Abstract

Two compact mid-infrared microchip lasers at 2717 and 2740 nm have been demonstrated using a Er:Y2O3 ceramic as laser gain medium with thickness of 800 μm, for the first time to our knowledge. Under a 976-nm diode laser pumping, the 2717 nm microchip laser with linewidth of about 0.16 nm is achieved with a maximum output power of 234.8 mW and slope efficiency of about 10.9%. The laser beam quality expressed by M2 factor is measured to be about 1.23 and 1.45 in x and y directions. A single wavelength at 2740 nm with linewidth of about 0.15 nm is also achieved with maximum output power of 102 mW and slope efficiency of about 4.9%. Beam quality of the 2740 nm laser is found to be about 1.15 and 1.26 in x and y directions. Using a mechanical chopper to modulate the pump laser for thermal mitigation, the maximum output powers can be further improved to 312 mW for 2717 nm laser and 145 mW for 2740 m laser at higher pump powers. Such a mid-infrared microchip laser source with very compact size could be have great potential in various eye-safety-related applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm

Li Wang, Haitao Huang, Deyuan Shen, Jian Zhang, Hao Chen, Yong Wang, Xuan Liu, and Dingyuan Tang
Opt. Express 22(16) 19495-19503 (2014)

Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers

Xiaofeng Guan, Jiawei Wang, Yuzhao Zhang, Bin Xu, Zhengqian Luo, Huiying Xu, Zhiping Cai, Xiaodong Xu, Jian Zhang, and Jun Xu
Photon. Res. 6(9) 830-836 (2018)

Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7  μm

Xiaofeng Guan, Linjie Zhan, Zhenwei Zhu, Bin Xu, Huiying Xu, Zhiping Cai, Weiwei Cai, Xiaodong Xu, Jian Zhang, and Jun Xu
Appl. Opt. 57(3) 371-376 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
    [Crossref] [PubMed]
  2. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
    [Crossref]
  3. T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8-µm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 585–587 (1996).
    [Crossref] [PubMed]
  4. C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
    [Crossref]
  5. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-µm laser,” Opt. Lett. 24(6), 385–387 (1999).
    [Crossref] [PubMed]
  6. J. Šulc, M. Němec, R. Švejkar, H. Jelínková, M. E. Doroshenko, P. P. Fedorov, and V. V. Osiko, “Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser,” Opt. Lett. 38(17), 3406–3409 (2013).
    [Crossref] [PubMed]
  7. R. Švejkar, J. Šulc, H. Jelinkova, V. Kubecek, W. Ma, D. Jiang, Q. Wu, and L. Su, “Diode-pumped Er:SrF2 laser tunable at 2.7 µm,” Opt. Mater. Express 8(4), 1025–1030 (2018).
    [Crossref]
  8. L. Su, X. Guo, D. Jiang, Q. Wu, Z. Qin, and G. Xie, “Highly-efficient mid-infrared CW laser operation in a lightly-doped 3 at.% Er:SrF2 single crystal,” Opt. Express 26(5), 5558–5563 (2018).
    [Crossref] [PubMed]
  9. J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
    [Crossref] [PubMed]
  10. C. Quan, D. Sun, J. Luo, H. Zhang, Z. Fang, X. Zhao, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “2.7 μm dual-wavelength laser performance of LD end-pumped Er:YAP crystal,” Opt. Express 26(22), 28421–28428 (2018).
    [Crossref] [PubMed]
  11. Z. Zhang, F. Ma, X. Guo, J. Wang, X. Qian, J. J. Liu, J. Liu, and L. B. Su, “Mid-infrared spectral properties and laser performance of Er3+ doped CaxSr1-xF2 single crystals,” Opt. Mater. Express 8(12), 3820–3828 (2018).
    [Crossref]
  12. J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er,Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
    [Crossref] [PubMed]
  13. L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
    [Crossref] [PubMed]
  14. X. Guan, J. Wang, Y. Zhang, B. Xu, Z. Luo, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, “Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers,” Photon. Res. 6(9), 830–836 (2018).
    [Crossref]
  15. J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Compd. 303, 393–400 (2000).
    [Crossref]
  16. J. Mlynczak and N. Belghachem, “High peak power generation in thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O3 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
    [Crossref]
  17. E. Molva, “Microchip lasers and their applications in optical microsystems,” Opt. Mater. 11(2-3), 289–299 (1999).
    [Crossref]
  18. Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 μm,” Opt. Lett. 40(16), 3846–3849 (2015).
    [Crossref] [PubMed]
  19. Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, and J. Zhang, “Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 μm with Fe:ZnSe saturable absorber,” IEEE Photonic. Tech. L. 31(7), 565–568 (2019).
    [Crossref]
  20. J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37(23), 5021–5023 (2012).
    [Crossref] [PubMed]
  21. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14(1), 24–26 (1989).
    [Crossref] [PubMed]
  22. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16(24), 1955–1957 (1991).
    [Crossref] [PubMed]
  23. T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(3), 206–209 (2010).
    [Crossref]
  24. X. Guan, L. Zhan, Z. Zhu, B. Xu, H. Xu, Z. Cai, W. Cai, X. Xu, J. Zhang, and J. Xu, “Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7 μm,” Appl. Opt. 57(3), 371–376 (2018).
    [Crossref] [PubMed]
  25. L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, and D. Y. Tang, “Diode-pumped high power 2.7μm Er:Y2O3 ceramic laser at room Temperature,” Opt. Mater. 71, 70–73 (2017).
    [Crossref]
  26. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
    [Crossref]
  27. J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
    [Crossref]

2019 (1)

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, and J. Zhang, “Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 μm with Fe:ZnSe saturable absorber,” IEEE Photonic. Tech. L. 31(7), 565–568 (2019).
[Crossref]

2018 (6)

2017 (1)

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, and D. Y. Tang, “Diode-pumped high power 2.7μm Er:Y2O3 ceramic laser at room Temperature,” Opt. Mater. 71, 70–73 (2017).
[Crossref]

2016 (1)

2015 (2)

J. Mlynczak and N. Belghachem, “High peak power generation in thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O3 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 μm,” Opt. Lett. 40(16), 3846–3849 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

2012 (1)

2010 (2)

T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(3), 206–209 (2010).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

2009 (1)

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

2003 (1)

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

2002 (1)

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

2000 (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Compd. 303, 393–400 (2000).
[Crossref]

1999 (2)

1996 (1)

1994 (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

1991 (1)

1989 (1)

Baer, C. R. E.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Belghachem, N.

J. Mlynczak and N. Belghachem, “High peak power generation in thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O3 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

Berry, P. A.

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Cai, W.

Cai, Z.

Camy, P.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Chai, B. H. T.

Chen, D. W.

Chen, H.

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, and D. Y. Tang, “Diode-pumped high power 2.7μm Er:Y2O3 ceramic laser at room Temperature,” Opt. Mater. 71, 70–73 (2017).
[Crossref]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
[Crossref] [PubMed]

Chen, J.

Cheng, M.

Diening, A.

Doroshenko, M. E.

Dou, R.

Doualan, J. L.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Dubinskii, M.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(3), 206–209 (2010).
[Crossref]

Evans, J. W.

Fang, Z.

Fedorov, P. P.

Fields, R. A.

Fincher, C. L.

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Golling, M.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Guan, X.

Guo, X.

Guo, Z.

Hartmann, A.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Heckl, O. H.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Hibst, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Hu, L.

Huang, H.

Huang, H. T.

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, and D. Y. Tang, “Diode-pumped high power 2.7μm Er:Y2O3 ceramic laser at room Temperature,” Opt. Mater. 71, 70–73 (2017).
[Crossref]

Huber, G.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8-µm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 585–587 (1996).
[Crossref] [PubMed]

Jelinkova, H.

Jelínková, H.

Jensen, T.

Jiang, D.

Kaminskii, A. A.

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Kaufmann, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Keller, U.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Kobayashi, T.

Kong, J.

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

Kränkel, C.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Kubecek, V.

Labbe, C.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Li, J.

Liu, J.

Liu, J. J.

Liu, P.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, and J. Zhang, “Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 μm with Fe:ZnSe saturable absorber,” IEEE Photonic. Tech. L. 31(7), 565–568 (2019).
[Crossref]

Liu, X.

Lu, J.

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

Luo, J.

Luo, Z.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, and J. Zhang, “Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 μm with Fe:ZnSe saturable absorber,” IEEE Photonic. Tech. L. 31(7), 565–568 (2019).
[Crossref]

X. Guan, J. Wang, Y. Zhang, B. Xu, Z. Luo, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, “Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers,” Photon. Res. 6(9), 830–836 (2018).
[Crossref]

Ma, F.

Ma, W.

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Mlynczak, J.

J. Mlynczak and N. Belghachem, “High peak power generation in thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O3 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

Molva, E.

E. Molva, “Microchip lasers and their applications in optical microsystems,” Opt. Mater. 11(2-3), 289–299 (1999).
[Crossref]

Moncorge, R.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Mooradian, A.

Mukai, A.

Nemec, M.

Nozawa, Y.

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Osiko, V. V.

Petermann, K.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Peters, R.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Qian, X.

Qin, Z.

Quan, C.

Rose, T. S.

Sanamyan, T.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(3), 206–209 (2010).
[Crossref]

Saraceno, C. J.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Schepler, K. L.

Shen, D.

Shen, D. Y.

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, and D. Y. Tang, “Diode-pumped high power 2.7μm Er:Y2O3 ceramic laser at room Temperature,” Opt. Mater. 71, 70–73 (2017).
[Crossref]

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

Simmons, J.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(3), 206–209 (2010).
[Crossref]

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Su, L.

Su, L. B.

Südmeyer, T.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Šulc, J.

Sun, D.

Švejkar, R.

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Taira, T.

Takaichi, K.

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

Tang, D.

Tang, D. Y.

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, and D. Y. Tang, “Diode-pumped high power 2.7μm Er:Y2O3 ceramic laser at room Temperature,” Opt. Mater. 71, 70–73 (2017).
[Crossref]

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

Thuau, M.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Tian, Q.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, and J. Zhang, “Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 μm with Fe:ZnSe saturable absorber,” IEEE Photonic. Tech. L. 31(7), 565–568 (2019).
[Crossref]

Tu, C.

Ueda, K.

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

Uematsu, T.

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

Vernon, F. L.

Wang, H.

Wang, J.

Wang, L.

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, and D. Y. Tang, “Diode-pumped high power 2.7μm Er:Y2O3 ceramic laser at room Temperature,” Opt. Mater. 71, 70–73 (2017).
[Crossref]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
[Crossref] [PubMed]

Wang, Y.

Wu, Q.

Xiao, J.

Xie, G.

Xu, B.

Xu, H.

Xu, J.

Xu, X.

Yagi, H.

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

Yanagitani, T.

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

Yin, S.

You, Z.

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Zayhowski, J. J.

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Compd. 303, 393–400 (2000).
[Crossref]

J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14(1), 24–26 (1989).
[Crossref] [PubMed]

Zhan, L.

Zhang, H.

Zhang, J.

Zhang, Q.

Zhang, Y.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, and J. Zhang, “Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 μm with Fe:ZnSe saturable absorber,” IEEE Photonic. Tech. L. 31(7), 565–568 (2019).
[Crossref]

X. Guan, J. Wang, Y. Zhang, B. Xu, Z. Luo, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, “Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers,” Photon. Res. 6(9), 830–836 (2018).
[Crossref]

Zhang, Z.

Zhao, X.

Zhu, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Appl. Phys. Lett. (1)

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 82(16), 2556–2558 (2003).
[Crossref]

IEEE Photonic. Tech. L. (1)

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, and J. Zhang, “Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 μm with Fe:ZnSe saturable absorber,” IEEE Photonic. Tech. L. 31(7), 565–568 (2019).
[Crossref]

J. Alloys Compd. (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Compd. 303, 393–400 (2000).
[Crossref]

J. Dermatol. Surg. Oncol. (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Laser Phys. Lett. (3)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

J. Mlynczak and N. Belghachem, “High peak power generation in thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O3 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(3), 206–209 (2010).
[Crossref]

Opt. Commun. (1)

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Opt. Mater. (2)

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, and D. Y. Tang, “Diode-pumped high power 2.7μm Er:Y2O3 ceramic laser at room Temperature,” Opt. Mater. 71, 70–73 (2017).
[Crossref]

E. Molva, “Microchip lasers and their applications in optical microsystems,” Opt. Mater. 11(2-3), 289–299 (1999).
[Crossref]

Opt. Mater. Express (2)

Photon. Res. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of diode-pumped Er:Y2O3 ceramic microchip lasers.
Fig. 2
Fig. 2 Output power versus absorbed power of 2717 nm lasers using OC1 (transmissivity: 1.0%@2717 nm) and OC2 (transmissivity:3.6%@2717 nm); inset: typical laser spectrum.
Fig. 3
Fig. 3 (a) Output power stability in 20 minutes and (b) output beam spot sizes in x and y directions at different distances achieved with OC2; inset: beam spot.
Fig. 4
Fig. 4 Output power versus absorbed power of 2740 nm lasers using OC3 (transmissivity: 15% @2717 nm and 1.3%@2740 nm); inset: laser spectrum and beam spot.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f th = πK ω p 2 η P in ( dn/ dT ) [ 1 1exp( α l c ) ]

Metrics