]

Li, S.

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells,” J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
[Crossref]

Li, W.

K. H. Hendriks, W. Li, M. M. Wienk, and R. A. J. Janssen, “Small-bandgap semiconducting polymers with high near-infrared photoresponse,” J. Am. Chem. Soc. 136(34), 12130–12136 (2014).
[Crossref]

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

Li, X.

B. Cai, X. Li, Y. Zhang, and B. Jia, “Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles,” Nanotechnology 27(19), 195401 (2016).
[Crossref]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Li, Y.

X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, “Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers,” Adv. Mater. 30(3), 1703973 (2018).
[Crossref]

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Adv. Mater. 20(15), 2952–2958 (2008).
[Crossref]

Li, Z.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Liang, H.

H. Liang, W. Wang, Y. Huang, S. Zhang, H. Wei, and H. Xu, “Controlled synthesis of uniform silver nanospheres,” J. Phys. Chem. C 114(16), 7427–7431 (2010).
[Crossref]

Liang, Z.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Lidorikis, E.

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

Lin, F.

L. Zuo, J. Yu, X. Shi, F. Lin, W. Tang, and A. K. Y. Jen, “High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration,” Adv. Mater. 29(34), 1702547 (2017).
[Crossref]

Liu, C.

C. Liu, C. Zhao, X. Zhang, W. Guo, K. Liu, and S. Ruan, “Unique Gold Nanorods Embedded Active Layer Enabling Strong Plasmonic Effect to Improve the Performance of Polymer Photovoltaic Devices,” J. Phys. Chem. C 120(11), 6198–6205 (2016).
[Crossref]

Liu, F.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express 20(S6), A898–A907 (2012).
[Crossref]

D. Qu, F. Liu, Y. Huang, W. Xie, and Q. Xu, “Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles,” Opt. Express 19(24), 24795–24803 (2011).
[Crossref]

Liu, K.

C. Liu, C. Zhao, X. Zhang, W. Guo, K. Liu, and S. Ruan, “Unique Gold Nanorods Embedded Active Layer Enabling Strong Plasmonic Effect to Improve the Performance of Polymer Photovoltaic Devices,” J. Phys. Chem. C 120(11), 6198–6205 (2016).
[Crossref]

Liu, S.

S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, and F. Yan, “Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement,” Energy Environ. Sci. 9(3), 898–905 (2016).
[Crossref]

Liu, Y.

V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
[Crossref]

Logothetidis, S.

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

Luo, Q.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Luther, J.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1–2), 298–300 (2005).
[Crossref]

Ma, W.

X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, “Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers,” Adv. Mater. 30(3), 1703973 (2018).
[Crossref]

Ma, Y.

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

Maruyama, Y.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[Crossref]

Masclaux, C.

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

Mbuso, M.

F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
[Crossref]

Meng, W.

Mital, R.

Moloto, N.

F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
[Crossref]

Mühlbacher, D.

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006).
[Crossref]

Nakazaki, J.

T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, “Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes,” ACS Nano 9(4), 4165–4172 (2015).
[Crossref]

Neugebauer, H.

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref]

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconducting Devices (John Wiley and Sons, 2007).

Ni, W.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Niggemann, M.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1–2), 298–300 (2005).
[Crossref]

Nordlander, P.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref]

Ohya, K.

C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
[Crossref]

Orenstein, M.

Otieno, F.

F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
[Crossref]

Ouyang, Z.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

Park, G.

Park, J. H.

Patsalas, P.

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

Pei, Q.

Peng, J.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Peng, Q.

X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, “Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers,” Adv. Mater. 30(3), 1703973 (2018).
[Crossref]

Peng, X.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Peng, Y.

Peumans, P.

Poh, C.-H.

Qin, Y.

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

Qu, D.

Quandt, A.

F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
[Crossref]

Rand, B. P.

A. Hadipour, D. Cheyns, P. Heremans, and B. P. Rand, “Electrode considerations for the optical enhancement of organic bulk heterojunction solar cells,” Adv. Energy Mater. 1(5), 930–935 (2011).
[Crossref]

Riede, M.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1–2), 298–300 (2005).
[Crossref]

Rosa, L.

Ruan, S.

C. Liu, C. Zhao, X. Zhang, W. Guo, K. Liu, and S. Ruan, “Unique Gold Nanorods Embedded Active Layer Enabling Strong Plasmonic Effect to Improve the Performance of Polymer Photovoltaic Devices,” J. Phys. Chem. C 120(11), 6198–6205 (2016).
[Crossref]

Saito, K.

T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, “Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes,” ACS Nano 9(4), 4165–4172 (2015).
[Crossref]

Sanchez-Cortes, S.

A. Garcia-Leis, J. V. Garcia-Ramos, and S. Sanchez-Cortes, “Silver nanostars with high SERS performance,” J. Phys. Chem. C 117(15), 7791–7795 (2013).
[Crossref]

Sariciftci, N. S.

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref]

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref]

Scharber, M. C.

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006).
[Crossref]

Scherman, O. A.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Segawa, H.

T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, “Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes,” ACS Nano 9(4), 4165–4172 (2015).
[Crossref]

Seok Jeong, D.

I. Kim, D. Seok Jeong, T. Seong Lee, W. Seong Lee, and K. S. Lee, “Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer,” J. Appl. Phys. 111(10), 103121 (2012).
[Crossref]

Seong Lee, T.

I. Kim, D. Seok Jeong, T. Seong Lee, W. Seong Lee, and K. S. Lee, “Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer,” J. Appl. Phys. 111(10), 103121 (2012).
[Crossref]

Seong Lee, W.

I. Kim, D. Seok Jeong, T. Seong Lee, W. Seong Lee, and K. S. Lee, “Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer,” J. Appl. Phys. 111(10), 103121 (2012).
[Crossref]

Sha, W. E. I.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Shen, H.

Shi, X.

L. Zuo, J. Yu, X. Shi, F. Lin, W. Tang, and A. K. Y. Jen, “High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration,” Adv. Mater. 29(34), 1702547 (2017).
[Crossref]

Shi, Z.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

Shumbula, N. P.

F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
[Crossref]

Silva, S. R. P.

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref]

Stokes, N.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

Su, Z.

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconducting Devices (John Wiley and Sons, 2007).

Taff, Y.

Tang, W.

L. Zuo, J. Yu, X. Shi, F. Lin, W. Tang, and A. K. Y. Jen, “High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration,” Adv. Mater. 29(34), 1702547 (2017).
[Crossref]

Tatsuma, T.

T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, “Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes,” ACS Nano 9(4), 4165–4172 (2015).
[Crossref]

Tessler, N.

Theodosi, A.

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

Tsai, F.-J.

Tserkezis, C.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Tuan, V.-D.

Y. Hsiangkuo, G. K. Christopher, H. Hanjun, M. W. Christy, A. G. Gerald, and V.-D. Tuan, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref]

Tzabari, L.

Valev, V. K.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Vangelidis, I.

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

Waldauf, C.

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006).
[Crossref]

Wamwangi, D.

F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
[Crossref]

Wan, X.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Wang, H.

T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, “Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes,” ACS Nano 9(4), 4165–4172 (2015).
[Crossref]

Wang, J.

S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, and F. Yan, “Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement,” Energy Environ. Sci. 9(3), 898–905 (2016).
[Crossref]

Wang, J.-Y.

Wang, K. L.

Wang, L.

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

Wang, W.

H. Liang, W. Wang, Y. Huang, S. Zhang, H. Wei, and H. Xu, “Controlled synthesis of uniform silver nanospheres,” J. Phys. Chem. C 114(16), 7427–7431 (2010).
[Crossref]

Wang, Y.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Wang, Z.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Wei, H.

H. Liang, W. Wang, Y. Huang, S. Zhang, H. Wei, and H. Xu, “Controlled synthesis of uniform silver nanospheres,” J. Phys. Chem. C 114(16), 7427–7431 (2010).
[Crossref]

Wienk, M. M.

K. H. Hendriks, W. Li, M. M. Wienk, and R. A. J. Janssen, “Small-bandgap semiconducting polymers with high near-infrared photoresponse,” J. Am. Chem. Soc. 136(34), 12130–12136 (2014).
[Crossref]

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[Crossref]

Wong, K. Y.

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[Crossref]

Wu, J. L.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref]

Xia, R.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Xiao, X.

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[Crossref]

Xie, F.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Xie, W.

Xu, B.

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

Xu, H.

H. Liang, W. Wang, Y. Huang, S. Zhang, H. Wei, and H. Xu, “Controlled synthesis of uniform silver nanospheres,” J. Phys. Chem. C 114(16), 7427–7431 (2010).
[Crossref]

Xu, Q.

Xu, X.

X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, “Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers,” Adv. Mater. 30(3), 1703973 (2018).
[Crossref]

Xue, M.

Yan, F.

S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, and F. Yan, “Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement,” Energy Environ. Sci. 9(3), 898–905 (2016).
[Crossref]

Yang, B.

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells,” J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
[Crossref]

Yang, C. C.

Yang, H.

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

Yang, X.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[Crossref]

Yang, Y.

C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
[Crossref]

V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
[Crossref]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

Yao, H.

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells,” J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
[Crossref]

Yeng, Y.

V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
[Crossref]

Yip, H. L.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Yoshimura, K.

C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
[Crossref]

You, J.

C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
[Crossref]

V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
[Crossref]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

You, P.

S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, and F. Yan, “Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement,” Energy Environ. Sci. 9(3), 898–905 (2016).
[Crossref]

Yu, J.

L. Zuo, J. Yu, X. Shi, F. Lin, W. Tang, and A. K. Y. Jen, “High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration,” Adv. Mater. 29(34), 1702547 (2017).
[Crossref]

Yu, T.

X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, “Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers,” Adv. Mater. 30(3), 1703973 (2018).
[Crossref]

Yu, Z.

Zhang, C.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Zhang, G.

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

Zhang, H.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Zhang, Q.

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Zhang, S.

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells,” J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
[Crossref]

H. Liang, W. Wang, Y. Huang, S. Zhang, H. Wei, and H. Xu, “Controlled synthesis of uniform silver nanospheres,” J. Phys. Chem. C 114(16), 7427–7431 (2010).
[Crossref]

Zhang, X.

C. Liu, C. Zhao, X. Zhang, W. Guo, K. Liu, and S. Ruan, “Unique Gold Nanorods Embedded Active Layer Enabling Strong Plasmonic Effect to Improve the Performance of Polymer Photovoltaic Devices,” J. Phys. Chem. C 120(11), 6198–6205 (2016).
[Crossref]

Zhang, Y.

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells,” J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
[Crossref]

B. Cai, X. Li, Y. Zhang, and B. Jia, “Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles,” Nanotechnology 27(19), 195401 (2016).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

Zhao, C.

C. Liu, C. Zhao, X. Zhang, W. Guo, K. Liu, and S. Ruan, “Unique Gold Nanorods Embedded Active Layer Enabling Strong Plasmonic Effect to Improve the Performance of Polymer Photovoltaic Devices,” J. Phys. Chem. C 120(11), 6198–6205 (2016).
[Crossref]

Zhao, H.

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

Zhao, W.

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells,” J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
[Crossref]

Zhu, H.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Zhu, J.

Zhu, X.

S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, and F. Yan, “Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement,” Energy Environ. Sci. 9(3), 898–905 (2016).
[Crossref]

Zimmermann, B.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1–2), 298–300 (2005).
[Crossref]

Zou, Y.

Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Adv. Mater. 20(15), 2952–2958 (2008).
[Crossref]

Zuo, L.

L. Zuo, J. Yu, X. Shi, F. Lin, W. Tang, and A. K. Y. Jen, “High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration,” Adv. Mater. 29(34), 1702547 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, and W. Li, “Surface plasmon enhanced organic solar cells with a MoO3 buffer layer,” ACS Appl. Mater. Interfaces 5(24), 12847–12853 (2013).
[Crossref]

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

ACS Nano (3)

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref]

V. Janković, Y. Yeng, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, “Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics,” ACS Nano 7(5), 3815–3822 (2013).
[Crossref]

T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, “Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes,” ACS Nano 9(4), 4165–4172 (2015).
[Crossref]

ACS Photonics (1)

I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S. R. P. Silva, and E. Lidorikis, “Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries,” ACS Photonics 5(4), 1440–1452 (2018).
[Crossref]

Adv. Energy Mater. (1)

A. Hadipour, D. Cheyns, P. Heremans, and B. P. Rand, “Electrode considerations for the optical enhancement of organic bulk heterojunction solar cells,” Adv. Energy Mater. 1(5), 930–935 (2011).
[Crossref]

Adv. Mater. (6)

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006).
[Crossref]

C. C. Chen, W. H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26(32), 5670–5677 (2014).
[Crossref]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[Crossref]

L. Zuo, J. Yu, X. Shi, F. Lin, W. Tang, and A. K. Y. Jen, “High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration,” Adv. Mater. 29(34), 1702547 (2017).
[Crossref]

Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Adv. Mater. 20(15), 2952–2958 (2008).
[Crossref]

X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, “Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers,” Adv. Mater. 30(3), 1703973 (2018).
[Crossref]

AIP Adv. (1)

F. Otieno, N. P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. M. Erasmus, A. Quandt, and D. Wamwangi, “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv. 7(8), 085302 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

Chem. Rev. (2)

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref]

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref]

Energy Environ. Sci. (2)

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[Crossref]

S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, and F. Yan, “Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement,” Energy Environ. Sci. 9(3), 898–905 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Q. Le, J. Bai, and P. Y. Chen, “Dielectric antireflection fiber arrays for absorption enhancement in thin-film organic tandem solar cells,” IEEE J. Sel. Top. Quantum Electron. 22(1), 1–6 (2016).
[Crossref]

J. Am. Chem. Soc. (3)

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells,” J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
[Crossref]

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell,” J. Am. Chem. Soc. 139(21), 7302–7309 (2017).
[Crossref]

K. H. Hendriks, W. Li, M. M. Wienk, and R. A. J. Janssen, “Small-bandgap semiconducting polymers with high near-infrared photoresponse,” J. Am. Chem. Soc. 136(34), 12130–12136 (2014).
[Crossref]

J. Appl. Phys. (2)

I. Kim, D. Seok Jeong, T. Seong Lee, W. Seong Lee, and K. S. Lee, “Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer,” J. Appl. Phys. 111(10), 103121 (2012).
[Crossref]

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[Crossref]

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[Crossref]

J. Phys. Chem. C (3)

H. Liang, W. Wang, Y. Huang, S. Zhang, H. Wei, and H. Xu, “Controlled synthesis of uniform silver nanospheres,” J. Phys. Chem. C 114(16), 7427–7431 (2010).
[Crossref]

A. Garcia-Leis, J. V. Garcia-Ramos, and S. Sanchez-Cortes, “Silver nanostars with high SERS performance,” J. Phys. Chem. C 117(15), 7791–7795 (2013).
[Crossref]

C. Liu, C. Zhao, X. Zhang, W. Guo, K. Liu, and S. Ruan, “Unique Gold Nanorods Embedded Active Layer Enabling Strong Plasmonic Effect to Improve the Performance of Polymer Photovoltaic Devices,” J. Phys. Chem. C 120(11), 6198–6205 (2016).
[Crossref]

Nano Lett. (1)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref]

Nanotechnology (2)

Y. Hsiangkuo, G. K. Christopher, H. Hanjun, M. W. Christy, A. G. Gerald, and V.-D. Tuan, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref]

B. Cai, X. Li, Y. Zhang, and B. Jia, “Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles,” Nanotechnology 27(19), 195401 (2016).
[Crossref]

Nat. Commun. (1)

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Nat. Photonics (1)

M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. L. Yip, X. Peng, Y. Cao, and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nat. Photonics 11(2), 85–90 (2017).
[Crossref]

Opt. Express (8)

B. Cai, Y. Peng, Y.-B. Cheng, and M. Gu, “4-Fold Photocurrent Enhancement in Ultrathin Nanoplasmonic Perovskite Solar Cells,” Opt. Express 23(24), A1700–A1706 (2015).
[Crossref]

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
[Crossref]

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(S2), A207–A220 (2010).
[Crossref]

I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19(S1), A64–A71 (2011).
[Crossref]

D. Qu, F. Liu, Y. Huang, W. Xie, and Q. Xu, “Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles,” Opt. Express 19(24), 24795–24803 (2011).
[Crossref]

R. S. Kim, J. Zhu, J. H. Park, L. Li, Z. Yu, H. Shen, M. Xue, K. L. Wang, G. Park, T. J. Anderson, and Q. Pei, “E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model,” Opt. Express 20(12), 12649–12657 (2012).
[Crossref]

Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express 20(S6), A898–A907 (2012).
[Crossref]

I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express 21(S4), A669–A676 (2013).
[Crossref]

Opt. Mater. Express (1)

Org. Electron. (1)

A. Hadipour, B. de Boer, and P. W. M. Blom, “Device operation of organic tandem solar cells,” Org. Electron. 9(5), 617–624 (2008).
[Crossref]

Springer Ser. Opt. Sci. (1)

M. I. Alonso and M. Campoy-Quiles, “Organic solar cells,” Springer Ser. Opt. Sci. 212(3), 439–461 (2019).
[Crossref]

Thin Solid Films (1)

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1–2), 298–300 (2005).
[Crossref]

Other (1)

S. M. Sze and K. K. Ng, Physics of Semiconducting Devices (John Wiley and Sons, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematics of the simulated double junction tandem OSCs: (a) OSC without nanoparticles — reference tandem OSC, (b) OSC with nanospheres over the top surface only, (c) OSC with nanospheres in the bottom subcell only, (d) OSC with nanostars in the bottom subcell only, (e) OSC with nanospheres over the top surface and nanostars inside the bottom subcell, and (f) Real (n) and complex (k) refractive indices of the active layer materials PTB7:PC70BM and LBG:PC60BM (Inset: Ag nanosphere with radius RT/B and Ag nanostar with core radius rB and prong length LB, where subscripts T and B are for the top surface of the OSC and the bottom subcell, respectively). The low bandgap (LBG) material taken is PDPPSDTPS. The top and the bottom subcells of the tandem OSCs are also marked in (c).
Fig. 2.
Fig. 2. (a) Short circuit current density (JSC) generated in the top and bottom subcells of a tandem OSC as a function of the bottom subcell thickness (tbottom) with a fixed top subcell active layer thickness of 170 nm, when no nanoparticles are not present in the tandem OSC (referred to as the reference tandem OSC), (b) Results of FDTD simulations showing absorption spectra as a function of wavelength for a reference tandem OSC, where the absorption in the top subcell is shown by the solid black line and in the bottom subcell by a dashed black line. PTB7:PC70BM (170 nm thickness) and PDPPSDTPS:PC60BM (80 nm thickness) are the active layer materials in the top and the bottom subcells, respectively. The overall absorption spectrum of the reference tandem OSC (shown by a dashed maroon line) is the sum of the spectra for the absorptions in the top subcell and bottom subcell active layers. The thicknesses of the different layers of the OSC were taken to be: ITO layer – 50 nm, TiO2 layer – 50 nm, MoO3 layer – 50 nm, and Ag back electrode – 100 nm.
Fig. 3.
Fig. 3. Short circuit current density (JSC) of the top subcell containing PTB7:PC70BM as the active layer and the bottom subcell containing PDPPSDTPS:PC60BM as the active layer of the double junction tandem OSC containing Ag nanospheres over the top surface as a function of nanosphere radius (RT) and nanosphere periodicity (PT). The thicknesses of the different layers of the OSC were taken to be: ITO layer – 50 nm, PTB7:PC70BM layer – 170 nm, PDPPSDTPS:PC60BM (i.e. LBG:PC60BM) layer – 80 nm, TiO2 layer – 50 nm, MoO3 layer – 50 nm, and Ag back electrode – 100 nm.
Fig. 4.
Fig. 4. (a) Comparison of absorption in each subcell (in the top subcell and in the bottom subcell) of double junction tandem OSCs without (black) and with Ag nanospheres (red) over the top surface. Schematics of the tandem OSCs: (b) without Ag nanospheres (OSC A) and (c) with Ag nanospheres over the top surface (OSC B) of the OSC. The thicknesses of the different layers of the OSC were taken to be: ITO layer – 50 nm, PTB7:PC70BM layer – 170 nm, PDPPSDTPS:PC60BM (i.e. LBG:PC60BM) layer – 80 nm, TiO2 layer – 50 nm, MoO3 layer – 50 nm, and Ag back electrode – 100 nm. The dimensions of the top Ag nanospheres were taken to be: RT = 90 nm and PT = 500 nm.
Fig. 5.
Fig. 5. Short circuit current density (JSC) of each subcell (the top subcell and the bottom subcell) of a double junction tandem OSCs for OSCs containing Ag nanospheres – (a) and (b) and Ag nanostars – (c) and (d) within the bottom subcell, as a function of nanosphere radius (RB) and nanostar core radius (rB), respectively for varying periodicity (PB). The thicknesses of the different layers of the OSC were taken to be: ITO layer – 50 nm, PTB7:PC70BM layer – 170 nm, PDPPSDTPS:PC60BM (i.e. LBG:PC60BM) layer – 80 nm, TiO2 layer – 50 nm, MoO3 layer – 50 nm, and Ag back electrode – 100 nm.
Fig. 6.
Fig. 6. (a) Comparison of absorption in each subcell (in the top subcell and in the bottom subcell) of tandem OSCs without any nanoparticles in the bottom subcell (in black color), with Ag nanospheres in the bottom subcell (in green color), and with Ag nanostars in the bottom subcell (in red color). Schematics of the tandem OSCs (b) without Ag nanospheres (OSC A), (c) with Ag nanospheres inside the bottom subcell (OSC C), and (d) with Ag nanostars inside the bottom subcell (OSC D). The thicknesses of the different layers of the OSC were taken to be: ITO layer – 50 nm, PTB7:PC70BM layer – 170 nm, PDPPSDTPS:PC60BM (i.e. LBG:PC60BM) layer – 80 nm, TiO2 layer – 50 nm, MoO3 layer – 50 nm, and Ag back electrode – 100 nm. Bottom Ag nanosphere dimensions were taken to be: RB = 30 nm, and PB = 100 nm. Bottom Ag nanostar dimensions were taken to be: rB = 30 nm, LB = 20 nm, and PB = 250 nm.
Fig. 7.
Fig. 7. The arrangement of (a) Ag nanospheres in the bottom subcell with respect to Ag nanospheres over the top surface of the OSCs, and (b) Ag nanostars in the bottom subcell with respect to Ag nanospheres over the top surface of the OSCs. The FDTD simulation region is periodic over 500 nm, in X and Y directions. The scales along the X and the Y directions are different for both (a) and (b).
Fig. 8.
Fig. 8. (a) Comparison of absorption in each subcell (in the top subcell and in the bottom subcell) of tandem OSCs without any nanoparticles in the bottom subcell (in black color), with Ag nanospheres over the OSC top surface and Ag nanospheres in the bottom subcell (in green color), and with Ag nanospheres over the OSC top surface and Ag nanostars in the bottom subcell (in red color). Schematics of the tandem OSCs (b) without Ag nanospheres (OSC A), (c) with Ag nanospheres over the top surface and Ag nanospheres in the bottom subcell (OSC E), and (d) with Ag nanospheres over the top surface and Ag nanostars in the bottom subcell (OSC F). The thicknesses of the different layers of the OSC were taken to be: ITO layer – 50 nm, PTB7:PC70BM layer – 170 nm, PDPPSDTPS:PC60BM (i.e. LBG:PC60BM) layer – 80 nm, TiO2 layer – 50 nm, MoO3 layer – 50 nm, and Ag back electrode – 100 nm. Top Ag nanosphere dimensions were taken to be: RT = 90 nm, and PT = 500 nm. Bottom Ag nanosphere dimensions were taken to be: RB = 30 nm, and PB = 100 nm. Bottom Ag nanostar dimensions were taken to be: rB = 30 nm, LB = 20 nm, and PB = 250 nm.
Fig. 9.
Fig. 9. (a) Total absorption – sum of absorption in top and bottom subcells – of the tandem OSC containing optimized nanospheres and nanostars (OSC F) (red), and the reference tandem OSC (OSC A) (black); (b) Absorption enhancement of the tandem OSC containing optimized nanospheres and nanostars (OSC F) over that of the reference tandem OSC (OSC A). The thicknesses of the different layers of the OSC were taken to be: ITO layer – 50 nm, PTB7:PC70BM layer – 170 nm, PDPPSDTPS:PC60BM (i.e. LBG:PC60BM) layer– 80 nm, TiO2 layer – 50 nm, MoO3 layer – 50 nm, and Ag back electrode – 100 nm. Top Ag nanosphere dimensions were taken to be: RT = 90 nm, and PT = 500 nm. Bottom Ag nanostar dimensions were taken to be: rB = 30 nm, LB = 20 nm, and PB = 250 nm.
Fig. 10.
Fig. 10. Normalized spatial distribution of the electric field enhancement inside the double junction tandem OSCs. For a wavelength of 520 nm - (a) Reference tandem OSC; (b) OSC with Ag nanospheres over the top surface; (c) OSC having Ag nanospheres over the top surface and Ag nanostars in the bottom subcell. For a wavelength of 730 nm - (d) Reference tandem OSC; (e) OSC with Ag nanospheres over the top surface; (f) OSC having Ag nanospheres over the top surface and Ag nanostars in the bottom subcell. For a wavelength of 920 nm - (g) Reference tandem OSC; (h) OSC with Ag nanostars in the bottom subcell; (i) OSC having Ag nanosphere over the top surface and Ag nanostars in the bottom subcell. The thicknesses of the different layers of the OSC were taken to be: ITO layer – 50 nm, PTB7:PC70BM layer – 170 nm, PDPPSDTPS:PC60BM (i.e. LBG:PC60BM) layer– 80 nm, TiO2 layer – 50 nm, MoO3 layer – 50 nm, and Ag back electrode – 100 nm. Top Ag nanosphere dimensions were taken to be: RT = 90 nm, and PT = 500 nm. Bottom Ag nanostar dimensions were taken to be: rB = 30 nm, LB = 20 nm, and PB = 250 nm.
Fig. 11.
Fig. 11. J-V characteristics of double junction tandem OSCs containing Ag nanoparticles in the different regions of the OSCs, in comparison with the reference tandem OSC. The thicknesses of the different layers of the OSC were taken to be: ITO layer – 50 nm, PTB7:PC70BM layer – 170 nm, PDPPSDTPS:PC60BM (i.e. LBG:PC60BM) layer – 80 nm, TiO2 layer – 50 nm, MoO3 layer – 50 nm, and Ag back electrode – 100 nm. Top Ag nanosphere dimensions were taken to be: RT = 90 nm, and PT = 500 nm. Bottom Ag nanosphere dimensions were taken to be: RB = 30 nm, and PB = 100 nm. Bottom Ag nanostar dimensions were taken to be: rB = 30 nm, LB = 20 nm, and PB = 250 nm.
Fig. 12.
Fig. 12. Short circuit current density (JSC) generated in the top and bottom subcells of a tandem OSC:(a) as a function of the bottom subcell thickness (tbottom) with a fixed top subcell active layer thickness of 170 nm, (b) as a function of the top subcell thickness (ttop) with a fixed bottom subcell active layer thickness of 110 nm, and (c) as a function of the bottom subcell thickness (tbottom) with a fixed top subcell active layer thickness of 170 nm.
Fig. 13.
Fig. 13. (a) Comparison of absorption in each subcell (in the top subcell and in the bottom subcell) of tandem OSCs – with Ag nanospheres over the OSC top surface and Ag nanostars in the bottom subcell (in black color), with Ag nanospheres over the OSC top surface and Ag nanostars in the intermediate layer (TiO2) extending into the bottom subcell active layer (in green color), with Ag nanospheres in the top buffer layer (TiO2) extending into the top subcell active layer and Ag nanostars in the intermediate layer (TiO2) extending into the bottom subcell active layer (in red color), and with Ag nanospheres in the top buffer layer (TiO2) extending into the top subcell active layer and Ag nanostars in the bottom subcell (in purple color). Schematics of the tandem OSCs (b) with Ag nanospheres over the OSC top surface and Ag nanostars in the bottom subcell (OSC F), (c) with Ag nanospheres over the OSC top surface and Ag nanostars in the intermediate layer (TiO2) extending into the bottom subcell active layer (OSC H), (d) with Ag nanospheres in the top buffer layer (TiO2) extending into the top subcell active layer and Ag nanostars in the intermediate layer (TiO2) extending into the bottom subcell active layer (OSC I) and (e) with Ag nanospheres in the top buffer layer (TiO2) extending into the top subcell active layer and Ag nanostars in the bottom subcell (OSC J). The thicknesses of the different layers of the OSC were taken to be: ITO layer – 50 nm, PTB7:PC70BM layer – 170 nm, PDPPSDTPS:PC60BM (i.e. LBG:PC60BM) layer – 80 nm, TiO2 layer – 50 nm, MoO3 layer – 50 nm, and Ag back electrode – 100 nm. Top Ag nanosphere dimensions were taken to be: RT = 90 nm, and PT = 500 nm. Bottom Ag nanostar dimensions were taken to be: rB = 30 nm, LB = 20 nm, and PB = 250 nm.

Tables (2)

Tables Icon

Table 1. Photovoltaic characteristics of the tandem OSCs containing plasmonic nanospheres and nanostars

Tables Icon

Table 2. JSC of the top and bottom subcell for different positions of nanoparticles

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J S C = e λ h c A ( λ ) I A M 1.5 ( λ ) d λ
V O C = 1 e ( | E H O M O d o n o r | | E L U M O a c c e p t o r | ) 0.3
η = F F × V O C × J S C P i n
V = k T e ln ( J + J S C J 0 + 1 )
η = 0.0161 × F F × J S C

Metrics