Abstract

We measure the transmission of near-infrared ps pulses through single CdTe nanowires. Benefitting from the strong light confinement and large effective nonlinearity of these nanowires, a significant spectral broadening of ∼ 5 nm and nonlinear phase shift of a few π due to self-phase modulation (SPM) is observed experimentally at coupled peak power of a dozen W with a propagating length down to several hundred µms. A nonlinear-index coefficient (n2) as high as (9.5 ± 1.4) × 10−17 m2/W at 1550 nm is extracted from transmission spectra, corresponding to a nonlinear parameter (γ) of ∼ 1050 W−1m−1. The simulations indicate a spectral broadening more than 1.5 µm in single nanowire when pumped by fs pulses in anomalous dispersion regime. The obtained results suggest that, CdTe nanowire is promising in developing ultracompact nonlinear optical devices for microphotonic circuits.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Self-phase-modulation in submicron silicon-on-insulator photonic wires

Eric Dulkeith, Yurii A. Vlasov, Xiaogang Chen, Nicolae C. Panoiu, and Richard M. Osgood
Opt. Express 14(12) 5524-5534 (2006)

Self-phase modulation in polydiacetylene single crystal measured at 720–1064  nm

Achintya K. Bhowmik and Mrinal Thakur
Opt. Lett. 26(12) 902-904 (2001)

Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton
Opt. Express 13(19) 7637-7644 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [Crossref]
  2. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [Crossref]
  3. X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
    [Crossref]
  4. T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
    [Crossref]
  5. D.-I. Yeom, E. C. Maegi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [Crossref]
  6. C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear Mixing in Nanowire Subwavelength Waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
    [Crossref]
  7. H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
    [Crossref]
  8. J. M. Laniel, N. Ho, R. Vallee, and A. Villeneuve, “Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation,” J. Opt. Soc. Am. B 22(2), 437–445 (2005).
    [Crossref]
  9. E. Dulkeith, Y. A. Vlasov, X. G. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
    [Crossref]
  10. D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
    [Crossref]
  11. E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett. 97(7), 071105 (2010).
    [Crossref]
  12. Y.-Y. Lin, C.-L. Wu, W.-C. Chi, Y.-J. Chiu, Y. Hung, A.-K. Chu, and C.-K. Lee, “Self-phase modulation in highly confined submicron Ta2O5 channel waveguides,” Opt. Express 24(19), 21633–21641 (2016).
    [Crossref]
  13. S. Saeidi, P. Rasekh, K. M. Awan, A. Tugen, M. J. Huttunen, and K. Dolgaleva, “Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides,” Opt. Mater. 84, 524–530 (2018).
    [Crossref]
  14. P. Koonath, D. R. Solli, and B. Jalali, “Continuum generation and carving on a silicon chip,” Appl. Phys. Lett. 91(6), 061111 (2007).
    [Crossref]
  15. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15(12), 7802–7809 (2007).
    [Crossref]
  16. V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
    [Crossref]
  17. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12(5), 829–834 (2004).
    [Crossref]
  18. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
    [Crossref]
  19. M. Forbes, J. Gourlay, and M. Desmulliez, “Optically interconnected electronic chips: a tutorial and review of the technology,” Electronics & Communication Engineering Journal 13(5), 221–232 (2001).
    [Crossref]
  20. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  21. I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14(25), 12380–12387 (2006).
    [Crossref]
  22. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
    [Crossref]
  23. L. E. Zou, P. P. He, B. X. Chen, and M. Iso, “Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation,” AIP Adv. 7(2), 025003 (2017).
    [Crossref]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  25. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
    [Crossref]
  26. J. H. Bang and P. V. Kamat, “Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe,” ACS Nano 3(6), 1467–1476 (2009).
    [Crossref]
  27. Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
    [Crossref]
  28. J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).
    [Crossref]
  29. C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, and L. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26(8), 10944–10952 (2018).
    [Crossref]
  30. I. Shoji, T. Konto, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients “ J,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [Crossref]
  31. S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
    [Crossref]
  32. C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
    [Crossref]
  33. L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).
    [Crossref]
  34. G. Agrawal, Nonlinear fiber optics (Elsevier, 2013).
  35. K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35(24), 4093–4095 (2010).
    [Crossref]
  36. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  37. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007).
    [Crossref]
  38. L. Shen, N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime,” Opt. Express 21(11), 13075–13083 (2013).
    [Crossref]
  39. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Foerst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 mu m femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
    [Crossref]
  40. M. Sheikbahae, D. J. Hagan, and E. W. Vanstryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
    [Crossref]
  41. J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University Press, 2010).
  42. M. Chemnitz and M. A. Schmidt, “Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers,” Opt. Express 24(14), 16191–16205 (2016).
    [Crossref]

2018 (2)

S. Saeidi, P. Rasekh, K. M. Awan, A. Tugen, M. J. Huttunen, and K. Dolgaleva, “Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides,” Opt. Mater. 84, 524–530 (2018).
[Crossref]

C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, and L. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26(8), 10944–10952 (2018).
[Crossref]

2017 (1)

L. E. Zou, P. P. He, B. X. Chen, and M. Iso, “Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation,” AIP Adv. 7(2), 025003 (2017).
[Crossref]

2016 (3)

2014 (3)

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).
[Crossref]

X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref]

2013 (1)

2011 (1)

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear Mixing in Nanowire Subwavelength Waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref]

2010 (5)

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett. 97(7), 071105 (2010).
[Crossref]

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).
[Crossref]

K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35(24), 4093–4095 (2010).
[Crossref]

2009 (3)

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[Crossref]

J. H. Bang and P. V. Kamat, “Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe,” ACS Nano 3(6), 1467–1476 (2009).
[Crossref]

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2008 (2)

2007 (4)

2006 (4)

2005 (2)

J. M. Laniel, N. Ho, R. Vallee, and A. Villeneuve, “Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation,” J. Opt. Soc. Am. B 22(2), 437–445 (2005).
[Crossref]

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
[Crossref]

2004 (1)

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

2002 (1)

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[Crossref]

2001 (1)

M. Forbes, J. Gourlay, and M. Desmulliez, “Optically interconnected electronic chips: a tutorial and review of the technology,” Electronics & Communication Engineering Journal 13(5), 221–232 (2001).
[Crossref]

2000 (1)

1997 (2)

I. Shoji, T. Konto, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients “ J,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
[Crossref]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

1990 (1)

M. Sheikbahae, D. J. Hagan, and E. W. Vanstryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref]

Agrawal, G.

G. Agrawal, Nonlinear fiber optics (Elsevier, 2013).

Agrawal, G. P.

Aitchison, J. S.

Awan, K. M.

S. Saeidi, P. Rasekh, K. M. Awan, A. Tugen, M. J. Huttunen, and K. Dolgaleva, “Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides,” Opt. Mater. 84, 524–530 (2018).
[Crossref]

Badding, J. V.

Banerjee, K.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).
[Crossref]

Bang, J. H.

J. H. Bang and P. V. Kamat, “Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe,” ACS Nano 3(6), 1467–1476 (2009).
[Crossref]

Bao, Q.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref]

Barrelet, C. J.

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear Mixing in Nanowire Subwavelength Waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref]

Birks, T. A.

Boyraz, O.

Broaddus, D. H.

E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett. 97(7), 071105 (2010).
[Crossref]

Camasta, M. C.

Chang, P.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).
[Crossref]

Chemnitz, M.

Chen, B.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref]

Chen, B. X.

L. E. Zou, P. P. He, B. X. Chen, and M. Iso, “Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation,” AIP Adv. 7(2), 025003 (2017).
[Crossref]

Chen, X.

Chen, X. G.

Chi, W.-C.

Chiu, Y.-J.

Chu, A.-K.

Chu, S. T.

Dadap, J. I.

Dai, L.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Day, T. D.

Dekker, R.

Desmulliez, M.

M. Forbes, J. Gourlay, and M. Desmulliez, “Optically interconnected electronic chips: a tutorial and review of the technology,” Electronics & Communication Engineering Journal 13(5), 221–232 (2001).
[Crossref]

Digonnet, M. J. F.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Dolgaleva, K.

S. Saeidi, P. Rasekh, K. M. Awan, A. Tugen, M. J. Huttunen, and K. Dolgaleva, “Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides,” Opt. Mater. 84, 524–530 (2018).
[Crossref]

K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35(24), 4093–4095 (2010).
[Crossref]

Driessen, A.

Duchesne, D.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University Press, 2010).

Dulkeith, E.

Ee, H.-S.

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear Mixing in Nanowire Subwavelength Waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref]

Eggleton, B. J.

D.-I. Yeom, E. C. Maegi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Eychmuller, A.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[Crossref]

Fainman, Y.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

Fang, W.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref]

Feldmann, J.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).
[Crossref]

Ferrera, M.

Foerst, M.

Forbes, M.

M. Forbes, J. Gourlay, and M. Desmulliez, “Optically interconnected electronic chips: a tutorial and review of the technology,” Electronics & Communication Engineering Journal 13(5), 221–232 (2001).
[Crossref]

Foster, M. A.

Fu, L.

D.-I. Yeom, E. C. Maegi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Furuki, M.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
[Crossref]

Gaeta, A. L.

Gao, J. Y.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Gaponik, N.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[Crossref]

Geraghty, D. F.

Gourlay, J.

M. Forbes, J. Gourlay, and M. Desmulliez, “Optically interconnected electronic chips: a tutorial and review of the technology,” Electronics & Communication Engineering Journal 13(5), 221–232 (2001).
[Crossref]

Guo, X.

C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, and L. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26(8), 10944–10952 (2018).
[Crossref]

X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref]

Hagan, D. J.

M. Sheikbahae, D. J. Hagan, and E. W. Vanstryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref]

He, P. P.

L. E. Zou, P. P. He, B. X. Chen, and M. Iso, “Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation,” AIP Adv. 7(2), 025003 (2017).
[Crossref]

Healy, N.

Hellwarth, R.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).
[Crossref]

Ho, N.

Hoppe, K.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[Crossref]

Hsieh, I. W.

Huang, L.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).
[Crossref]

Hung, Y.

Huttunen, M. J.

S. Saeidi, P. Rasekh, K. M. Awan, A. Tugen, M. J. Huttunen, and K. Dolgaleva, “Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides,” Opt. Mater. 84, 524–530 (2018).
[Crossref]

Ikeda, K.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

Indukuri, T.

Iso, M.

L. E. Zou, P. P. He, B. X. Chen, and M. Iso, “Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation,” AIP Adv. 7(2), 025003 (2017).
[Crossref]

Ito, R.

Iwasa, I.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
[Crossref]

Jaeckel, F.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).
[Crossref]

Jalali, B.

P. Koonath, D. R. Solli, and B. Jalali, “Continuum generation and carving on a silicon chip,” Appl. Phys. Lett. 91(6), 061111 (2007).
[Crossref]

O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12(5), 829–834 (2004).
[Crossref]

Kamat, P. V.

J. H. Bang and P. V. Kamat, “Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe,” ACS Nano 3(6), 1467–1476 (2009).
[Crossref]

Kawasaki, M.

E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett. 97(7), 071105 (2010).
[Crossref]

Kita, T.

E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett. 97(7), 071105 (2010).
[Crossref]

Kitamoto, A.

Konto, T.

Koonath, P.

P. Koonath, D. R. Solli, and B. Jalali, “Continuum generation and carving on a silicon chip,” Appl. Phys. Lett. 91(6), 061111 (2007).
[Crossref]

Kornowski, A.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[Crossref]

Kwon, S.-H.

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear Mixing in Nanowire Subwavelength Waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref]

Lamont, M. R. E.

Laniel, J. M.

Lee, C.-K.

Lin, Q.

Lin, X.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref]

Lin, Y.-Y.

Lipson, M.

Little, B. E.

Littler, I. C. M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Liu, W.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref]

Lu, J. G.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).
[Crossref]

Lu, S.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).
[Crossref]

Luther-Davies, B.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Lutich, A. A.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).
[Crossref]

Maegi, E. C.

Matsubara, T.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
[Crossref]

McNab, S. J.

Mehta, P.

Miller, D. A. B.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Mitsu, H.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
[Crossref]

Moormann, C.

Morandotti, R.

Moss, D. J.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Ng, W. C.

Niehusmann, J.

Osgood, R. M.

Painter, O. J.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Panoiu, N. C.

Pantell, R. H.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Park, H.-G.

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear Mixing in Nanowire Subwavelength Waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref]

Peacock, A. C.

Peng, R. M.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Qian, L.

Qin, G. G.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Rasekh, P.

S. Saeidi, P. Rasekh, K. M. Awan, A. Tugen, M. J. Huttunen, and K. Dolgaleva, “Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides,” Opt. Mater. 84, 524–530 (2018).
[Crossref]

Razzari, L.

Rochette, M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Roelens, M. A. F.

Rogach, A. L.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).
[Crossref]

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[Crossref]

Ruan, Y.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Russell, P. S.

Sadowski, R. W.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Saeidi, S.

S. Saeidi, P. Rasekh, K. M. Awan, A. Tugen, M. J. Huttunen, and K. Dolgaleva, “Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides,” Opt. Mater. 84, 524–530 (2018).
[Crossref]

Salem, R.

Sato, Y.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
[Crossref]

Schmidt, M. A.

Shaw, H. J.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Sheikbahae, M.

M. Sheikbahae, D. J. Hagan, and E. W. Vanstryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref]

Shen, L.

Shen, Y. R.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref]

Shevchenko, E. V.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[Crossref]

Shi, Z.

Shirane, M.

Shoji, I.

Shokooh-Saremi, M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Solli, D. R.

P. Koonath, D. R. Solli, and B. Jalali, “Continuum generation and carving on a silicon chip,” Appl. Phys. Lett. 91(6), 061111 (2007).
[Crossref]

Sorel, M.

Sparks, J. R.

Sun, P. C.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

Sun, T.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Susha, A. S.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).
[Crossref]

Ta’eed, V. G.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Talapin, D. V.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[Crossref]

Tan, D. T. H.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

Tatsuura, S.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University Press, 2010).

Teraoka, E. Y. M.

E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett. 97(7), 071105 (2010).
[Crossref]

Tian, M. Q.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
[Crossref]

Tong, L.

C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, and L. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26(8), 10944–10952 (2018).
[Crossref]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref]

X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref]

Tsukazaki, A.

E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett. 97(7), 071105 (2010).
[Crossref]

Tugen, A.

S. Saeidi, P. Rasekh, K. M. Awan, A. Tugen, M. J. Huttunen, and K. Dolgaleva, “Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides,” Opt. Mater. 84, 524–530 (2018).
[Crossref]

Turner, A. C.

Vallee, R.

Vanstryland, E. W.

M. Sheikbahae, D. J. Hagan, and E. W. Vanstryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref]

Villeneuve, A.

Vlasov, Y. A.

Wadsworth, W. J.

Wahlbrink, T.

Wang, A.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref]

Wang, Y.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref]

Weller, H.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[Crossref]

Wu, C.-L.

Wu, H.

Wu, X.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref]

Xie, Y.

Xin, C.

C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, and L. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26(8), 10944–10952 (2018).
[Crossref]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref]

Xu, Y.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref]

Yamada, H.

E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett. 97(7), 071105 (2010).
[Crossref]

Yang, Z.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref]

Ye, Y.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Yeom, D.-I.

Yin, L.

Ying, Y.

X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref]

You, L. P.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Yu, D. P.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Yu, H.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref]

Yu, S.

C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, and L. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26(8), 10944–10952 (2018).
[Crossref]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zhang, J.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).
[Crossref]

Zhou, N.

Zhu, R.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Zou, L. E.

L. E. Zou, P. P. He, B. X. Chen, and M. Iso, “Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation,” AIP Adv. 7(2), 025003 (2017).
[Crossref]

Acc. Chem. Res. (1)

X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref]

ACS Nano (1)

J. H. Bang and P. V. Kamat, “Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe,” ACS Nano 3(6), 1467–1476 (2009).
[Crossref]

AIP Adv. (1)

L. E. Zou, P. P. He, B. X. Chen, and M. Iso, “Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation,” AIP Adv. 7(2), 025003 (2017).
[Crossref]

Appl. Phys. Lett. (5)

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).
[Crossref]

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
[Crossref]

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett. 97(7), 071105 (2010).
[Crossref]

P. Koonath, D. R. Solli, and B. Jalali, “Continuum generation and carving on a silicon chip,” Appl. Phys. Lett. 91(6), 061111 (2007).
[Crossref]

Electronics & Communication Engineering Journal (1)

M. Forbes, J. Gourlay, and M. Desmulliez, “Optically interconnected electronic chips: a tutorial and review of the technology,” Electronics & Communication Engineering Journal 13(5), 221–232 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

J. Appl. Phys. (1)

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[Crossref]

Nano Lett. (3)

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref]

C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear Mixing in Nanowire Subwavelength Waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single Nanowire Optical Correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref]

Nano Res. (1)

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).
[Crossref]

Opt. Express (12)

O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12(5), 829–834 (2004).
[Crossref]

E. Dulkeith, Y. A. Vlasov, X. G. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
[Crossref]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Foerst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 mu m femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
[Crossref]

I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14(25), 12380–12387 (2006).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15(12), 7802–7809 (2007).
[Crossref]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[Crossref]

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[Crossref]

L. Shen, N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime,” Opt. Express 21(11), 13075–13083 (2013).
[Crossref]

M. Chemnitz and M. A. Schmidt, “Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers,” Opt. Express 24(14), 16191–16205 (2016).
[Crossref]

Y.-Y. Lin, C.-L. Wu, W.-C. Chi, Y.-J. Chiu, Y. Hung, A.-K. Chu, and C.-K. Lee, “Self-phase modulation in highly confined submicron Ta2O5 channel waveguides,” Opt. Express 24(19), 21633–21641 (2016).
[Crossref]

C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, and L. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26(8), 10944–10952 (2018).
[Crossref]

Opt. Fiber Technol. (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (1)

S. Saeidi, P. Rasekh, K. M. Awan, A. Tugen, M. J. Huttunen, and K. Dolgaleva, “Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides,” Opt. Mater. 84, 524–530 (2018).
[Crossref]

Phys. Rev. Lett. (1)

M. Sheikbahae, D. J. Hagan, and E. W. Vanstryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref]

Proc. IEEE (1)

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Other (3)

G. Agrawal, Nonlinear fiber optics (Elsevier, 2013).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Scanning electron microscope image of an 800-nm-diameter CdTe nanowire (scale bar, 2 µm). (b) Schematic diagram of the experiment. The inset is the optical microscope image of an 800 nm-diameter CdTe nanowire with a length of 640 µm, which was placed on a MgF2 substrate (scale bar, 200 µm). 1550 nm-wavelength pulses were coupled into the nanowire through a fiber taper.
Fig. 2.
Fig. 2. (a) Transmission spectra of an 800-nm-diameter CdTe nanowire with length of 640 µm as a function of coupled peak power. Inset, calculated power density profile of the fundamental mode of an 800-nm-diameter CdTe nanowire guiding a 1550-nm-wavelength light on a MgF2 subtrate. (b) SPM-induced spectral broadening measured at 5 dB and 10 dB crosstalk level.
Fig. 3.
Fig. 3. Calculated normalized power density (black triangle) and calculated nonlinear parameter (red square) of different nanowires. Corresponding profiles of fundamental mode are shown above. The ZnO and CdTe nanowire has a hexagonal across section with a side-to-side diameter of 0.8 µm. The As2S3 nanowire has a circle across section with a diameter of 0.8 µm. The Si nanowire has a rectangular across section with size of 0.5×0.3 µm. The pumping wavelength is 1550 nm.(Scar bar, 500 nm)
Fig. 4.
Fig. 4. (a) Transmission spectra with different nonlinear phase shifts. The arrows denote the position of side wings. (b) Nonlinear phase shift as a function of coupled peak power. The square denotes experimental data. The black line denotes the case in absent of TPA and free-carrier effects. The blue dash line denotes the case include the effect of TPA only. The red dot line denotes the case include the effect of TPA and free-carrier dispersion (FCD).
Fig. 5.
Fig. 5. (a) Measured output peak power (black squares) as a function of coupled peak power. The red line denotes the theoretical prediction which includes the effect of TPA, and the black line shows the result in the absence of TPA. Free-carrier effects are not included in the theoretical model. (b) Transmission spectra of an 800-nm-diameter CdTe nanowire with coupled peak power from 0.6 W to 7.1 W. Inset shows the coupled peak power depended peak wavelength (black squares) and central wavelength measured at 5 dB cross talk level (red dots).
Fig. 6.
Fig. 6. Calculated two-photon absorption coefficient and nonlinear-index coefficient of CdTe at different wavelength. The black square denotes n2 obtained from experimental data.
Fig. 7.
Fig. 7. (a) Calculate dispersion of a 500-nm-diameter CdTe nanowire, denoting two zero dispersion wavelengths at ∼ 1200 nm and 1800nm respectively. (b) Simulated spectral evolution and temporal evolution along the nanowire at a coupled peak power of 10 W. The pulse width used in the simulation is 100 fs. (c) Simulated transmission spectra of the nanowire with different length at coupled peak power of 10 W.

Tables (1)

Tables Icon

Table 1. Key parameters of SPM in different optical nanowires.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( M 1 / 2 ) π ,
n 2 = ϕ c A e f f P L e f f ω ,
E z + i β 2 2 2 E t 2 = i k 0 n 2 ( 1 + i r ) | E | 2 E σ 2 ( 1 + i μ ) N c E α 2 E ,
I ( L , t ) = I ( 0 , t ) exp ( α L ) 1 + 2 k 0 n 2 r I ( 0 , t ) L e f f ,
Φ ( L , t ) = ( 2 r ) 1 ln [ 1 + 2 k 0 n 2 r I ( 0 , t ) L e f f ] ,
N c ( t ) β I 2 T 0 2 h ν π 8 [ 1 + erf ( 2 t T ) ] ,
Δ n = e 2 λ 2 8 π 2 c 2 ε 0 n [ Δ N e m c e + Δ N h m c h ] ,
β = K E p n 2 E g 3 F 2 ( ω E g ) ,
n 2 = K c E p 2 n 2 E g 4 G 2 ( ω E g ) ,
F 2 ( 2 x ) = ( 2 x 1 ) 3 / 2 ( 2 x ) 5 for 2 x > 1 ,
G 2 ( x ) = 1 ( 2 x ) 6 [ 3 8 x 2 ( 1 x ) 1 2 + 3 x ( 1 x ) 1 2 2 ( 1 x ) 3 2 + 2 Θ ( 1 2 x ) ( 1 2 x ) 3 2 ] ,

Metrics