Abstract

We realize a robust and compact cylindrical vector beam generator that consists of a simple two-element interferometer composed of a beam displacer and a cube beamsplitter. The interferometer operates on the higher-order Poincaré sphere transforming a homogeneously polarized vortex into a cylindrical vector (CV) beam. We experimentally demonstrate the transformation of a single vortex beam into all the well-known CV beams and show the operations on the higher-order Poincaré sphere according to the control parameters. Our method offers an alternative to the Pancharatnam-Berry phase optical elements and has the potential to be implemented as a monolithic device.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude

Sheng Liu, Shuxia Qi, Yi Zhang, Peng Li, Dongjing Wu, Lei Han, and Jianlin Zhao
Photon. Res. 6(4) 228-233 (2018)

Generation of cylindrical vector vortex beams by two cascaded metasurfaces

Xunong Yi, Xiaohui Ling, Zhiyou Zhang, Ying Li, Xinxing Zhou, Yachao Liu, Shizhen Chen, Hailu Luo, and Shuangchun Wen
Opt. Express 22(14) 17207-17215 (2014)

Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere

Shizhen Chen, Xinxing Zhou, Yachao Liu, Xiaohui Ling, Hailu Luo, and Shuangchun Wen
Opt. Lett. 39(18) 5274-5276 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. G. Brown and Q. Zhan, “Focus issue: Unconventional polarization states of light,” Opt. Express 18(10), 10775–10776 (2010).
    [Crossref]
  2. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  3. J. Chen, C. Wan, and Q. Zhan, “Vectorial optical fields: recent advances and future prospects,” Sci. Bull. 63(1), 54–74 (2018).
    [Crossref]
  4. E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré-beam patterns produced by nonseparable superpositions of Laguerre–Gauss and polarization modes of light,” Appl. Opt. 51(15), 2925–2934 (2012).
    [Crossref]
  5. X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, and H.-T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
    [Crossref]
  6. E. Otte, K. Tekce, and C. Denz, “Tailored intensity landscapes by tight focusing of singular vector beams,” Opt. Express 25(17), 20194–20201 (2017).
    [Crossref]
  7. I. Freund, “Polarization flowers,” Opt. Commun. 199(1-4), 47–63 (2001).
    [Crossref]
  8. J. Pu and Z. Zhang, “Tight focusing of spirally polarized vortex beams,” Opt. Laser Technol. 42(1), 186–191 (2010).
    [Crossref]
  9. A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
    [Crossref]
  10. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45(3), 470–479 (2006).
    [Crossref]
  11. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref]
  12. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref]
  13. Z. Man, Z. Bai, J. Li, S. Zhang, X. Li, Y. Zhang, X. Ge, and S. Fu, “Optical cage generated by azimuthal- and radial-variant vector beams,” Appl. Opt. 57(13), 3592–3597 (2018).
    [Crossref]
  14. A. Turpin, V. Shvedov, C. Hnatovsky, Y. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: A reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21(22), 26335–26340 (2013).
    [Crossref]
  15. X. Weng, X. Gao, H. Guo, and S. Zhuang, “Creation of tunable multiple 3d dark spots with cylindrical vector beam,” Appl. Opt. 53(11), 2470–2476 (2014).
    [Crossref]
  16. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
    [Crossref]
  17. C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Opt. Express 21(10), 12651–12656 (2013).
    [Crossref]
  18. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
    [Crossref]
  19. C. Hnatovsky, V. G. Shvedov, N. Shostka, A. V. Rode, and W. Krolikowski, “Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses,” Opt. Lett. 37(2), 226–228 (2012).
    [Crossref]
  20. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [Crossref]
  21. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref]
  22. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
    [Crossref]
  23. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in yb:yag thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
    [Crossref]
  24. C. Rosales-Guzmán, N. Bhebhe, and A. Forbes, “Simultaneous generation of multiple vector beams on a single SLM,” Opt. Express 25(21), 25697–25706 (2017).
    [Crossref]
  25. X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
    [Crossref]
  26. H. Chen, J. Hao, B.-F. Zhang, J. Xu, J. Ding, and H.-T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
    [Crossref]
  27. S.-M. Li, S.-X. Qian, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “An efficient and robust scheme for controlling the states of polarization in a sagnac interferometric configuration,” Europhys. Lett. 105(6), 64006 (2014).
    [Crossref]
  28. R. Liu, L.-J. Kong, W.-R. Qi, S.-Y. Huang, Z.-X. Wang, C. Tu, Y. Li, and H.-T. Wang, “Compact, robust, and high-efficiency generator of vector optical fields,” Opt. Lett. 44(9), 2382–2385 (2019).
    [Crossref]
  29. S. Chen, X. Zhou, Y. Liu, X. Ling, H. Luo, and S. Wen, “Generation of arbitrary cylindrical vector beams on the higher order poincaré sphere,” Opt. Lett. 39(18), 5274–5276 (2014).
    [Crossref]
  30. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
    [Crossref]
  31. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51(10), C1–C6 (2012).
    [Crossref]
  32. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
    [Crossref]
  33. G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order pancharatnam-berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
    [Crossref]
  34. A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Classical and quantum properties of cylindrically polarized states of light,” Opt. Express 19(10), 9714 (2011).
    [Crossref]
  35. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  36. V. Arrizón, G. Méndez, and D. S. de La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13(20), 7913–7927 (2005).
    [Crossref]
  37. A. T. O. Neil and J. Courtial, “Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter,” Opt. Commun. 181(1-3), 35–45 (2000).
    [Crossref]
  38. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).
  39. J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279(2), 235–239 (2007).
    [Crossref]
  40. N. González, G. Molina-Terriza, and J. P. Torres, “How a dove prism transforms the orbital angular momentum of a light beam,” Opt. Express 14(20), 9093 (2006).
    [Crossref]
  41. U. Rivera-Ortega and D. Lopez-Mago, “Simple phase shifting by polarizer rotations in a cube beam-splitter interferometer,” Appl. Opt. 58(4), 1005 (2019).
    [Crossref]
  42. R. A. Chipman, W. T. Lam, and G. Young, Polarized Light and Optical Systems (CRC, 2019).
  43. J. L. Pezzaniti and R. A. Chipman, “Angular dependence of polarizing beam-splitter cubes,” Appl. Opt. 33(10), 1916 (1994).
    [Crossref]
  44. E. Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin-orbit coupling,” Light: Sci. Appl. 7(5), 18009 (2018).
    [Crossref]
  45. A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17(4), 043024 (2015).
    [Crossref]
  46. B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
    [Crossref]
  47. B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, “Quantum computation with classical light: The deutsch algorithm,” Phys. Lett. A 379(28-29), 1675–1680 (2015).
    [Crossref]

2019 (2)

2018 (4)

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

Z. Man, Z. Bai, J. Li, S. Zhang, X. Li, Y. Zhang, X. Ge, and S. Fu, “Optical cage generated by azimuthal- and radial-variant vector beams,” Appl. Opt. 57(13), 3592–3597 (2018).
[Crossref]

J. Chen, C. Wan, and Q. Zhan, “Vectorial optical fields: recent advances and future prospects,” Sci. Bull. 63(1), 54–74 (2018).
[Crossref]

E. Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin-orbit coupling,” Light: Sci. Appl. 7(5), 18009 (2018).
[Crossref]

2017 (3)

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

E. Otte, K. Tekce, and C. Denz, “Tailored intensity landscapes by tight focusing of singular vector beams,” Opt. Express 25(17), 20194–20201 (2017).
[Crossref]

C. Rosales-Guzmán, N. Bhebhe, and A. Forbes, “Simultaneous generation of multiple vector beams on a single SLM,” Opt. Express 25(21), 25697–25706 (2017).
[Crossref]

2016 (1)

A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
[Crossref]

2015 (2)

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17(4), 043024 (2015).
[Crossref]

B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, “Quantum computation with classical light: The deutsch algorithm,” Phys. Lett. A 379(28-29), 1675–1680 (2015).
[Crossref]

2014 (3)

2013 (3)

2012 (4)

2011 (4)

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Classical and quantum properties of cylindrically polarized states of light,” Opt. Express 19(10), 9714 (2011).
[Crossref]

H. Chen, J. Hao, B.-F. Zhang, J. Xu, J. Ding, and H.-T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

2010 (5)

2009 (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

2007 (3)

2006 (2)

2005 (2)

2004 (1)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

2001 (1)

I. Freund, “Polarization flowers,” Opt. Commun. 199(1-4), 47–63 (2001).
[Crossref]

2000 (1)

A. T. O. Neil and J. Courtial, “Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter,” Opt. Commun. 181(1-3), 35–45 (2000).
[Crossref]

1994 (2)

Ahmed, M. A.

Aiello, A.

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17(4), 043024 (2015).
[Crossref]

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Classical and quantum properties of cylindrically polarized states of light,” Opt. Express 19(10), 9714 (2011).
[Crossref]

Alfano, R. R.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order pancharatnam-berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Arrizón, V.

Bai, Z.

Balthasar Mueller, J. P.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Barnett, S. M.

Bhebhe, N.

Biss, D. P.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Brown, T. G.

Capasso, F.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Cardano, F.

Chen, H.

Chen, J.

J. Chen, C. Wan, and Q. Zhan, “Vectorial optical fields: recent advances and future prospects,” Sci. Bull. 63(1), 54–74 (2018).
[Crossref]

X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, and H.-T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
[Crossref]

Chen, S.

Chipman, R. A.

Chujo, K.

Courtial, J.

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref]

A. T. O. Neil and J. Courtial, “Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter,” Opt. Commun. 181(1-3), 35–45 (2000).
[Crossref]

Cox, M. A.

de La-Llave, D. S.

de Lisio, C.

Denz, C.

E. Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin-orbit coupling,” Light: Sci. Appl. 7(5), 18009 (2018).
[Crossref]

E. Otte, K. Tekce, and C. Denz, “Tailored intensity landscapes by tight focusing of singular vector beams,” Opt. Express 25(17), 20194–20201 (2017).
[Crossref]

Devlin, R. C.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Ding, J.

Evans, S.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order pancharatnam-berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref]

Ferrari, J. A.

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279(2), 235–239 (2007).
[Crossref]

Forbes, A.

E. Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin-orbit coupling,” Light: Sci. Appl. 7(5), 18009 (2018).
[Crossref]

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

C. Rosales-Guzmán, N. Bhebhe, and A. Forbes, “Simultaneous generation of multiple vector beams on a single SLM,” Opt. Express 25(21), 25697–25706 (2017).
[Crossref]

B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, “Quantum computation with classical light: The deutsch algorithm,” Phys. Lett. A 379(28-29), 1675–1680 (2015).
[Crossref]

Francis, J.

B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, “Quantum computation with classical light: The deutsch algorithm,” Phys. Lett. A 379(28-29), 1675–1680 (2015).
[Crossref]

Franke-Arnold, S.

Freund, I.

I. Freund, “Polarization flowers,” Opt. Commun. 199(1-4), 47–63 (2001).
[Crossref]

Frins, E. M.

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279(2), 235–239 (2007).
[Crossref]

Fu, S.

Gabriel, C.

Galvez, E. J.

Gao, X.

Ge, X.

Giacobino, E.

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17(4), 043024 (2015).
[Crossref]

Gibson, G.

González, N.

Graf, T.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Groever, B.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Guo, C.-S.

Guo, H.

Hamazaki, J.

Hao, J.

Hell, S. W.

Hernandez-Aranda, R. I.

B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, “Quantum computation with classical light: The deutsch algorithm,” Phys. Lett. A 379(28-29), 1675–1680 (2015).
[Crossref]

Hnatovsky, C.

Holleczek, A.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Huang, S.-Y.

Karimi, E.

Khadka, S.

Khonina, S. N.

A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
[Crossref]

Kobayashi, Y.

Kong, L.-J.

R. Liu, L.-J. Kong, W.-R. Qi, S.-Y. Huang, Z.-X. Wang, C. Tu, Y. Li, and H.-T. Wang, “Compact, robust, and high-efficiency generator of vector optical fields,” Opt. Lett. 44(9), 2382–2385 (2019).
[Crossref]

S.-M. Li, S.-X. Qian, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “An efficient and robust scheme for controlling the states of polarization in a sagnac interferometric configuration,” Europhys. Lett. 105(6), 64006 (2014).
[Crossref]

Konrad, T.

B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, “Quantum computation with classical light: The deutsch algorithm,” Phys. Lett. A 379(28-29), 1675–1680 (2015).
[Crossref]

Kozawa, Y.

Kraus, M.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Krolikowski, W.

Lam, W. T.

R. A. Chipman, W. T. Lam, and G. Young, Polarized Light and Optical Systems (CRC, 2019).

Leuchs, G.

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17(4), 043024 (2015).
[Crossref]

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Classical and quantum properties of cylindrically polarized states of light,” Opt. Express 19(10), 9714 (2011).
[Crossref]

Li, J.

Li, S.-M.

S.-M. Li, S.-X. Qian, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “An efficient and robust scheme for controlling the states of polarization in a sagnac interferometric configuration,” Europhys. Lett. 105(6), 64006 (2014).
[Crossref]

Li, X.

Li, Y.

Ling, X.

Liu, R.

Liu, Y.

Loiko, Y. V.

Lopez-Mago, D.

Luo, H.

Man, Z.

Marquardt, C.

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17(4), 043024 (2015).
[Crossref]

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Classical and quantum properties of cylindrically polarized states of light,” Opt. Express 19(10), 9714 (2011).
[Crossref]

Marrucci, L.

McLaren, M.

B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, “Quantum computation with classical light: The deutsch algorithm,” Phys. Lett. A 379(28-29), 1675–1680 (2015).
[Crossref]

Méndez, G.

Michalowski, A.

Milione, G.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order pancharatnam-berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Molina-Terriza, G.

Mompart, J.

Morita, R.

Nape, I.

Ndagano, B.

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

E. Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin-orbit coupling,” Light: Sci. Appl. 7(5), 18009 (2018).
[Crossref]

Neil, A. T. O.

A. T. O. Neil and J. Courtial, “Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter,” Opt. Commun. 181(1-3), 35–45 (2000).
[Crossref]

Ni, W.-J.

Nolan, D. A.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order pancharatnam-berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Nomoto, S.

Omatsu, T.

Otte, E.

E. Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin-orbit coupling,” Light: Sci. Appl. 7(5), 18009 (2018).
[Crossref]

E. Otte, K. Tekce, and C. Denz, “Tailored intensity landscapes by tight focusing of singular vector beams,” Opt. Express 25(17), 20194–20201 (2017).
[Crossref]

Padgett, M. J.

Pas’ko, V.

Perez-Garcia, B.

B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, “Quantum computation with classical light: The deutsch algorithm,” Phys. Lett. A 379(28-29), 1675–1680 (2015).
[Crossref]

Pezzaniti, J. L.

Porfirev, A. P.

A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
[Crossref]

Pu, J.

J. Pu and Z. Zhang, “Tight focusing of spirally polarized vortex beams,” Opt. Laser Technol. 42(1), 186–191 (2010).
[Crossref]

Qi, W.-R.

Qian, S.-X.

S.-M. Li, S.-X. Qian, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “An efficient and robust scheme for controlling the states of polarization in a sagnac interferometric configuration,” Europhys. Lett. 105(6), 64006 (2014).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Ren, Z.-C.

S.-M. Li, S.-X. Qian, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “An efficient and robust scheme for controlling the states of polarization in a sagnac interferometric configuration,” Europhys. Lett. 105(6), 64006 (2014).
[Crossref]

Rivera-Ortega, U.

Rode, A. V.

Rosales-Guzman, C.

Rosales-Guzmán, C.

E. Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin-orbit coupling,” Light: Sci. Appl. 7(5), 18009 (2018).
[Crossref]

C. Rosales-Guzmán, N. Bhebhe, and A. Forbes, “Simultaneous generation of multiple vector beams on a single SLM,” Opt. Express 25(21), 25697–25706 (2017).
[Crossref]

Rubin, N. A.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Santamato, E.

Sato, S.

Schubert, W. H.

Shostka, N.

Shvedov, V.

Shvedov, V. G.

Slussarenko, S.

Sztul, H. I.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Tanda, S.

Tekce, K.

Töppel, F.

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17(4), 043024 (2015).
[Crossref]

Torres, J. P.

Tu, C.

R. Liu, L.-J. Kong, W.-R. Qi, S.-Y. Huang, Z.-X. Wang, C. Tu, Y. Li, and H.-T. Wang, “Compact, robust, and high-efficiency generator of vector optical fields,” Opt. Lett. 44(9), 2382–2385 (2019).
[Crossref]

S.-M. Li, S.-X. Qian, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “An efficient and robust scheme for controlling the states of polarization in a sagnac interferometric configuration,” Europhys. Lett. 105(6), 64006 (2014).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Turpin, A.

Ustinov, A. V.

A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
[Crossref]

Vasnetsov, M.

Vogel, M. M.

Voss, A.

Wan, C.

J. Chen, C. Wan, and Q. Zhan, “Vectorial optical fields: recent advances and future prospects,” Sci. Bull. 63(1), 54–74 (2018).
[Crossref]

Wang, H.-T.

Wang, X.-L.

Wang, Z.-X.

Weber, R.

Wen, S.

Weng, X.

Wichmann, J.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Xu, J.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).

Young, G.

R. A. Chipman, W. T. Lam, and G. Young, Polarized Light and Optical Systems (CRC, 2019).

Youngworth, K. S.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Zhan, Q.

J. Chen, C. Wan, and Q. Zhan, “Vectorial optical fields: recent advances and future prospects,” Sci. Bull. 63(1), 54–74 (2018).
[Crossref]

T. G. Brown and Q. Zhan, “Focus issue: Unconventional polarization states of light,” Opt. Express 18(10), 10775–10776 (2010).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Zhang, B.-F.

Zhang, S.

Zhang, Y.

Zhang, Z.

J. Pu and Z. Zhang, “Tight focusing of spirally polarized vortex beams,” Opt. Laser Technol. 42(1), 186–191 (2010).
[Crossref]

Zhou, X.

Zhuang, S.

Adv. Opt. Photonics (2)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Appl. Opt. (7)

Europhys. Lett. (1)

S.-M. Li, S.-X. Qian, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “An efficient and robust scheme for controlling the states of polarization in a sagnac interferometric configuration,” Europhys. Lett. 105(6), 64006 (2014).
[Crossref]

J. Lightwave Technol. (1)

Light: Sci. Appl. (1)

E. Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin-orbit coupling,” Light: Sci. Appl. 7(5), 18009 (2018).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

New J. Phys. (1)

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17(4), 043024 (2015).
[Crossref]

Opt. Commun. (3)

A. T. O. Neil and J. Courtial, “Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter,” Opt. Commun. 181(1-3), 35–45 (2000).
[Crossref]

I. Freund, “Polarization flowers,” Opt. Commun. 199(1-4), 47–63 (2001).
[Crossref]

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279(2), 235–239 (2007).
[Crossref]

Opt. Express (12)

E. Otte, K. Tekce, and C. Denz, “Tailored intensity landscapes by tight focusing of singular vector beams,” Opt. Express 25(17), 20194–20201 (2017).
[Crossref]

C. Rosales-Guzmán, N. Bhebhe, and A. Forbes, “Simultaneous generation of multiple vector beams on a single SLM,” Opt. Express 25(21), 25697–25706 (2017).
[Crossref]

C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Opt. Express 21(10), 12651–12656 (2013).
[Crossref]

A. Turpin, V. Shvedov, C. Hnatovsky, Y. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: A reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21(22), 26335–26340 (2013).
[Crossref]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
[Crossref]

T. G. Brown and Q. Zhan, “Focus issue: Unconventional polarization states of light,” Opt. Express 18(10), 10775–10776 (2010).
[Crossref]

X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, and H.-T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
[Crossref]

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref]

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Classical and quantum properties of cylindrically polarized states of light,” Opt. Express 19(10), 9714 (2011).
[Crossref]

N. González, G. Molina-Terriza, and J. P. Torres, “How a dove prism transforms the orbital angular momentum of a light beam,” Opt. Express 14(20), 9093 (2006).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref]

V. Arrizón, G. Méndez, and D. S. de La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13(20), 7913–7927 (2005).
[Crossref]

Opt. Laser Technol. (1)

J. Pu and Z. Zhang, “Tight focusing of spirally polarized vortex beams,” Opt. Laser Technol. 42(1), 186–191 (2010).
[Crossref]

Opt. Lett. (8)

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[Crossref]

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in yb:yag thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
[Crossref]

X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
[Crossref]

H. Chen, J. Hao, B.-F. Zhang, J. Xu, J. Ding, and H.-T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
[Crossref]

C. Hnatovsky, V. G. Shvedov, N. Shostka, A. V. Rode, and W. Krolikowski, “Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses,” Opt. Lett. 37(2), 226–228 (2012).
[Crossref]

R. Liu, L.-J. Kong, W.-R. Qi, S.-Y. Huang, Z.-X. Wang, C. Tu, Y. Li, and H.-T. Wang, “Compact, robust, and high-efficiency generator of vector optical fields,” Opt. Lett. 44(9), 2382–2385 (2019).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref]

S. Chen, X. Zhou, Y. Liu, X. Ling, H. Luo, and S. Wen, “Generation of arbitrary cylindrical vector beams on the higher order poincaré sphere,” Opt. Lett. 39(18), 5274–5276 (2014).
[Crossref]

Phys. Lett. A (1)

B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, “Quantum computation with classical light: The deutsch algorithm,” Phys. Lett. A 379(28-29), 1675–1680 (2015).
[Crossref]

Phys. Rev. Lett. (3)

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order pancharatnam-berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref]

Sci. Bull. (1)

J. Chen, C. Wan, and Q. Zhan, “Vectorial optical fields: recent advances and future prospects,” Sci. Bull. 63(1), 54–74 (2018).
[Crossref]

Sci. Rep. (1)

A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
[Crossref]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Other (2)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).

R. A. Chipman, W. T. Lam, and G. Young, Polarized Light and Optical Systems (CRC, 2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Top view of the experimental scheme to generate CV beams. The input beam shown in the inset corresponds to an LG beam with homogeneous polarization. The LG beam passes through our two-element interferometer composed of a beam displacer (BD) and a cube beamsplitter (BS), Transverse lines and dots are used to indicate the horizontal and vertical polarization directions, respectively. The quarter-wave plate (QWP) is used to change the polarization basis. The output $\mathbf {U_{3}}$ is a CV beam as represented by the inset.
Fig. 2.
Fig. 2. Experimentally generated cylindrical vector beams. The results show the polarization distribution and their corresponding Stokes parameters. (a) Azimuthally-polarized CV beam produced with $m=-1$, $\alpha =\pi /4$, and $\theta =0$ in Eq. (8), (b) Radially-polarized CV beam $(m=-1, \, \alpha =-\pi /4, \, \theta =0 )$. Theoretical (up) and experimental (down) Stokes images.
Fig. 3.
Fig. 3. Experimental measurement of the output polarization patterns according to the polarization (top row) and topological charge (left column) of the input beam $\mathbf {U_{in}}$.
Fig. 4.
Fig. 4. Experimentally generated higher-order polarization singularities. (a) a two-fold vectorial flower and (b) a six-fold vectorial spider web. Theoretical (up) and experimental (down) Stokes images.
Fig. 5.
Fig. 5. Visual representation of the input and output polarization states and their transformations on the higher-order Poincaré sphere. Input and their respective output polarizations states are indicated by different color markers. The arrows indicate the increasing direction of the parameters in the intervals $\alpha =[0,2\pi ]$ (red arrows) and $\theta =[-\pi /2,\pi /2]$ (blue arrows). (a) Input polarization state on the Poincaré sphere (PS). The corresponding output polarization distributions are represented on the higher-order Poincaré sphere (HPS) for (b) $m=1$ and (c) $m=-1$.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E ( r ) = 1 2 [ L G m ( r ) c ^ R + exp ( i β ) L G m ( r ) c ^ L ] .
U i n = L G m e ^ = L G m ( cos α x ^ + exp ( i θ ) sin α y ^ ) ,
L G m = C m ( r / w 0 ) | m | exp ( r 2 / w 0 2 ) exp ( i m ϕ ) ,
U 1 = cos α L G m x ^ ,
U 2 = exp ( i θ ) sin α L G m y ^ .
U 3 = 1 2 [ i cos α L G m x ^ + sin α exp ( i θ ) L G m y ^ ] ,
U 4 = 1 2 [ cos α L G m x ^ + i sin α exp ( i θ ) L G m y ^ ] .
U 3 = i 2 [ cos α LG m c ^ R sin α exp ( i θ ) LG m c ^ L ] ,
U 4 = 1 2 [ cos α LG m c ^ R + sin α exp ( i θ ) LG m c ^ L ] ,
S 0 ( x , y ) = I H ( x , y ) + I V ( x , y ) = I ( x , y ) ,
S 1 ( x , y ) = I H ( x , y ) I V ( x , y ) ,
S 2 ( x , y ) = I D ( x , y ) I A ( x , y ) ,
S 3 ( x , y ) = I R ( x , y ) I L ( x , y ) ,
Ψ = 1 2 arctan ( S 2 S 1 ) ,
ε = | S 3 | S 1 2 + S 2 2 + S 3 2 + S 1 2 + S 2 2 ,
S 1 = sin ( 2 α ) cos ( θ ) ,
S 2 = sin ( 2 α ) sin ( θ ) ,
S 3 = cos 2 ( α ) sin 2 ( α ) .

Metrics