Abstract

We report III-nitride vertical-cavity surface-emitting lasers (VCSELs) with buried tunnel junction (BTJ) contacts. To form the BTJs, GaN TJ contacts were etched away outside the aperture followed by n-GaN regrowth for current spreading. Under pulsed operation, a BTJ VCSEL with a 14 µm diameter aperture showed a lasing wavelength of 430 nm, a threshold current of ∼20 mA (12 kA/cm2), and a maximum output power of 2.8 mW. Under CW operation, an 8 µm aperture VCSEL showed a differential efficiency of 11% and a peak output power of ∼0.72 mW.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of blue semipolar (202¯1¯) GaN-based vertical-cavity surface-emitting lasers

Jared A. Kearns, Joonho Back, Daniel A. Cohen, Steven P. DenBaars, and Shuji Nakamura
Opt. Express 27(17) 23707-23713 (2019)

Demonstration of a III-nitride edge-emitting laser diode utilizing a GaN tunnel junction contact

Benjamin P. Yonkee, Erin C. Young, Changmin Lee, John T. Leonard, Steven P. DenBaars, James S. Speck, and Shuji Nakamura
Opt. Express 24(7) 7816-7822 (2016)

Single-Mode Monolithic GaSb Vertical-Cavity Surface-Emitting Laser

Dorian Sanchez, Laurent Cerutti, and Eric Tournié
Opt. Express 20(14) 15540-15546 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley & Sons, Inc., 2012).
  2. F. Koyama, “Advances and new functions of VCSEL photonics,” Opt. Rev. 21(6), 893–904 (2014).
    [Crossref]
  3. R. Michalzik, VCSELs : Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, 2013).
  4. C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
    [Crossref]
  5. C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480 (2017).
    [Crossref]
  6. Å. Haglund, E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Calciati, and M. Goano, “Progress and challenges in electrically pumped GaN-based VCSELs,” in K. Panajotov, M. Sciamanna, A. Valle, and R. Michalzik, eds. (International Society for Optics and Photonics, 2016), Vol. 9892, 98920Y.
  7. N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
    [Crossref]
  8. T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors,” Rep. Prog. Phys. 82(1), 012502 (2019).
    [Crossref]
  9. T. Hamaguchi, H. Nakajima, M. Ito, J. Mitomo, S. Satou, N. Fuutagawa, and H. Narui, “Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation,” Jpn. J. Appl. Phys. 55(12), 122101 (2016).
    [Crossref]
  10. T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
    [Crossref]
  11. J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
    [Crossref]
  12. J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
    [Crossref]
  13. T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Status Solidi 213(5), 1170–1176 (2016).
    [Crossref]
  14. M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. 9(3), 416 (2019).
    [Crossref]
  15. S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
    [Crossref]
  16. C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
    [Crossref]
  17. J. Dorsaz, H.-J. Bühlmann, J.-F. Carlin, N. Grandjean, and M. Ilegems, “Selective oxidation of AlInN layers for current confinement in III–nitride devices,” Appl. Phys. Lett. 87(7), 072102 (2005).
    [Crossref]
  18. S.-R. Jeon, M. S. Cho, M.-A. Yu, and G. M. Yang, “GaN-based light-emitting diodes using tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 8(4), 739–743 (2002).
    [Crossref]
  19. M. Malinverni, D. Martin, and N. Grandjean, “InGaN based micro light emitting diodes featuring a buried GaN tunnel junction,” Appl. Phys. Lett. 107(5), 051107 (2015).
    [Crossref]
  20. S.-R. Jeon, C. S. Oh, J.-W. Yang, G. M. Yang, and B.-S. Yoo, “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode,” Appl. Phys. Lett. 80(11), 1933–1935 (2002).
    [Crossref]
  21. G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
    [Crossref]
  22. M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
    [Crossref]
  23. C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
    [Crossref]
  24. M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
    [Crossref]
  25. D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
    [Crossref]
  26. K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
    [Crossref]
  27. A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN,” J. Electrochem. Soc. 156(1), H47 (2009).
    [Crossref]
  28. M. Hansen, L. F. Chen, S. H. Lim, S. P. DenBaars, and J. S. Speck, “Mg-rich precipitates in the p -type doping of InGaN-based laser diodes,” Appl. Phys. Lett. 80(14), 2469–2471 (2002).
    [Crossref]
  29. D. Hwang, A. J. Mughal, M. S. Wong, A. I. Alhassan, S. Nakamura, and S. P. DenBaars, “Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition,” Appl. Phys. Express 11(1), 012102 (2018).
    [Crossref]
  30. S. O. Kucheyev, J. S. Williams, and S. J. Pearton, “Ion implantation into GaN,” Mater. Sci. Eng., R 33(2-3), 51–108 (2001).
    [Crossref]
  31. G. C. Chi, F. W. Ostermayer, K. D. Cummings, and L. R. Harriott, “Ion beam damage-induced masking for photoelectrochemical etching of III-V semiconductors,” J. Appl. Phys. 60(11), 4012–4014 (1986).
    [Crossref]
  32. J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
    [Crossref]
  33. A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-Type GaN,” J. Electron. Mater. 27(4), 261–265 (1998).
    [Crossref]
  34. J. I. Pankove, H. P. Maruska, and J. E. Berkeyheiser, “Optical Absorption of GaN,” Appl. Phys. Lett. 17(5), 197–199 (1970).
    [Crossref]
  35. C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.
  36. Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
    [Crossref]

2019 (2)

T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors,” Rep. Prog. Phys. 82(1), 012502 (2019).
[Crossref]

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. 9(3), 416 (2019).
[Crossref]

2018 (5)

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

D. Hwang, A. J. Mughal, M. S. Wong, A. I. Alhassan, S. Nakamura, and S. P. DenBaars, “Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition,” Appl. Phys. Express 11(1), 012102 (2018).
[Crossref]

2017 (1)

2016 (4)

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

T. Hamaguchi, H. Nakajima, M. Ito, J. Mitomo, S. Satou, N. Fuutagawa, and H. Narui, “Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation,” Jpn. J. Appl. Phys. 55(12), 122101 (2016).
[Crossref]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Status Solidi 213(5), 1170–1176 (2016).
[Crossref]

2015 (3)

M. Malinverni, D. Martin, and N. Grandjean, “InGaN based micro light emitting diodes featuring a buried GaN tunnel junction,” Appl. Phys. Lett. 107(5), 051107 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

2014 (1)

F. Koyama, “Advances and new functions of VCSEL photonics,” Opt. Rev. 21(6), 893–904 (2014).
[Crossref]

2013 (1)

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

2012 (1)

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

2010 (1)

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

2009 (1)

A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN,” J. Electrochem. Soc. 156(1), H47 (2009).
[Crossref]

2007 (2)

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

2005 (2)

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

J. Dorsaz, H.-J. Bühlmann, J.-F. Carlin, N. Grandjean, and M. Ilegems, “Selective oxidation of AlInN layers for current confinement in III–nitride devices,” Appl. Phys. Lett. 87(7), 072102 (2005).
[Crossref]

2002 (3)

S.-R. Jeon, M. S. Cho, M.-A. Yu, and G. M. Yang, “GaN-based light-emitting diodes using tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 8(4), 739–743 (2002).
[Crossref]

S.-R. Jeon, C. S. Oh, J.-W. Yang, G. M. Yang, and B.-S. Yoo, “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode,” Appl. Phys. Lett. 80(11), 1933–1935 (2002).
[Crossref]

M. Hansen, L. F. Chen, S. H. Lim, S. P. DenBaars, and J. S. Speck, “Mg-rich precipitates in the p -type doping of InGaN-based laser diodes,” Appl. Phys. Lett. 80(14), 2469–2471 (2002).
[Crossref]

2001 (1)

S. O. Kucheyev, J. S. Williams, and S. J. Pearton, “Ion implantation into GaN,” Mater. Sci. Eng., R 33(2-3), 51–108 (2001).
[Crossref]

1998 (1)

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-Type GaN,” J. Electron. Mater. 27(4), 261–265 (1998).
[Crossref]

1996 (1)

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

1986 (1)

G. C. Chi, F. W. Ostermayer, K. D. Cummings, and L. R. Harriott, “Ion beam damage-induced masking for photoelectrochemical etching of III-V semiconductors,” J. Appl. Phys. 60(11), 4012–4014 (1986).
[Crossref]

1970 (1)

J. I. Pankove, H. P. Maruska, and J. E. Berkeyheiser, “Optical Absorption of GaN,” Appl. Phys. Lett. 17(5), 197–199 (1970).
[Crossref]

Adesida, I.

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-Type GaN,” J. Electron. Mater. 27(4), 261–265 (1998).
[Crossref]

Akagi, T.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. 9(3), 416 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Akasaki, I.

T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors,” Rep. Prog. Phys. 82(1), 012502 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

Alhassan, A. I.

D. Hwang, A. J. Mughal, M. S. Wong, A. I. Alhassan, S. Nakamura, and S. P. DenBaars, “Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition,” Appl. Phys. Express 11(1), 012102 (2018).
[Crossref]

Amann, M.-C.

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

Baydar, S.

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

Becerra, D. L.

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

Bengtsson, J.

Å. Haglund, E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Calciati, and M. Goano, “Progress and challenges in electrically pumped GaN-based VCSELs,” in K. Panajotov, M. Sciamanna, A. Valle, and R. Michalzik, eds. (International Society for Optics and Photonics, 2016), Vol. 9892, 98920Y.

Berkeyheiser, J. E.

J. I. Pankove, H. P. Maruska, and J. E. Berkeyheiser, “Optical Absorption of GaN,” Appl. Phys. Lett. 17(5), 197–199 (1970).
[Crossref]

Bohm, G.

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

Bowers, J. E.

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

Bühlmann, H.-J.

J. Dorsaz, H.-J. Bühlmann, J.-F. Carlin, N. Grandjean, and M. Ilegems, “Selective oxidation of AlInN layers for current confinement in III–nitride devices,” Appl. Phys. Lett. 87(7), 072102 (2005).
[Crossref]

Calciati, M.

Å. Haglund, E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Calciati, and M. Goano, “Progress and challenges in electrically pumped GaN-based VCSELs,” in K. Panajotov, M. Sciamanna, A. Valle, and R. Michalzik, eds. (International Society for Optics and Photonics, 2016), Vol. 9892, 98920Y.

Carlin, J.-F.

J. Dorsaz, H.-J. Bühlmann, J.-F. Carlin, N. Grandjean, and M. Ilegems, “Selective oxidation of AlInN layers for current confinement in III–nitride devices,” Appl. Phys. Lett. 87(7), 072102 (2005).
[Crossref]

Chen, L. F.

M. Hansen, L. F. Chen, S. H. Lim, S. P. DenBaars, and J. S. Speck, “Mg-rich precipitates in the p -type doping of InGaN-based laser diodes,” Appl. Phys. Lett. 80(14), 2469–2471 (2002).
[Crossref]

Chen, Q.

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-Type GaN,” J. Electron. Mater. 27(4), 261–265 (1998).
[Crossref]

Chi, G. C.

G. C. Chi, F. W. Ostermayer, K. D. Cummings, and L. R. Harriott, “Ion beam damage-induced masking for photoelectrochemical etching of III-V semiconductors,” J. Appl. Phys. 60(11), 4012–4014 (1986).
[Crossref]

Cho, M. S.

S.-R. Jeon, M. S. Cho, M.-A. Yu, and G. M. Yang, “GaN-based light-emitting diodes using tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 8(4), 739–743 (2002).
[Crossref]

Choquette, K. D.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Cohen, D. A.

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley & Sons, Inc., 2012).

Corzine, S. W.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley & Sons, Inc., 2012).

Cozzan, C.

Cummings, K. D.

G. C. Chi, F. W. Ostermayer, K. D. Cummings, and L. R. Harriott, “Ion beam damage-induced masking for photoelectrochemical etching of III-V semiconductors,” J. Appl. Phys. 60(11), 4012–4014 (1986).
[Crossref]

DenBaars, S. P.

D. Hwang, A. J. Mughal, M. S. Wong, A. I. Alhassan, S. Nakamura, and S. P. DenBaars, “Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition,” Appl. Phys. Express 11(1), 012102 (2018).
[Crossref]

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480 (2017).
[Crossref]

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN,” J. Electrochem. Soc. 156(1), H47 (2009).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

M. Hansen, L. F. Chen, S. H. Lim, S. P. DenBaars, and J. S. Speck, “Mg-rich precipitates in the p -type doping of InGaN-based laser diodes,” Appl. Phys. Lett. 80(14), 2469–2471 (2002).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.

Dorsaz, J.

J. Dorsaz, H.-J. Bühlmann, J.-F. Carlin, N. Grandjean, and M. Ilegems, “Selective oxidation of AlInN layers for current confinement in III–nitride devices,” Appl. Phys. Lett. 87(7), 072102 (2005).
[Crossref]

Farrell, R. M.

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480 (2017).
[Crossref]

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

Feezell, D.

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Feezell, D. F.

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

Forman, C. A.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.

Fujii, K.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

Fujito, K.

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

Furuta, T.

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Fuutagawa, N.

T. Hamaguchi, H. Nakajima, M. Ito, J. Mitomo, S. Satou, N. Fuutagawa, and H. Narui, “Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation,” Jpn. J. Appl. Phys. 55(12), 122101 (2016).
[Crossref]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Status Solidi 213(5), 1170–1176 (2016).
[Crossref]

Goano, M.

Å. Haglund, E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Calciati, and M. Goano, “Progress and challenges in electrically pumped GaN-based VCSELs,” in K. Panajotov, M. Sciamanna, A. Valle, and R. Michalzik, eds. (International Society for Optics and Photonics, 2016), Vol. 9892, 98920Y.

Grandjean, N.

M. Malinverni, D. Martin, and N. Grandjean, “InGaN based micro light emitting diodes featuring a buried GaN tunnel junction,” Appl. Phys. Lett. 107(5), 051107 (2015).
[Crossref]

J. Dorsaz, H.-J. Bühlmann, J.-F. Carlin, N. Grandjean, and M. Ilegems, “Selective oxidation of AlInN layers for current confinement in III–nitride devices,” Appl. Phys. Lett. 87(7), 072102 (2005).
[Crossref]

Gustavsson, J.

Å. Haglund, E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Calciati, and M. Goano, “Progress and challenges in electrically pumped GaN-based VCSELs,” in K. Panajotov, M. Sciamanna, A. Valle, and R. Michalzik, eds. (International Society for Optics and Photonics, 2016), Vol. 9892, 98920Y.

Hadley, G. R.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Haglund, Å.

Å. Haglund, E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Calciati, and M. Goano, “Progress and challenges in electrically pumped GaN-based VCSELs,” in K. Panajotov, M. Sciamanna, A. Valle, and R. Michalzik, eds. (International Society for Optics and Photonics, 2016), Vol. 9892, 98920Y.

Hamaguchi, T.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

T. Hamaguchi, H. Nakajima, M. Ito, J. Mitomo, S. Satou, N. Fuutagawa, and H. Narui, “Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation,” Jpn. J. Appl. Phys. 55(12), 122101 (2016).
[Crossref]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Status Solidi 213(5), 1170–1176 (2016).
[Crossref]

Hansen, M.

M. Hansen, L. F. Chen, S. H. Lim, S. P. DenBaars, and J. S. Speck, “Mg-rich precipitates in the p -type doping of InGaN-based laser diodes,” Appl. Phys. Lett. 80(14), 2469–2471 (2002).
[Crossref]

Hardy, M. T.

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

Harriott, L. R.

G. C. Chi, F. W. Ostermayer, K. D. Cummings, and L. R. Harriott, “Ion beam damage-induced masking for photoelectrochemical etching of III-V semiconductors,” J. Appl. Phys. 60(11), 4012–4014 (1986).
[Crossref]

Hashemi, E.

Å. Haglund, E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Calciati, and M. Goano, “Progress and challenges in electrically pumped GaN-based VCSELs,” in K. Panajotov, M. Sciamanna, A. Valle, and R. Michalzik, eds. (International Society for Optics and Photonics, 2016), Vol. 9892, 98920Y.

Hayashi, N.

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Hofmann, W.

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

Holder, C.

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Hsu, P. S.

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

Hu, E. L.

A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN,” J. Electrochem. Soc. 156(1), H47 (2009).
[Crossref]

Hwang, D.

D. Hwang, A. J. Mughal, M. S. Wong, A. I. Alhassan, S. Nakamura, and S. P. DenBaars, “Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition,” Appl. Phys. Express 11(1), 012102 (2018).
[Crossref]

Ilegems, M.

J. Dorsaz, H.-J. Bühlmann, J.-F. Carlin, N. Grandjean, and M. Ilegems, “Selective oxidation of AlInN layers for current confinement in III–nitride devices,” Appl. Phys. Lett. 87(7), 072102 (2005).
[Crossref]

Ito, M.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

T. Hamaguchi, H. Nakajima, M. Ito, J. Mitomo, S. Satou, N. Fuutagawa, and H. Narui, “Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation,” Jpn. J. Appl. Phys. 55(12), 122101 (2016).
[Crossref]

Iwaya, M.

T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors,” Rep. Prog. Phys. 82(1), 012502 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

Iwayama, S.

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Izumi, S.

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Status Solidi 213(5), 1170–1176 (2016).
[Crossref]

Jeon, S.-R.

S.-R. Jeon, M. S. Cho, M.-A. Yu, and G. M. Yang, “GaN-based light-emitting diodes using tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 8(4), 739–743 (2002).
[Crossref]

S.-R. Jeon, C. S. Oh, J.-W. Yang, G. M. Yang, and B.-S. Yoo, “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode,” Appl. Phys. Lett. 80(11), 1933–1935 (2002).
[Crossref]

Kaga, M.

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

Kamiyama, S.

T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors,” Rep. Prog. Phys. 82(1), 012502 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

Kearns, J.

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

Kearns, J. A.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.

Kelchner, K. M.

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

Khan, M. A.

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-Type GaN,” J. Electron. Mater. 27(4), 261–265 (1998).
[Crossref]

Kim, K.-C.

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

Kobayashi, N.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

Kobayashi, S.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. 9(3), 416 (2019).
[Crossref]

Koda, R.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

Koyama, F.

F. Koyama, “Advances and new functions of VCSEL photonics,” Opt. Rev. 21(6), 893–904 (2014).
[Crossref]

Kucheyev, S. O.

S. O. Kucheyev, J. S. Williams, and S. J. Pearton, “Ion implantation into GaN,” Mater. Sci. Eng., R 33(2-3), 51–108 (2001).
[Crossref]

Kuramoto, M.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. 9(3), 416 (2019).
[Crossref]

Kuwano, Y.

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

Lear, K. L.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Lee, C.

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480 (2017).
[Crossref]

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

Lee, S.

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.

Leonard, J. T.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.

Lim, S. H.

M. Hansen, L. F. Chen, S. H. Lim, S. P. DenBaars, and J. S. Speck, “Mg-rich precipitates in the p -type doping of InGaN-based laser diodes,” Appl. Phys. Lett. 80(14), 2469–2471 (2002).
[Crossref]

Lin, Y.-D.

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

Malinverni, M.

M. Malinverni, D. Martin, and N. Grandjean, “InGaN based micro light emitting diodes featuring a buried GaN tunnel junction,” Appl. Phys. Lett. 107(5), 051107 (2015).
[Crossref]

Margalith, T.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.

Martin, D.

M. Malinverni, D. Martin, and N. Grandjean, “InGaN based micro light emitting diodes featuring a buried GaN tunnel junction,” Appl. Phys. Lett. 107(5), 051107 (2015).
[Crossref]

Maruska, H. P.

J. I. Pankove, H. P. Maruska, and J. E. Berkeyheiser, “Optical Absorption of GaN,” Appl. Phys. Lett. 17(5), 197–199 (1970).
[Crossref]

Mašanovic, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley & Sons, Inc., 2012).

Matsui, K.

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Megalini, L.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

Michalzik, R.

R. Michalzik, VCSELs : Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, 2013).

Mishra, U. K.

A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN,” J. Electrochem. Soc. 156(1), H47 (2009).
[Crossref]

Mitomo, J.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

T. Hamaguchi, H. Nakajima, M. Ito, J. Mitomo, S. Satou, N. Fuutagawa, and H. Narui, “Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation,” Jpn. J. Appl. Phys. 55(12), 122101 (2016).
[Crossref]

Morita, T.

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

Mughal, A. J.

D. Hwang, A. J. Mughal, M. S. Wong, A. I. Alhassan, S. Nakamura, and S. P. DenBaars, “Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition,” Appl. Phys. Express 11(1), 012102 (2018).
[Crossref]

Murayama, M.

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Status Solidi 213(5), 1170–1176 (2016).
[Crossref]

Nakajima, H.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

T. Hamaguchi, H. Nakajima, M. Ito, J. Mitomo, S. Satou, N. Fuutagawa, and H. Narui, “Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation,” Jpn. J. Appl. Phys. 55(12), 122101 (2016).
[Crossref]

Nakamura, S.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

D. Hwang, A. J. Mughal, M. S. Wong, A. I. Alhassan, S. Nakamura, and S. P. DenBaars, “Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition,” Appl. Phys. Express 11(1), 012102 (2018).
[Crossref]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480 (2017).
[Crossref]

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.

Narui, H.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Status Solidi 213(5), 1170–1176 (2016).
[Crossref]

T. Hamaguchi, H. Nakajima, M. Ito, J. Mitomo, S. Satou, N. Fuutagawa, and H. Narui, “Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation,” Jpn. J. Appl. Phys. 55(12), 122101 (2016).
[Crossref]

Ogimoto, J.

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Oh, C. S.

S.-R. Jeon, C. S. Oh, J.-W. Yang, G. M. Yang, and B.-S. Yoo, “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode,” Appl. Phys. Lett. 80(11), 1933–1935 (2002).
[Crossref]

Oh, S. H.

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

Ohara, M.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

Ohta, H.

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

Ooi, B. S.

Ortsiefer, M.

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

Ostermayer, F. W.

G. C. Chi, F. W. Ostermayer, K. D. Cummings, and L. R. Harriott, “Ion beam damage-induced masking for photoelectrochemical etching of III-V semiconductors,” J. Appl. Phys. 60(11), 4012–4014 (1986).
[Crossref]

Pankove, J. I.

J. I. Pankove, H. P. Maruska, and J. E. Berkeyheiser, “Optical Absorption of GaN,” Appl. Phys. Lett. 17(5), 197–199 (1970).
[Crossref]

Pearton, S. J.

S. O. Kucheyev, J. S. Williams, and S. J. Pearton, “Ion implantation into GaN,” Mater. Sci. Eng., R 33(2-3), 51–108 (2001).
[Crossref]

Ping, A. T.

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-Type GaN,” J. Electron. Mater. 27(4), 261–265 (1998).
[Crossref]

Rajan, S.

A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN,” J. Electrochem. Soc. 156(1), H47 (2009).
[Crossref]

Ronneberg, E.

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

Rosskopf, J.

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

Saito, M.

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

Saito, T.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. 9(3), 416 (2019).
[Crossref]

Satou, S.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

T. Hamaguchi, H. Nakajima, M. Ito, J. Mitomo, S. Satou, N. Fuutagawa, and H. Narui, “Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation,” Jpn. J. Appl. Phys. 55(12), 122101 (2016).
[Crossref]

Schmidt, M. C.

A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN,” J. Electrochem. Soc. 156(1), H47 (2009).
[Crossref]

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

Scott, J. W.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Shau, R.

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

Shen, C.

Speck, J. S.

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480 (2017).
[Crossref]

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN,” J. Electrochem. Soc. 156(1), H47 (2009).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

M. Hansen, L. F. Chen, S. H. Lim, S. P. DenBaars, and J. S. Speck, “Mg-rich precipitates in the p -type doping of InGaN-based laser diodes,” Appl. Phys. Lett. 80(14), 2469–2471 (2002).
[Crossref]

Stattin, M.

Å. Haglund, E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Calciati, and M. Goano, “Progress and challenges in electrically pumped GaN-based VCSELs,” in K. Panajotov, M. Sciamanna, A. Valle, and R. Michalzik, eds. (International Society for Optics and Photonics, 2016), Vol. 9892, 98920Y.

Takeuchi, T.

T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors,” Rep. Prog. Phys. 82(1), 012502 (2019).
[Crossref]

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. 9(3), 416 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

Tamboli, A. C.

A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN,” J. Electrochem. Soc. 156(1), H47 (2009).
[Crossref]

Tanaka, K.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. 9(3), 416 (2019).
[Crossref]

Tanaka, M.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

Tazawa, K.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. 9(3), 416 (2019).
[Crossref]

Warren, M. E.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Watanabe, H.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

Williams, J. S.

S. O. Kucheyev, J. S. Williams, and S. J. Pearton, “Ion implantation into GaN,” Mater. Sci. Eng., R 33(2-3), 51–108 (2001).
[Crossref]

Windhorn, K.

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

Wong, M. S.

D. Hwang, A. J. Mughal, M. S. Wong, A. I. Alhassan, S. Nakamura, and S. P. DenBaars, “Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition,” Appl. Phys. Express 11(1), 012102 (2018).
[Crossref]

Wu, F.

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

Yagi, K.

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

Yamashita, K.

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

Yang, G. M.

S.-R. Jeon, C. S. Oh, J.-W. Yang, G. M. Yang, and B.-S. Yoo, “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode,” Appl. Phys. Lett. 80(11), 1933–1935 (2002).
[Crossref]

S.-R. Jeon, M. S. Cho, M.-A. Yu, and G. M. Yang, “GaN-based light-emitting diodes using tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 8(4), 739–743 (2002).
[Crossref]

Yang, J. W.

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-Type GaN,” J. Electron. Mater. 27(4), 261–265 (1998).
[Crossref]

Yang, J.-W.

S.-R. Jeon, C. S. Oh, J.-W. Yang, G. M. Yang, and B.-S. Yoo, “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode,” Appl. Phys. Lett. 80(11), 1933–1935 (2002).
[Crossref]

Yonkee, B. P.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

Yoo, B.-S.

S.-R. Jeon, C. S. Oh, J.-W. Yang, G. M. Yang, and B.-S. Yoo, “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode,” Appl. Phys. Lett. 80(11), 1933–1935 (2002).
[Crossref]

Young, E. C.

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.

Yu, M.-A.

S.-R. Jeon, M. S. Cho, M.-A. Yu, and G. M. Yang, “GaN-based light-emitting diodes using tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 8(4), 739–743 (2002).
[Crossref]

Zhang, C.

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

Appl. Phys. Express (4)

S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition,” Appl. Phys. Express 11(6), 062703 (2018).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

K. M. Kelchner, R. M. Farrell, Y.-D. Lin, P. S. Hsu, M. T. Hardy, F. Wu, D. A. Cohen, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Appl. Phys. Express 3(9), 092103 (2010).
[Crossref]

D. Hwang, A. J. Mughal, M. S. Wong, A. I. Alhassan, S. Nakamura, and S. P. DenBaars, “Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition,” Appl. Phys. Express 11(1), 012102 (2018).
[Crossref]

Appl. Phys. Lett. (10)

M. Hansen, L. F. Chen, S. H. Lim, S. P. DenBaars, and J. S. Speck, “Mg-rich precipitates in the p -type doping of InGaN-based laser diodes,” Appl. Phys. Lett. 80(14), 2469–2471 (2002).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. I. Pankove, H. P. Maruska, and J. E. Berkeyheiser, “Optical Absorption of GaN,” Appl. Phys. Lett. 17(5), 197–199 (1970).
[Crossref]

M. Malinverni, D. Martin, and N. Grandjean, “InGaN based micro light emitting diodes featuring a buried GaN tunnel junction,” Appl. Phys. Lett. 107(5), 051107 (2015).
[Crossref]

S.-R. Jeon, C. S. Oh, J.-W. Yang, G. M. Yang, and B.-S. Yoo, “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode,” Appl. Phys. Lett. 80(11), 1933–1935 (2002).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. Dorsaz, H.-J. Bühlmann, J.-F. Carlin, N. Grandjean, and M. Ilegems, “Selective oxidation of AlInN layers for current confinement in III–nitride devices,” Appl. Phys. Lett. 87(7), 072102 (2005).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

C. Lee, C. Zhang, D. L. Becerra, S. Lee, C. A. Forman, S. H. Oh, R. M. Farrell, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “Dynamic characteristics of 410 nm semipolar (20-2-1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz,” Appl. Phys. Lett. 109(10), 101104 (2016).
[Crossref]

Appl. Sci. (1)

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. 9(3), 416 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S.-R. Jeon, M. S. Cho, M.-A. Yu, and G. M. Yang, “GaN-based light-emitting diodes using tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 8(4), 739–743 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, “2.5-mW single-mode operation of 1.55-um buried tunnel junction VCSELs,” IEEE Photonics Technol. Lett. 17(8), 1596–1598 (2005).
[Crossref]

J. Appl. Phys. (1)

G. C. Chi, F. W. Ostermayer, K. D. Cummings, and L. R. Harriott, “Ion beam damage-induced masking for photoelectrochemical etching of III-V semiconductors,” J. Appl. Phys. 60(11), 4012–4014 (1986).
[Crossref]

J. Electrochem. Soc. (1)

A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN,” J. Electrochem. Soc. 156(1), H47 (2009).
[Crossref]

J. Electron. Mater. (1)

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-Type GaN,” J. Electron. Mater. 27(4), 261–265 (1998).
[Crossref]

Jpn. J. Appl. Phys. (4)

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007).
[Crossref]

D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(4), L284–L286 (2007).
[Crossref]

T. Hamaguchi, H. Nakajima, M. Ito, J. Mitomo, S. Satou, N. Fuutagawa, and H. Narui, “Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation,” Jpn. J. Appl. Phys. 55(12), 122101 (2016).
[Crossref]

Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions,” Jpn. J. Appl. Phys. 52(8S), 08JK12 (2013).
[Crossref]

Mater. Sci. Eng., R (1)

S. O. Kucheyev, J. S. Williams, and S. J. Pearton, “Ion implantation into GaN,” Mater. Sci. Eng., R 33(2-3), 51–108 (2001).
[Crossref]

Opt. Express (1)

Opt. Rev. (1)

F. Koyama, “Advances and new functions of VCSEL photonics,” Opt. Rev. 21(6), 893–904 (2014).
[Crossref]

Phys. Status Solidi (2)

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Status Solidi 213(5), 1170–1176 (2016).
[Crossref]

Rep. Prog. Phys. (1)

T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors,” Rep. Prog. Phys. 82(1), 012502 (2019).
[Crossref]

Sci. Rep. (1)

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref]

Other (4)

R. Michalzik, VCSELs : Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, 2013).

Å. Haglund, E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Calciati, and M. Goano, “Progress and challenges in electrically pumped GaN-based VCSELs,” in K. Panajotov, M. Sciamanna, A. Valle, and R. Michalzik, eds. (International Society for Optics and Photonics, 2016), Vol. 9892, 98920Y.

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley & Sons, Inc., 2012).

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” in Gallium Nitride Materials and Devices XIII, J.-I. Chyi, H. Morkoç, and H. Fujioka, eds. (SPIE, 2018), Vol. 10532, p. 83.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of a flip-chip buried tunnel junction (BTJ) VCSEL with dual dielectric distributed Bragg reflectors (DBRs).
Fig. 2.
Fig. 2. (a) A surface roughness measured after n++-GaN regrowth and (b) a cross-section image of a BTJ VCSEL taken using a focused ion beam (FIB). The RMS roughness was ∼2 nm.
Fig. 3.
Fig. 3. LIV characteristics of a 14 µm diameter aperture VCSEL measured under pulsed operation up to a current of 100 mA. An inset shows the spontaneous emission (dashed line) and lasing (solid line) spectra measured before and after the VCSEL processing, respectively.
Fig. 4.
Fig. 4. Near field images of various BTJ VCSELs taken under pulsed operation. All images were aligned in the same crystallographic direction.
Fig. 5.
Fig. 5. LIV characteristics of an 8 µm diameter aperture VCSEL measured under CW operation.
Fig. 6.
Fig. 6. IV characteristics of a test structure without TJ contacts and DBRs under CW operation. The test structure is illustrated as an inset in the IV curve. The diameter of the current blocking pn-junction was 26 µm and the outer area to the edge of the mesa was implanted with Al ions.

Tables (1)

Tables Icon

Table 1. Epitaxial structure grown on m-plane GaN substrate for BTJ VCSELs. (EBL: electron blocking layer, UID: unintentionally doped, SQW: single quantum well, MQW: multiple quantum well)