Abstract

We propose, for the first time to our knowledge, tunable true time delay line operation for radiofrequency signals on a few-mode fiber link. In particular, the custom design of a 7-LP-mode ring-core few-mode fiber together with a set of 5 broadband long period gratings inscribed at the proper positions along the fiber allows 4-sample true time delay line tunability over a 20-nm optical wavelength range. We study the performance of the designed true time delay line in the context of reconfigurable microwave photonics signal processing by theoretically evaluating microwave signal filtering and optical beamforming networks for phased array antennas.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sampled true time delay line operation by inscription of long period gratings in few-mode fibers

Sergi García, Rubén Guillem, Javier Madrigal, David Barrera, Salvador Sales, and Ivana Gasulla
Opt. Express 27(16) 22787-22793 (2019)

Few-mode fiber true time delay lines for distributed radiofrequency signal processing

Rubén Guillem, Sergi García, Javier Madrigal, David Barrera, and Ivana Gasulla
Opt. Express 26(20) 25761-25768 (2018)

Dispersion-engineered multicore fibers for distributed radiofrequency signal processing

Sergi García and Ivana Gasulla
Opt. Express 24(18) 20641-20654 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. D. Barrera, I. Gasulla, and S. Sales, “Multipoint two-dimensional curvature optical fiber sensor based on a non-twisted homogeneous four-core fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
    [Crossref]
  3. I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
    [Crossref]
  4. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical Processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
    [Crossref]
  5. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
    [Crossref]
  6. Z. Huet, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. A: Mater. Sci. Process. 91(3), 421–428 (2008).
    [Crossref]
  7. C. Wang and J. Yao, “Fiber Bragg gratings for microwave photonics subsystems,” Opt. Express 21(19), 22868–22884 (2013).
    [Crossref]
  8. P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photonics Technol. Lett. 21(22), 1686–1688 (2009).
    [Crossref]
  9. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  10. I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
    [Crossref]
  11. S. García and I. Gasulla, “Dispersion-engineered multicore fibers for distributed radiofrequency signal processing,” Opt. Express 24(18), 20641–20654 (2016).
    [Crossref]
  12. R. Guillem, S. García, J. Madrigal, D. Barrera, and I. Gasulla, “Few-mode fiber true time delay lines for distributed radiofrequency signal processing,” Opt. Express 26(20), 25761–25768 (2018).
    [Crossref]
  13. S. García, R. Guillem, J. Madrigal, D. Barrera, S. Sales, and I. Gasulla, “Sampled true time delay line operation by inscription of long period gratings in few-mode fibers,” Opt. Express 27(16), 22787–22793 (2019).
    [Crossref]
  14. X. Zhao, Y. Liu, Z. Liu, Y. Zhao, T. Wang, L. Shen, and S. Chen, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
    [Crossref]
  15. D. Marcuse, “Derivation of Coupled Power Equations,” Bell Syst. Tech. J. 51(1), 229–237 (1972).
    [Crossref]
  16. K. Ogawa, “Simplified theory of the multimode fiber coupler,” Bell Syst. Tech. J. 56(5), 729–745 (1977).
    [Crossref]
  17. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  18. S. Ramachandran, J. Wagener, R. Espindola, and T. Strasser, “Effects of chirp in long period gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 33, Trends in Optics and Photonics Series, paper BE1 (1999).
  19. J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  20. B. Ortega, J. Capmany, J. Cruz, M. V. Andrés, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microwave Theory Tech. 48(8), 1352–1360 (2000).
    [Crossref]

2019 (1)

2018 (1)

2017 (1)

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref]

2016 (2)

2015 (1)

2013 (3)

2012 (1)

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
[Crossref]

2009 (1)

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photonics Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

2008 (1)

Z. Huet, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. A: Mater. Sci. Process. 91(3), 421–428 (2008).
[Crossref]

2006 (1)

2005 (1)

2000 (1)

B. Ortega, J. Capmany, J. Cruz, M. V. Andrés, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microwave Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

1997 (1)

1991 (1)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

1977 (1)

K. Ogawa, “Simplified theory of the multimode fiber coupler,” Bell Syst. Tech. J. 56(5), 729–745 (1977).
[Crossref]

1972 (1)

D. Marcuse, “Derivation of Coupled Power Equations,” Bell Syst. Tech. J. 51(1), 229–237 (1972).
[Crossref]

Andrés, M. V.

B. Ortega, J. Capmany, J. Cruz, M. V. Andrés, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microwave Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

Barrera, D.

Bernstein, N.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Capmany, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical Processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
[Crossref]

B. Ortega, J. Capmany, J. Cruz, M. V. Andrés, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microwave Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

Chen, S.

Cruz, J.

B. Ortega, J. Capmany, J. Cruz, M. V. Andrés, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microwave Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

Erdogan, T.

Espindola, R.

S. Ramachandran, J. Wagener, R. Espindola, and T. Strasser, “Effects of chirp in long period gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 33, Trends in Optics and Photonics Series, paper BE1 (1999).

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

García, S.

Gasulla, I.

Guillem, R.

Hervás, J.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref]

Huet, Z.

Z. Huet, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. A: Mater. Sci. Process. 91(3), 421–428 (2008).
[Crossref]

Khurgin, J. B.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photonics Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

Lee, J. J.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Liu, L.

Z. Huet, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. A: Mater. Sci. Process. 91(3), 421–428 (2008).
[Crossref]

Liu, Y.

Liu, Z.

Lloret, J.

Madrigal, J.

Marcuse, D.

D. Marcuse, “Derivation of Coupled Power Equations,” Bell Syst. Tech. J. 51(1), 229–237 (1972).
[Crossref]

Mora, J.

Morton, P. A.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photonics Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Newberg, I. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Ng, W.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Ogawa, K.

K. Ogawa, “Simplified theory of the multimode fiber coupler,” Bell Syst. Tech. J. 56(5), 729–745 (1977).
[Crossref]

Ortega, B.

Pastor, D.

Ramachandran, S.

S. Ramachandran, J. Wagener, R. Espindola, and T. Strasser, “Effects of chirp in long period gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 33, Trends in Optics and Photonics Series, paper BE1 (1999).

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Sales, S.

Sancho, J.

Shen, L.

Strasser, T.

S. Ramachandran, J. Wagener, R. Espindola, and T. Strasser, “Effects of chirp in long period gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 33, Trends in Optics and Photonics Series, paper BE1 (1999).

Sun, J.

Z. Huet, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. A: Mater. Sci. Process. 91(3), 421–428 (2008).
[Crossref]

Tangonan, G. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Wagener, J.

S. Ramachandran, J. Wagener, R. Espindola, and T. Strasser, “Effects of chirp in long period gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 33, Trends in Optics and Photonics Series, paper BE1 (1999).

Walston, A. A.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Wang, C.

Wang, J.

Z. Huet, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. A: Mater. Sci. Process. 91(3), 421–428 (2008).
[Crossref]

Wang, T.

Yao, J.

Zhao, X.

Zhao, Y.

Appl. Phys. A: Mater. Sci. Process. (1)

Z. Huet, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. A: Mater. Sci. Process. 91(3), 421–428 (2008).
[Crossref]

Bell Syst. Tech. J. (2)

D. Marcuse, “Derivation of Coupled Power Equations,” Bell Syst. Tech. J. 51(1), 229–237 (1972).
[Crossref]

K. Ogawa, “Simplified theory of the multimode fiber coupler,” Bell Syst. Tech. J. 56(5), 729–745 (1977).
[Crossref]

IEEE Photonics J. (1)

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photonics J. 4(3), 877–888 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photonics Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

B. Ortega, J. Capmany, J. Cruz, M. V. Andrés, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microwave Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (5)

Sci. Rep. (1)

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref]

Other (1)

S. Ramachandran, J. Wagener, R. Espindola, and T. Strasser, “Effects of chirp in long period gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 33, Trends in Optics and Photonics Series, paper BE1 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Tunable true time delay line based on an FMF with the inscription of LPGs.
Fig. 2.
Fig. 2. (a) Evolution of the differential group delay of the samples, τiτ1, as a function of the normalized length; (b) Evolution of the differential chromatic dispersion, DiD1, as a function of the normalized length; and (c) Time-delay dependence of the samples with the optical wavelength for a generic FMF link with inscribed LPGs.
Fig. 3.
Fig. 3. (a) Refractive index profile of the designed ring-core fiber. (b) Computed effective index neff for every propagated mode as a function of the fiber scale factor.
Fig. 4.
Fig. 4. Scheme of the designed TTDL based on a ring-core FMF link of length L with a set of 5 LPGs inscribed at specific longitudinal positions. On the right, one can see the 4 output TTDL samples in the time domain characterized by a constant basic differential delay Δτ.
Fig. 5.
Fig. 5. Differential sample group delays per unit length with respect to the first sample as a function of the optical wavelength. TTDL tunability is ensured from 1540 up to 1560 nm.
Fig. 6.
Fig. 6. (a) RF transfer function of the microwave photonic filter for three different operation wavelengths. (b) Array factor of the phased array antenna for five different operation wavelengths (RF frequency of 10 GHz and 1.5 cm antenna element separation).

Tables (3)

Tables Icon

Table 1. Propagation characteristics of the modes for the designed FMF at λ0 = 1550 nm.

Tables Icon

Table 2. Normalized lengths llm(i) along which the i-th sample travels on mode LPlm.

Tables Icon

Table 3. Calculated LPG periods and chirps for mode conversions and 20-nm tunability.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

τ l m ( λ ) = τ l m ( λ 0 ) + ( λ λ 0 ) D l m ,
Δ τ ( λ ) = Δ τ ( λ 0 ) + ( λ λ 0 ) Δ D .
τ i = [ ( l m I τ g , l m l l m ( i ) ) + ( λ λ 0 ) ( l m I D l m l l m ( i ) ) ] L = [ τ e q , i + ( λ λ 0 ) D e q , i ] L ,
τ i = τ e q , 1 L + ( i 1 ) Δ τ ( λ 0 ) + ( λ λ 0 ) ( D e q , 1 + ( i 1 ) Δ D ) L ,
{ τ 1 L = ( τ 02 l 02 + τ 12 l 12 ( 1 ) ) + ( λ λ 0 ) ( D 02 l 02 + l 12 ( 1 ) D 12 ) τ 2 L = ( τ 02 l 02 + τ 12 l 12 ( 2 ) + τ 01 l 01 ( 2 ) + τ 41 l 41 ( 2 ) ) + ( λ λ 0 ) ( D 02 l 02 + D 12 l 12 ( 2 ) + D 01 l 01 ( 2 ) + D 41 l 41 ( 2 ) ) τ 3 L = ( τ 02 l 02 + τ 12 l 12 ( 3 ) + τ 11 l 11 ( 3 ) + τ 31 l 31 ( 3 ) ) + ( λ λ 0 ) ( D 02 l 02 + D 12 l 12 ( 3 ) + D 11 l 11 ( 3 ) + D 31 l 31 ( 3 ) ) τ 4 L = τ 21 l 21 ( 4 ) + ( λ λ 0 ) D 21 l 21 ( 4 ) ,
Λ = λ n e f f i n e f f j ,

Metrics