Abstract

Perovskite solar cells have shown a tremendous interest for photovoltaics since the past decade. However, little is known on the influence of light management using photonic crystals inside such structures. We present here numerical simulations showing the effect of photonic crystal structuring on the integrated quantum efficiency of perovskite solar cells. The photo-active layer is made of an opal-like perovskite structure (monolayer, bilayer or trilayer of perovskite spheres) built in a $TiO_2$ matrix. Fano resonances are exploited in order to enhance the absorption, especially near the bandgap of perovskite material. The excitation of quasi-guided modes inside the absorbing spheres enhances the integrated quantum efficiency and the photonic enhancement factor. More specifically, a photonic enhancement factor as high as $6.4\%$ is predicted in the case of spheres monolayer compared to an unstructured perovskite layer. The influences of sphere’s radius and incident angle on the absorbing properties are also estimated. Those numerical results can be applied to the nascent field of photonic structuring inside perovskite solar cells.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of light harvesting efficiency of perovskite solar cells by using one-dimensional photonic crystals

Bipin K Singh, Ashish Bijalwan, and Vipul Rastogi
Appl. Opt. 58(29) 8046-8054 (2019)

Efficient and environmental-friendly perovskite solar cells via embedding plasmonic nanoparticles: an optical simulation study on realistic device architectures

George Perrakis, George Kakavelakis, George Kenanakis, Constantinos Petridis, Emmanuel Stratakis, Maria Kafesaki, and Emmanuel Kymakis
Opt. Express 27(22) 31144-31163 (2019)

Light management in perovskite solar cells and organic LEDs with microlens arrays

Akshit Peer, Rana Biswas, Joong-Mok Park, Ruth Shinar, and Joseph Shinar
Opt. Express 25(9) 10704-10709 (2017)

References

  • View by:
  • |
  • |
  • |

  1. “Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL, https://www.nrel.gov/pv/cell-efficiency.html , 2019-06-05,“.
  2. S. Basu Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
    [Crossref]
  3. M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref]
  4. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
    [Crossref]
  5. X. Meng, V. Depauw, G. Gomard, O. E. Daif, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design , fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4), A465–A475 (2012).
    [Crossref]
  6. J. D. Joannopoulos, Photonic crystals : molding the flow of light (Princeton University, 2008).
  7. X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin- fi lm Si solar cells : Modeling , process and optimizations,” Opt. Commun. 314, 41–47 (2014).
    [Crossref]
  8. R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt. 14(2), 024003 (2012).
    [Crossref]
  9. Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
    [Crossref]
  10. A. Mihi, M. E. Calvo, J. A. Anta, and H. Mi, “Spectral Response of Opal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
    [Crossref]
  11. A. Mihi and H. Mi, “Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
    [Crossref]
  12. L. Ha, M. Ocan, B. S. Colodrero, G. Boschloo, and A. Hagfeldt, “Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells,” Adv. Mater. 21(7), 764–770 (2009).
    [Crossref]
  13. G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and V. Se, “Theoretical Analysis of the Performance of One-Dimensional Photonic Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
    [Crossref]
  14. S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
    [Crossref]
  15. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  16. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  17. S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
    [Crossref]
  18. N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27(10), 105302 (2016).
    [Crossref]
  19. M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
    [Crossref]
  20. M. F. Limonov and R. M. De La Rue, Optical properties of photonic structures : interplay of order and disorder (CRC, 2012).
  21. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
    [Crossref]
  22. M. V. Rybin, K. B. Samusev, I. S. Sinev, G. Semouchkin, E. Semouchkina, Y. S. Kivshar, and M. F. Limonov, “Mie scattering as a cascade of Fano resonances,” Opt. Express 21(24), 30107–30113 (2013).
    [Crossref]
  23. A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
    [Crossref]
  24. M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93(5), 053837 (2016).
    [Crossref]
  25. S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [Crossref]
  26. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
    [Crossref]
  27. D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
    [Crossref]
  28. D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
    [Crossref]
  29. A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, “Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2),” Meeting Abstracts MA2006-0, 397 (2006).
  30. M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
    [Crossref]
  31. L. Lang, J.-H. Yang, H.-R. Liu, H. Xiang, and X. Gong, “First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites,” Phys. Lett. A 378(3), 290–293 (2014).
    [Crossref]
  32. M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
    [Crossref]
  33. P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
    [Crossref]
  34. S. Schünemann, K. Chen, S. Brittman, E. Garnett, and H. Tüysüz, “Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications,” ACS Appl. Mater. Interfaces 8(38), 25489–25495 (2016).
    [Crossref]
  35. K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
    [Crossref]
  36. B.-X. Chen, H.-S. Rao, H.-Y. Chen, W.-G. Li, D.-B. Kuang, and C.-Y. Su, “Ordered macroporous CH 3 NH 3 PbI 3 perovskite semitransparent film for high-performance solar cells,” J. Mater. Chem. A 4(40), 15662–15669 (2016).
    [Crossref]
  37. S.-J. Ha, J. H. Heo, S. H. Im, and J. H. Moon, “Mesoscopic CH 3NH 3PbI 3 perovskite solar cells using TiO 2inverse opal electron-conducting scaffolds,” J. Mater. Chem. A 5(5), 1972–1977 (2017).
    [Crossref]
  38. K. Chen and H. Tüysüz, “Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals,” Angew. Chem., Int. Ed. 54(46), 13806–13810 (2015).
    [Crossref]
  39. J. Dewalque, C. Henrist, and J. Loicq, “Light-harvesting capabilities of dielectric sphere multilayers,” Photonic and Phononic Properties of Engineered Nanostructures VIII, A. Adibi, S.-Y. Lin, and A. Scherer, eds. (SPIE, 2018), p. 72.
  40. R. Schmager, I. Hossain, F. Schackmar, B. Richards, G. Gomard, and U. Paetzold, “Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells,” Sol. Energy Mater. Sol. Cells 201, 110080 (2019).
    [Crossref]
  41. R. Schmager, G. Gomard, B. S. Richards, and U. W. Paetzold, “Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells,” Sol. Energy Mater. Sol. Cells 192, 65–71 (2019).
    [Crossref]
  42. M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
    [Crossref]
  43. J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
    [Crossref]
  44. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B: Condens. Matter Mater. Phys. 86(23), 235147 (2012).
    [Crossref]
  45. I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin, “Functional materials, device architecture, and flexibility of perovskite solar cell,” Emergent Mater. 1(3-4), 133–154 (2018).
    [Crossref]
  46. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811 (1981).
    [Crossref]
  47. M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22(10), 12678 (2014).
    [Crossref]
  48. We used here iQE with a lower case for our integrated quantum efficiency (photonic quantity) in order to avoid any confusion with IQE usually referred as internal quantum efficiency. The later includes the number of electron collected by a solar cell, is consequently an electric quantity and we do not aim to characterize the electric properties of the PSC in the present study.
  49. A. Herman, C. Trompoukis, V. Depauw, O. E. Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112(11), 113107 (2012).
    [Crossref]
  50. A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
    [Crossref]
  51. K.-H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18(10), 10369 (2010).
    [Crossref]
  52. S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [Crossref]
  53. S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21(8), 549 (1996).
    [Crossref]
  54. M. Lopez-Garcia, J. Galisteo-Lopez, C. Lopez, and A. Garcia-Martin, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(23), 235145 (2012).
    [Crossref]
  55. S. Sandhu, Z. Yu, and S. Fan, “Detailed balance analysis of nanophotonic solar cells,” Opt. Express 21(1), 1209 (2013).
    [Crossref]
  56. W. E. Sha, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
    [Crossref]
  57. M. Lobet, N. Reckinger, L. Henrard, and P. Lambin, “Robust electromagnetic absorption by graphene/polymer heterostructures,” Nanotechnology 26(28), 285702 (2015).
    [Crossref]

2019 (2)

R. Schmager, I. Hossain, F. Schackmar, B. Richards, G. Gomard, and U. Paetzold, “Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells,” Sol. Energy Mater. Sol. Cells 201, 110080 (2019).
[Crossref]

R. Schmager, G. Gomard, B. S. Richards, and U. W. Paetzold, “Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells,” Sol. Energy Mater. Sol. Cells 192, 65–71 (2019).
[Crossref]

2018 (2)

M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
[Crossref]

I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin, “Functional materials, device architecture, and flexibility of perovskite solar cell,” Emergent Mater. 1(3-4), 133–154 (2018).
[Crossref]

2017 (2)

S.-J. Ha, J. H. Heo, S. H. Im, and J. H. Moon, “Mesoscopic CH 3NH 3PbI 3 perovskite solar cells using TiO 2inverse opal electron-conducting scaffolds,” J. Mater. Chem. A 5(5), 1972–1977 (2017).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

2016 (6)

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27(10), 105302 (2016).
[Crossref]

M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93(5), 053837 (2016).
[Crossref]

S. Schünemann, K. Chen, S. Brittman, E. Garnett, and H. Tüysüz, “Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications,” ACS Appl. Mater. Interfaces 8(38), 25489–25495 (2016).
[Crossref]

K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
[Crossref]

B.-X. Chen, H.-S. Rao, H.-Y. Chen, W.-G. Li, D.-B. Kuang, and C.-Y. Su, “Ordered macroporous CH 3 NH 3 PbI 3 perovskite semitransparent film for high-performance solar cells,” J. Mater. Chem. A 4(40), 15662–15669 (2016).
[Crossref]

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

2015 (7)

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref]

K. Chen and H. Tüysüz, “Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals,” Angew. Chem., Int. Ed. 54(46), 13806–13810 (2015).
[Crossref]

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

W. E. Sha, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

M. Lobet, N. Reckinger, L. Henrard, and P. Lambin, “Robust electromagnetic absorption by graphene/polymer heterostructures,” Nanotechnology 26(28), 285702 (2015).
[Crossref]

2014 (6)

M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22(10), 12678 (2014).
[Crossref]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref]

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin- fi lm Si solar cells : Modeling , process and optimizations,” Opt. Commun. 314, 41–47 (2014).
[Crossref]

L. Lang, J.-H. Yang, H.-R. Liu, H. Xiang, and X. Gong, “First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites,” Phys. Lett. A 378(3), 290–293 (2014).
[Crossref]

2013 (3)

2012 (6)

M. Lopez-Garcia, J. Galisteo-Lopez, C. Lopez, and A. Garcia-Martin, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(23), 235145 (2012).
[Crossref]

X. Meng, V. Depauw, G. Gomard, O. E. Daif, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design , fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4), A465–A475 (2012).
[Crossref]

R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt. 14(2), 024003 (2012).
[Crossref]

A. Herman, C. Trompoukis, V. Depauw, O. E. Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112(11), 113107 (2012).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B: Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

2011 (1)

S. Basu Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

2010 (5)

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref]

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and V. Se, “Theoretical Analysis of the Performance of One-Dimensional Photonic Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
[Crossref]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[Crossref]

K.-H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18(10), 10369 (2010).
[Crossref]

2009 (3)

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref]

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

L. Ha, M. Ocan, B. S. Colodrero, G. Boschloo, and A. Hagfeldt, “Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

2008 (2)

A. Mihi, M. E. Calvo, J. A. Anta, and H. Mi, “Spectral Response of Opal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[Crossref]

2006 (1)

A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, “Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2),” Meeting Abstracts MA2006-0, 397 (2006).

2005 (1)

A. Mihi and H. Mi, “Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[Crossref]

2002 (1)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

2001 (1)

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[Crossref]

1996 (1)

1981 (1)

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Abate, A.

M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
[Crossref]

Agrawal, M.

S. Basu Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[Crossref]

Albrecht, S.

M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
[Crossref]

Anta, J. A.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Mi, “Spectral Response of Opal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

Ball, J. M.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Ballif, C.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Basu Mallick, S.

S. Basu Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

Bo, X.-Z.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[Crossref]

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B: Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Boschloo, G.

L. Ha, M. Ocan, B. S. Colodrero, G. Boschloo, and A. Hagfeldt, “Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

Brenner, K.-H.

Brittman, S.

S. Schünemann, K. Chen, S. Brittman, E. Garnett, and H. Tüysüz, “Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications,” ACS Appl. Mater. Interfaces 8(38), 25489–25495 (2016).
[Crossref]

Broderick, L. Z.

X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin- fi lm Si solar cells : Modeling , process and optimizations,” Opt. Commun. 314, 41–47 (2014).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref]

Calvo, M. E.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and V. Se, “Theoretical Analysis of the Performance of One-Dimensional Photonic Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

A. Mihi, M. E. Calvo, J. A. Anta, and H. Mi, “Spectral Response of Opal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

Campione, S.

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

Capolino, F.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27(10), 105302 (2016).
[Crossref]

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

Caulier, O.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and V. Se, “Theoretical Analysis of the Performance of One-Dimensional Photonic Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

Chen, B.-X.

B.-X. Chen, H.-S. Rao, H.-Y. Chen, W.-G. Li, D.-B. Kuang, and C.-Y. Su, “Ordered macroporous CH 3 NH 3 PbI 3 perovskite semitransparent film for high-performance solar cells,” J. Mater. Chem. A 4(40), 15662–15669 (2016).
[Crossref]

Chen, G.

K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
[Crossref]

K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
[Crossref]

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref]

Chen, H.-Y.

B.-X. Chen, H.-S. Rao, H.-Y. Chen, W.-G. Li, D.-B. Kuang, and C.-Y. Su, “Ordered macroporous CH 3 NH 3 PbI 3 perovskite semitransparent film for high-performance solar cells,” J. Mater. Chem. A 4(40), 15662–15669 (2016).
[Crossref]

Chen, K.

S. Schünemann, K. Chen, S. Brittman, E. Garnett, and H. Tüysüz, “Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications,” ACS Appl. Mater. Interfaces 8(38), 25489–25495 (2016).
[Crossref]

K. Chen and H. Tüysüz, “Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals,” Angew. Chem., Int. Ed. 54(46), 13806–13810 (2015).
[Crossref]

Chen, L.

W. E. Sha, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

Chikamatsu, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Choy, W. C.

W. E. Sha, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

Colodrero, B. S.

L. Ha, M. Ocan, B. S. Colodrero, G. Boschloo, and A. Hagfeldt, “Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

Colodrero, S.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and V. Se, “Theoretical Analysis of the Performance of One-Dimensional Photonic Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

Correa-Baena, J.-P.

M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
[Crossref]

Crossland, E. J. W.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Cui, Y.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref]

Daif, O. E.

A. Herman, C. Trompoukis, V. Depauw, O. E. Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112(11), 113107 (2012).
[Crossref]

X. Meng, V. Depauw, G. Gomard, O. E. Daif, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design , fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4), A465–A475 (2012).
[Crossref]

de Ceglia, D.

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

De La Rue, R. M.

M. F. Limonov and R. M. De La Rue, Optical properties of photonic structures : interplay of order and disorder (CRC, 2012).

De Wolf, S.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Deparis, O.

M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22(10), 12678 (2014).
[Crossref]

A. Herman, C. Trompoukis, V. Depauw, O. E. Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112(11), 113107 (2012).
[Crossref]

Depauw, V.

A. Herman, C. Trompoukis, V. Depauw, O. E. Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112(11), 113107 (2012).
[Crossref]

X. Meng, V. Depauw, G. Gomard, O. E. Daif, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design , fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4), A465–A475 (2012).
[Crossref]

Desimone, J. M.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Dewalque, J.

J. Dewalque, C. Henrist, and J. Loicq, “Light-harvesting capabilities of dielectric sphere multilayers,” Photonic and Phononic Properties of Engineered Nanostructures VIII, A. Adibi, S.-Y. Lin, and A. Scherer, eds. (SPIE, 2018), p. 72.

Dross, F.

Drouard, E.

Duché, D.

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

Fan, S.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref]

S. Sandhu, Z. Yu, and S. Fan, “Detailed balance analysis of nanophotonic solar cells,” Opt. Express 21(1), 1209 (2013).
[Crossref]

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fave, A.

Filipic, M.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Friend, R. H.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
[Crossref]

Fujimoto, S.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Fujiseki, T.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Fujita, M.

Fujiwara, H.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Galisteo-Lopez, J.

M. Lopez-Garcia, J. Galisteo-Lopez, C. Lopez, and A. Garcia-Martin, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(23), 235145 (2012).
[Crossref]

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

Gao, S.

K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
[Crossref]

Garcia-Martin, A.

M. Lopez-Garcia, J. Galisteo-Lopez, C. Lopez, and A. Garcia-Martin, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(23), 235145 (2012).
[Crossref]

Garnett, E.

S. Schünemann, K. Chen, S. Brittman, E. Garnett, and H. Tüysüz, “Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications,” ACS Appl. Mater. Interfaces 8(38), 25489–25495 (2016).
[Crossref]

Gaylord, T. K.

Gomard, G.

R. Schmager, I. Hossain, F. Schackmar, B. Richards, G. Gomard, and U. Paetzold, “Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells,” Sol. Energy Mater. Sol. Cells 201, 110080 (2019).
[Crossref]

R. Schmager, G. Gomard, B. S. Richards, and U. W. Paetzold, “Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells,” Sol. Energy Mater. Sol. Cells 192, 65–71 (2019).
[Crossref]

X. Meng, V. Depauw, G. Gomard, O. E. Daif, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design , fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4), A465–A475 (2012).
[Crossref]

Gong, X.

L. Lang, J.-H. Yang, H.-R. Liu, H. Xiang, and X. Gong, “First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites,” Phys. Lett. A 378(3), 290–293 (2014).
[Crossref]

Gordon, I.

Gourgon, C.

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

Green, M. A.

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

Guclu, C.

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

Guldin, S.

S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
[Crossref]

Ha, L.

L. Ha, M. Ocan, B. S. Colodrero, G. Boschloo, and A. Hagfeldt, “Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

Ha, S.-J.

S.-J. Ha, J. H. Heo, S. H. Im, and J. H. Moon, “Mesoscopic CH 3NH 3PbI 3 perovskite solar cells using TiO 2inverse opal electron-conducting scaffolds,” J. Mater. Chem. A 5(5), 1972–1977 (2017).
[Crossref]

Hagfeldt, A.

L. Ha, M. Ocan, B. S. Colodrero, G. Boschloo, and A. Hagfeldt, “Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

Han, S. E.

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref]

Hara, S.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Henrard, L.

M. Lobet, N. Reckinger, L. Henrard, and P. Lambin, “Robust electromagnetic absorption by graphene/polymer heterostructures,” Nanotechnology 26(28), 285702 (2015).
[Crossref]

M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22(10), 12678 (2014).
[Crossref]

Henrist, C.

J. Dewalque, C. Henrist, and J. Loicq, “Light-harvesting capabilities of dielectric sphere multilayers,” Photonic and Phononic Properties of Engineered Nanostructures VIII, A. Adibi, S.-Y. Lin, and A. Scherer, eds. (SPIE, 2018), p. 72.

Heo, J. H.

S.-J. Ha, J. H. Heo, S. H. Im, and J. H. Moon, “Mesoscopic CH 3NH 3PbI 3 perovskite solar cells using TiO 2inverse opal electron-conducting scaffolds,” J. Mater. Chem. A 5(5), 1972–1977 (2017).
[Crossref]

Herman, A.

A. Herman, C. Trompoukis, V. Depauw, O. E. Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112(11), 113107 (2012).
[Crossref]

Ho-Baillie, A.

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref]

Hörantner, M. T.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Hossain, I.

R. Schmager, I. Hossain, F. Schackmar, B. Richards, G. Gomard, and U. Paetzold, “Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells,” Sol. Energy Mater. Sol. Cells 201, 110080 (2019).
[Crossref]

Hussain, I.

I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin, “Functional materials, device architecture, and flexibility of perovskite solar cell,” Emergent Mater. 1(3-4), 133–154 (2018).
[Crossref]

Huttner, S.

S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
[Crossref]

Hüttner, S.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Im, S. H.

S.-J. Ha, J. H. Heo, S. H. Im, and J. H. Moon, “Mesoscopic CH 3NH 3PbI 3 perovskite solar cells using TiO 2inverse opal electron-conducting scaffolds,” J. Mater. Chem. A 5(5), 1972–1977 (2017).
[Crossref]

Inoue, M.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref]

Islam, N.

I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin, “Functional materials, device architecture, and flexibility of perovskite solar cell,” Emergent Mater. 1(3-4), 133–154 (2018).
[Crossref]

Jaksik, J.

I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin, “Functional materials, device architecture, and flexibility of perovskite solar cell,” Emergent Mater. 1(3-4), 133–154 (2018).
[Crossref]

Jamois, C.

Jiang, Y.

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref]

Joannopoulos, J.

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, Photonic crystals : molding the flow of light (Princeton University, 2008).

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B: Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Johnston, M. B.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Kadowaki, H.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Kato, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Kawamoto, Y.

Khanikaev, A. B.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref]

Khine, M.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27(10), 105302 (2016).
[Crossref]

Kimerling, L. C.

X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin- fi lm Si solar cells : Modeling , process and optimizations,” Opt. Commun. 314, 41–47 (2014).
[Crossref]

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

M. V. Rybin, K. B. Samusev, I. S. Sinev, G. Semouchkin, E. Semouchkina, Y. S. Kivshar, and M. F. Limonov, “Mie scattering as a cascade of Fano resonances,” Opt. Express 21(24), 30107–30113 (2013).
[Crossref]

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

Ko, D. H.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Kojima, A.

A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, “Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2),” Meeting Abstracts MA2006-0, 397 (2006).

Kolle, M.

S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
[Crossref]

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

Kuang, D.-B.

B.-X. Chen, H.-S. Rao, H.-Y. Chen, W.-G. Li, D.-B. Kuang, and C.-Y. Su, “Ordered macroporous CH 3 NH 3 PbI 3 perovskite semitransparent film for high-performance solar cells,” J. Mater. Chem. A 4(40), 15662–15669 (2016).
[Crossref]

Lambin, P.

M. Lobet, N. Reckinger, L. Henrard, and P. Lambin, “Robust electromagnetic absorption by graphene/polymer heterostructures,” Nanotechnology 26(28), 285702 (2015).
[Crossref]

Lang, L.

L. Lang, J.-H. Yang, H.-R. Liu, H. Xiang, and X. Gong, “First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites,” Phys. Lett. A 378(3), 290–293 (2014).
[Crossref]

Lard, M.

Le Rouzo, J.

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

Lee, J.-Y.

S. Basu Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

Li, W.-G.

B.-X. Chen, H.-S. Rao, H.-Y. Chen, W.-G. Li, D.-B. Kuang, and C.-Y. Su, “Ordered macroporous CH 3 NH 3 PbI 3 perovskite semitransparent film for high-performance solar cells,” J. Mater. Chem. A 4(40), 15662–15669 (2016).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

M. V. Rybin, K. B. Samusev, I. S. Sinev, G. Semouchkin, E. Semouchkina, Y. S. Kivshar, and M. F. Limonov, “Mie scattering as a cascade of Fano resonances,” Opt. Express 21(24), 30107–30113 (2013).
[Crossref]

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref]

M. F. Limonov and R. M. De La Rue, Optical properties of photonic structures : interplay of order and disorder (CRC, 2012).

Lin, A.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[Crossref]

Liu, H.-R.

L. Lang, J.-H. Yang, H.-R. Liu, H. Xiang, and X. Gong, “First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites,” Phys. Lett. A 378(3), 290–293 (2014).
[Crossref]

Liu, X.

K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
[Crossref]

Liu, Z.

K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
[Crossref]

Lobet, M.

M. Lobet, N. Reckinger, L. Henrard, and P. Lambin, “Robust electromagnetic absorption by graphene/polymer heterostructures,” Nanotechnology 26(28), 285702 (2015).
[Crossref]

M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22(10), 12678 (2014).
[Crossref]

Loicq, J.

J. Dewalque, C. Henrist, and J. Loicq, “Light-harvesting capabilities of dielectric sphere multilayers,” Photonic and Phononic Properties of Engineered Nanostructures VIII, A. Adibi, S.-Y. Lin, and A. Scherer, eds. (SPIE, 2018), p. 72.

Löper, P.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Lopez, C.

M. Lopez-Garcia, J. Galisteo-Lopez, C. Lopez, and A. Garcia-Martin, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(23), 235145 (2012).
[Crossref]

Lopez, R.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Lopez-Garcia, M.

M. Lopez-Garcia, J. Galisteo-Lopez, C. Lopez, and A. Garcia-Martin, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(23), 235145 (2012).
[Crossref]

Lozano, G.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and V. Se, “Theoretical Analysis of the Performance of One-Dimensional Photonic Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

Mallick, S. B.

Masclaux, C.

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

Meng, K.

K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
[Crossref]

Meng, X.

Mi, H.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Mi, “Spectral Response of Opal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

A. Mihi and H. Mi, “Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[Crossref]

Mihi, A.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Mi, “Spectral Response of Opal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

A. Mihi and H. Mi, “Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[Crossref]

Miroshnichenko, A. E.

M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93(5), 053837 (2016).
[Crossref]

Miyadera, T.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Miyasaka, T.

A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, “Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2),” Meeting Abstracts MA2006-0, 397 (2006).

Moharam, M. G.

Moon, J. H.

S.-J. Ha, J. H. Heo, S. H. Im, and J. H. Moon, “Mesoscopic CH 3NH 3PbI 3 perovskite solar cells using TiO 2inverse opal electron-conducting scaffolds,” J. Mater. Chem. A 5(5), 1972–1977 (2017).
[Crossref]

Moon, S.-J.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Moore, J.

I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin, “Functional materials, device architecture, and flexibility of perovskite solar cell,” Emergent Mater. 1(3-4), 133–154 (2018).
[Crossref]

Morris, G. M.

Muller-Buschbaum, P.

S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
[Crossref]

Murakami, T. N.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Murata, D.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Neher, D.

M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
[Crossref]

Niesen, B.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Noda, S.

Norris, D. J.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[Crossref]

Ocan, M.

L. Ha, M. Ocan, B. S. Colodrero, G. Boschloo, and A. Hagfeldt, “Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

Oh, S. H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B: Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B: Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Paetzold, U.

R. Schmager, I. Hossain, F. Schackmar, B. Richards, G. Gomard, and U. Paetzold, “Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells,” Sol. Energy Mater. Sol. Cells 201, 110080 (2019).
[Crossref]

Paetzold, U. W.

R. Schmager, G. Gomard, B. S. Richards, and U. W. Paetzold, “Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells,” Sol. Energy Mater. Sol. Cells 192, 65–71 (2019).
[Crossref]

Peng, S.

Peumans, P.

S. Basu Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[Crossref]

Phillips, J.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[Crossref]

Phung, N.

M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
[Crossref]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

Ragan, R.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27(10), 105302 (2016).
[Crossref]

Ramirez, I.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Rao, H.-S.

B.-X. Chen, H.-S. Rao, H.-Y. Chen, W.-G. Li, D.-B. Kuang, and C.-Y. Su, “Ordered macroporous CH 3 NH 3 PbI 3 perovskite semitransparent film for high-performance solar cells,” J. Mater. Chem. A 4(40), 15662–15669 (2016).
[Crossref]

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B: Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Reckinger, N.

M. Lobet, N. Reckinger, L. Henrard, and P. Lambin, “Robust electromagnetic absorption by graphene/polymer heterostructures,” Nanotechnology 26(28), 285702 (2015).
[Crossref]

Ren, X.

W. E. Sha, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

Richards, B.

R. Schmager, I. Hossain, F. Schackmar, B. Richards, G. Gomard, and U. Paetzold, “Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells,” Sol. Energy Mater. Sol. Cells 201, 110080 (2019).
[Crossref]

Richards, B. S.

R. Schmager, G. Gomard, B. S. Richards, and U. W. Paetzold, “Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells,” Sol. Energy Mater. Sol. Cells 192, 65–71 (2019).
[Crossref]

Riede, M.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

M. V. Rybin, K. B. Samusev, I. S. Sinev, G. Semouchkin, E. Semouchkina, Y. S. Kivshar, and M. F. Limonov, “Mie scattering as a cascade of Fano resonances,” Opt. Express 21(24), 30107–30113 (2013).
[Crossref]

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref]

Saliba, M.

M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
[Crossref]

Samulski, E. T.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Samusev, K. B.

M. V. Rybin, K. B. Samusev, I. S. Sinev, G. Semouchkin, E. Semouchkina, Y. S. Kivshar, and M. F. Limonov, “Mie scattering as a cascade of Fano resonances,” Opt. Express 21(24), 30107–30113 (2013).
[Crossref]

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref]

Sanderson, R. N.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27(10), 105302 (2016).
[Crossref]

Sandhu, S.

Sarrazin, M.

Scalora, M.

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

Schackmar, F.

R. Schmager, I. Hossain, F. Schackmar, B. Richards, G. Gomard, and U. Paetzold, “Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells,” Sol. Energy Mater. Sol. Cells 201, 110080 (2019).
[Crossref]

Schmager, R.

R. Schmager, G. Gomard, B. S. Richards, and U. W. Paetzold, “Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells,” Sol. Energy Mater. Sol. Cells 192, 65–71 (2019).
[Crossref]

R. Schmager, I. Hossain, F. Schackmar, B. Richards, G. Gomard, and U. Paetzold, “Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells,” Sol. Energy Mater. Sol. Cells 201, 110080 (2019).
[Crossref]

Schünemann, S.

S. Schünemann, K. Chen, S. Brittman, E. Garnett, and H. Tüysüz, “Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications,” ACS Appl. Mater. Interfaces 8(38), 25489–25495 (2016).
[Crossref]

Se, V.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and V. Se, “Theoretical Analysis of the Performance of One-Dimensional Photonic Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

Seassal, C.

Semouchkin, G.

Semouchkina, E.

Sergeant, N. P.

S. Basu Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

Sha, W. E.

W. E. Sha, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

Sharac, N.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27(10), 105302 (2016).
[Crossref]

Sharma, H.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27(10), 105302 (2016).
[Crossref]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B: Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Sheng, X.

X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin- fi lm Si solar cells : Modeling , process and optimizations,” Opt. Commun. 314, 41–47 (2014).
[Crossref]

Shirai, Y.

A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, “Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2),” Meeting Abstracts MA2006-0, 397 (2006).

Shirayama, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Sinev, I. S.

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B: Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Snaith, H. J.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Soufiani, A. M.

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref]

Steel, M. J.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref]

Steiner, U.

S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
[Crossref]

Stolterfoht, M.

M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
[Crossref]

Stranks, S. D.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Stuckelberger, M.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Sturm, J. C.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[Crossref]

Su, C.-Y.

B.-X. Chen, H.-S. Rao, H.-Y. Chen, W.-G. Li, D.-B. Kuang, and C.-Y. Su, “Ordered macroporous CH 3 NH 3 PbI 3 perovskite semitransparent film for high-performance solar cells,” J. Mater. Chem. A 4(40), 15662–15669 (2016).
[Crossref]

Sugita, T.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Tamakoshi, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Tanaka, Y.

Teshima, K.

A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, “Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2),” Meeting Abstracts MA2006-0, 397 (2006).

Tetreault, N.

S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
[Crossref]

Topic, M.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Tran, H. P.

I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin, “Functional materials, device architecture, and flexibility of perovskite solar cell,” Emergent Mater. 1(3-4), 133–154 (2018).
[Crossref]

Tribelsky, M. I.

M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93(5), 053837 (2016).
[Crossref]

Trompoukis, C.

A. Herman, C. Trompoukis, V. Depauw, O. E. Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112(11), 113107 (2012).
[Crossref]

Tumbleston, J. R.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Tüysüz, H.

S. Schünemann, K. Chen, S. Brittman, E. Garnett, and H. Tüysüz, “Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications,” ACS Appl. Mater. Interfaces 8(38), 25489–25495 (2016).
[Crossref]

K. Chen and H. Tüysüz, “Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals,” Angew. Chem., Int. Ed. 54(46), 13806–13810 (2015).
[Crossref]

Uddin, M. J.

I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin, “Functional materials, device architecture, and flexibility of perovskite solar cell,” Emergent Mater. 1(3-4), 133–154 (2018).
[Crossref]

Üpping, J.

R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt. 14(2), 024003 (2012).
[Crossref]

Veysi, M.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27(10), 105302 (2016).
[Crossref]

Vincenti, M. A.

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[Crossref]

Wang, G.

K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
[Crossref]

Wehrspohn, R. B.

R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt. 14(2), 024003 (2012).
[Crossref]

Welland, M. E.

S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
[Crossref]

Werner, J.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Williams, S.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Wolff, C. M.

M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
[Crossref]

Wu, L.

K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
[Crossref]

Xiang, H.

L. Lang, J.-H. Yang, H.-R. Liu, H. Xiang, and X. Gong, “First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites,” Phys. Lett. A 378(3), 290–293 (2014).
[Crossref]

Yang, J.-H.

L. Lang, J.-H. Yang, H.-R. Liu, H. Xiang, and X. Gong, “First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites,” Phys. Lett. A 378(3), 290–293 (2014).
[Crossref]

Yu, Z.

Yum, J.-H.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Yushin, G.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref]

Zhang, L.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Zhang, W.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

S. Schünemann, K. Chen, S. Brittman, E. Garnett, and H. Tüysüz, “Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications,” ACS Appl. Mater. Interfaces 8(38), 25489–25495 (2016).
[Crossref]

Adv. Mater. (1)

L. Ha, M. Ocan, B. S. Colodrero, G. Boschloo, and A. Hagfeldt, “Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

Angew. Chem., Int. Ed. (1)

K. Chen and H. Tüysüz, “Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals,” Angew. Chem., Int. Ed. 54(46), 13806–13810 (2015).
[Crossref]

Appl. Phys. Lett. (2)

W. E. Sha, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

Chem. Mater. (1)

M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular n-i-p and Inverted p-i-n Architectures,” Chem. Mater. 30(13), 4193–4201 (2018).
[Crossref]

Emergent Mater. (1)

I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin, “Functional materials, device architecture, and flexibility of perovskite solar cell,” Emergent Mater. 1(3-4), 133–154 (2018).
[Crossref]

Energy Environ. Sci. (1)

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

J. Appl. Phys. (2)

A. Herman, C. Trompoukis, V. Depauw, O. E. Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112(11), 113107 (2012).
[Crossref]

D. Duché, C. Masclaux, J. Le Rouzo, and C. Gourgon, “Photonic crystals for improving light absorption in organic solar cells,” J. Appl. Phys. 117(5), 053108 (2015).
[Crossref]

J. Mater. Chem. A (2)

B.-X. Chen, H.-S. Rao, H.-Y. Chen, W.-G. Li, D.-B. Kuang, and C.-Y. Su, “Ordered macroporous CH 3 NH 3 PbI 3 perovskite semitransparent film for high-performance solar cells,” J. Mater. Chem. A 4(40), 15662–15669 (2016).
[Crossref]

S.-J. Ha, J. H. Heo, S. H. Im, and J. H. Moon, “Mesoscopic CH 3NH 3PbI 3 perovskite solar cells using TiO 2inverse opal electron-conducting scaffolds,” J. Mater. Chem. A 5(5), 1972–1977 (2017).
[Crossref]

J. Opt. (1)

R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt. 14(2), 024003 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

A. Mihi and H. Mi, “Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[Crossref]

J. Phys. Chem. C (2)

A. Mihi, M. E. Calvo, J. A. Anta, and H. Mi, “Spectral Response of Opal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and V. Se, “Theoretical Analysis of the Performance of One-Dimensional Photonic Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

J. Phys. Chem. Lett. (2)

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex Refractive Index Spectra of CH 3 NH 3 PbI 3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref]

Meeting Abstracts (1)

A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, “Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2),” Meeting Abstracts MA2006-0, 397 (2006).

MRS Bull. (1)

S. Basu Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

Nano Lett. (4)

S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, “Dye-sensitized solar cell based on a three-dimensional photonic crystal,” Nano Lett. 10(7), 2303–2309 (2010).
[Crossref]

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, and G. Chen, “Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films,” Nano Lett. 16(7), 4166–4173 (2016).
[Crossref]

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref]

Nanotechnology (2)

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27(10), 105302 (2016).
[Crossref]

M. Lobet, N. Reckinger, L. Henrard, and P. Lambin, “Robust electromagnetic absorption by graphene/polymer heterostructures,” Nanotechnology 26(28), 285702 (2015).
[Crossref]

Nat. Commun. (1)

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

Nat. Mater. (1)

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref]

Nat. Nanotechnol. (1)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

Nat. Photonics (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Nature (1)

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[Crossref]

Opt. Commun. (1)

X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin- fi lm Si solar cells : Modeling , process and optimizations,” Opt. Commun. 314, 41–47 (2014).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Lett. A (1)

L. Lang, J.-H. Yang, H.-R. Liu, H. Xiang, and X. Gong, “First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites,” Phys. Lett. A 378(3), 290–293 (2014).
[Crossref]

Phys. Rev. (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. A (1)

M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93(5), 053837 (2016).
[Crossref]

Phys. Rev. Appl. (1)

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH 3 NH 3 PbI 3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Phys. Rev. B (1)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (2)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B: Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

M. Lopez-Garcia, J. Galisteo-Lopez, C. Lopez, and A. Garcia-Martin, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(23), 235145 (2012).
[Crossref]

Phys. Rev. Lett. (1)

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

R. Schmager, I. Hossain, F. Schackmar, B. Richards, G. Gomard, and U. Paetzold, “Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells,” Sol. Energy Mater. Sol. Cells 201, 110080 (2019).
[Crossref]

R. Schmager, G. Gomard, B. S. Richards, and U. W. Paetzold, “Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells,” Sol. Energy Mater. Sol. Cells 192, 65–71 (2019).
[Crossref]

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[Crossref]

Other (5)

We used here iQE with a lower case for our integrated quantum efficiency (photonic quantity) in order to avoid any confusion with IQE usually referred as internal quantum efficiency. The later includes the number of electron collected by a solar cell, is consequently an electric quantity and we do not aim to characterize the electric properties of the PSC in the present study.

J. Dewalque, C. Henrist, and J. Loicq, “Light-harvesting capabilities of dielectric sphere multilayers,” Photonic and Phononic Properties of Engineered Nanostructures VIII, A. Adibi, S.-Y. Lin, and A. Scherer, eds. (SPIE, 2018), p. 72.

M. F. Limonov and R. M. De La Rue, Optical properties of photonic structures : interplay of order and disorder (CRC, 2012).

J. D. Joannopoulos, Photonic crystals : molding the flow of light (Princeton University, 2008).

“Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL, https://www.nrel.gov/pv/cell-efficiency.html , 2019-06-05,“.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of unstructured (a) and opal-like photonic crystal (b) perovskite solar cells. Incidence medium refractive index is equal to 1.5 (glass). FTO layer is 400 nm-thick and $TiO_2$ layer is 40 nm-thick. Thicknesses of the unstructured perovskite ($t_{ref}$) and structured layers ($t_{3D}$) are varied, while the thicknesses of Spiro-OMeTAD (250 nm) and gold (100 nm) layers are fixed.
Fig. 2.
Fig. 2. Penetration depth $\delta _p$ of methylammonium lead triiodide ($MAPbI_3$) perovskite coming from Löper’s data [33]. The imaginary part of the refractive index is non-zero between 310 nm and 800 nm.
Fig. 3.
Fig. 3. Unstructured perovskite solar cells. (a) Absorptance spectra with no perovskite (yellow line), 150 nm-thick perovskite layer (brown line), 600 nm-thick perovskite layer in single pass (no back-reflector) (blue line) and 600 nm-thick perovskite layer in double pass (with gold back-reflector) (red doted line), (b) Integrated quantum efficiency $\eta$ as a function of perovskite layer thickness $t_{ref}$, (c) Local absorptance (integrated in the $(x, y)$ plane) as a function of depth $z$ at $\lambda =600$ nm, (d) Local absorption map at $\lambda =600$ nm for a 600 nm-thick layer inserted in the complete PSC.
Fig. 4.
Fig. 4. Global absorptance spectra of a PSC with a single layer array of spheres having a radius $R=175$ nm (blue lines), $R=200$ nm (red lines) or $R=475$ nm (brown lines) and the equivalent PSC with unstructured perovskite layer (red dashed lines).
Fig. 5.
Fig. 5. (a) Schematic of the simplified model consisting of free-standing non-dispersive, non-absorbing perovskite spheres ($R= 175$ nm) arranged in an hexagonal 2D array within a non-dispersive slab of $TiO_2$, (b) Reflectance (R), transmittance (T) and absorptance (A) of perovskite spheres inside $TiO_2$ slab surrounded by air. The dashed lines corresponds to reflectance and transmittance of a homogeneous slab made of a volume averaged effective index, reproducing the slowly varying background. Fano resonances are seen as sharp features in the spectra.
Fig. 6.
Fig. 6. (a) Local absorptance as a function of depth for a resonant wavelength $\lambda =738$ nm of an array of spheres with radius $R=175$ nm. (b) Local absorptance map for a resonant wavelength $\lambda =738$ nm of an array of spheres with radius $R=175$ nm. Those figures reveal the presence of a quasi-guided mode.
Fig. 7.
Fig. 7. Integrated quantum efficiency $\eta$ (left) and photonic enhancement factor $G_{phot}$ (right) as a function of the number of layers ($N=1$ full lines, $N=2$ dashed lines, $N=3$ dotted lines), and with the radius $R$ of the spheres as parameter. Green crosses correspond to the champion configurations as far as the photonic enhancement factor is concerned (Table 1).
Fig. 8.
Fig. 8. Integrated quantum efficiency $\eta$ as function of incidence angle $\theta$ for unpolarized light, in case of unstructured layer (600 nm perovskite) (red dots), a 3D PSC with 1 layer of spheres of radius $R = 175 nm$ (green crosses), a 3D PSC with 2 layers of spheres of radius $R=50 nm$ (brown diamonds) and a 3D PSC with 3 layers of spheres of radius $R=200 nm$ (blue stars). Those cases correspond to the champion configurations reported in Table 1.

Tables (1)

Tables Icon

Table 1. Maxima of photonic enhancement factor with corresponding radii and iQE, for 1,2 and 3 layers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A g ( λ ) = 1 R ( λ ) T ( λ ) .
η = ϕ A ϕ i n c = λ m i n λ m a x λ h c S ( λ ) A g ( λ ) d λ λ m i n λ m a x λ h c S ( λ ) d λ
G p h o t = ϕ 3 D ϕ h o m ϕ h o m × 100
P a = ε 0 ω 2 V I m ( ε ( r , ω ) ) | E ( r , ω ) | 2 d V

Metrics