Abstract

In this paper, a plasmonic trapping scheme including a polystyrene nanoparticle with gold cap and a metal tip tweezers was proposed. We numerically investigated the optical trapping behavior of the metal tip to this asymmetric particle. The results show that the metal tip can capture the particle at the position of the gold cap due to the strong plasmonic interaction, while other positions of the particle cannot be captured by metal tip. Furthermore, the trapping angle of the nanoparticle can be adjusted by changing the incident wavelength. Precisely controlling the trapping angle of the nanoparticles in our study has important potential applications of optical tweezers, such as in single molecule manipulation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity

Wen-Hao Huang, Shun-Feng Li, Hai-Tao Xu, Zheng-Xun Xiang, Yong-Bing Long, and Hai-Dong Deng
Opt. Express 26(5) 6202-6213 (2018)

Optical trapping of nanoparticles with tunable inter-distance using a multimode slot cavity

Lin Wang, Yongyin Cao, Tongtong Zhu, Rei Feng, Fangkui Sun, and Weiqiang Ding
Opt. Express 25(24) 29761-29768 (2017)

Optimized optical trapping of gold nanoparticles

Faegheh Hajizadeh and S.Nader S.Reihani
Opt. Express 18(2) 551-559 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref]
  3. D. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref]
  4. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
    [Crossref]
  5. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  6. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
    [Crossref]
  7. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  8. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [Crossref]
  9. Y. Tanaka and K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express 19(18), 17462–17468 (2011).
    [Crossref]
  10. Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
    [Crossref]
  11. M. S. Aporvari, F. Kheirandish, and G. Volpe, “Optical trapping and control of a dielectric nanowire by a nanoaperture,” Opt. Lett. 40(20), 4807–4810 (2015).
    [Crossref]
  12. Z. Shen and L. Su, “Plasmonic trapping and tuning of a gold nanoparticle dimer,” Opt. Express 24(5), 4801–4811 (2016).
    [Crossref]
  13. T. Shoji, A. Mototsuji, A. Balčytis, D. Linklater, S. Juodkazis, and Y. Tsuboi, “Optical tweezing and binding at high irradiation powers on black-Si,” Sci. Rep. 7(1), 12298 (2017).
    [Crossref]
  14. A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of nanoparticles into structured spherical and network aggregates,” Nature 404(6779), 746–748 (2000).
    [Crossref]
  15. C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet, “Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions,” Beilstein J. Nanotechnol. 5, 2403–2412 (2014).
    [Crossref]
  16. O. D. Velev and E. W. Kaler, “In situ assembly of colloidal particles into miniaturized biosensors,” Langmuir 15(11), 3693–3698 (1999).
    [Crossref]
  17. A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
    [Crossref]
  18. X. Zhang, L. Ma, and Y. Zhang, “High-resolution optical tweezers for single-molecule manipulation,” Yale J Biol Med. 86(3), 367–383 (2013).
  19. H. Wang, S. Bhaskar, J. Lahann, and Y. G. Lee, “Optical trapping of Janus particles,” Proc. SPIE 7038, 703813 (2008).
    [Crossref]
  20. S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2(4), 491–496 (2015).
    [Crossref]
  21. J. Liu, H. Guo, and Z. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8(47), 19894–19900 (2016).
    [Crossref]
  22. C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. 107(30), 7327–7333 (2003).
    [Crossref]
  23. J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal “nanocaps” and their red-shifted optical absorption spectra,” Adv. Mater. (Weinheim, Ger.) 17(10), 1276–1281 (2005).
    [Crossref]
  24. J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
    [Crossref]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, 2nd Edition, (Artech House, Boston, 2000).
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  27. B. Ferdinando, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles, (Springer, Berlin, Heidelberg, 2007).
  28. G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S. Juodkazis, “3D nano-structures for laser nano-manipulation,” Beilstein J. Nanotechnol. 4, 534–541 (2013).
    [Crossref]
  29. W. Huang, S. Li, H. Xu, Z. Xiang, Y. Long, and H. Deng, “Tunable optical forces enhanced by plasmonic mode hybridization in optical trapping of gold nanorods with plasmonic nanocavity,” Opt. Express 26(5), 6202–6213 (2018).
    [Crossref]
  30. G. Gervinskas, L. Rosa, E. Brasselet, and S. Juodkazis, “Chiral plasmonic nanostructures: experimental and numerical tools,” Proc. SPIE 8613, 861304 (2013).
    [Crossref]
  31. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
    [Crossref]

2018 (1)

2017 (1)

T. Shoji, A. Mototsuji, A. Balčytis, D. Linklater, S. Juodkazis, and Y. Tsuboi, “Optical tweezing and binding at high irradiation powers on black-Si,” Sci. Rep. 7(1), 12298 (2017).
[Crossref]

2016 (2)

Z. Shen and L. Su, “Plasmonic trapping and tuning of a gold nanoparticle dimer,” Opt. Express 24(5), 4801–4811 (2016).
[Crossref]

J. Liu, H. Guo, and Z. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8(47), 19894–19900 (2016).
[Crossref]

2015 (2)

S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2(4), 491–496 (2015).
[Crossref]

M. S. Aporvari, F. Kheirandish, and G. Volpe, “Optical trapping and control of a dielectric nanowire by a nanoaperture,” Opt. Lett. 40(20), 4807–4810 (2015).
[Crossref]

2014 (1)

C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet, “Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions,” Beilstein J. Nanotechnol. 5, 2403–2412 (2014).
[Crossref]

2013 (3)

X. Zhang, L. Ma, and Y. Zhang, “High-resolution optical tweezers for single-molecule manipulation,” Yale J Biol Med. 86(3), 367–383 (2013).

G. Gervinskas, L. Rosa, E. Brasselet, and S. Juodkazis, “Chiral plasmonic nanostructures: experimental and numerical tools,” Proc. SPIE 8613, 861304 (2013).
[Crossref]

G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S. Juodkazis, “3D nano-structures for laser nano-manipulation,” Beilstein J. Nanotechnol. 4, 534–541 (2013).
[Crossref]

2011 (3)

Y. Tanaka and K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express 19(18), 17462–17468 (2011).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

2010 (2)

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref]

2009 (2)

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

2008 (2)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref]

H. Wang, S. Bhaskar, J. Lahann, and Y. G. Lee, “Optical trapping of Janus particles,” Proc. SPIE 7038, 703813 (2008).
[Crossref]

2005 (1)

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal “nanocaps” and their red-shifted optical absorption spectra,” Adv. Mater. (Weinheim, Ger.) 17(10), 1276–1281 (2005).
[Crossref]

2003 (2)

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. 107(30), 7327–7333 (2003).
[Crossref]

D. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

2000 (2)

A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of nanoparticles into structured spherical and network aggregates,” Nature 404(6779), 746–748 (2000).
[Crossref]

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

1999 (1)

O. D. Velev and E. W. Kaler, “In situ assembly of colloidal particles into miniaturized biosensors,” Langmuir 15(11), 3693–3698 (1999).
[Crossref]

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[Crossref]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

1986 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Anderson, L. J. E.

S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2(4), 491–496 (2015).
[Crossref]

Aporvari, M. S.

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref]

Balcytis, A.

T. Shoji, A. Mototsuji, A. Balčytis, D. Linklater, S. Juodkazis, and Y. Tsuboi, “Optical tweezing and binding at high irradiation powers on black-Si,” Sci. Rep. 7(1), 12298 (2017).
[Crossref]

Bhaskar, S.

H. Wang, S. Bhaskar, J. Lahann, and Y. G. Lee, “Optical trapping of Janus particles,” Proc. SPIE 7038, 703813 (2008).
[Crossref]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[Crossref]

Bjorkholm, J. E.

Boal, A. K.

A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of nanoparticles into structured spherical and network aggregates,” Nature 404(6779), 746–748 (2000).
[Crossref]

Borghs, G.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Bradley, R. K.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. 107(30), 7327–7333 (2003).
[Crossref]

Brasselet, E.

G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S. Juodkazis, “3D nano-structures for laser nano-manipulation,” Beilstein J. Nanotechnol. 4, 534–541 (2013).
[Crossref]

G. Gervinskas, L. Rosa, E. Brasselet, and S. Juodkazis, “Chiral plasmonic nanostructures: experimental and numerical tools,” Proc. SPIE 8613, 861304 (2013).
[Crossref]

Brown, L. V.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref]

Carretero-Palacios, S.

S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2(4), 491–496 (2015).
[Crossref]

Caruso, F.

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

Charnay, C.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. 107(30), 7327–7333 (2003).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, S.

Cortie, M. B.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal “nanocaps” and their red-shifted optical absorption spectra,” Adv. Mater. (Weinheim, Ger.) 17(10), 1276–1281 (2005).
[Crossref]

Deng, H.

Denti, P.

B. Ferdinando, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles, (Springer, Berlin, Heidelberg, 2007).

DeRouchey, J. E.

A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of nanoparticles into structured spherical and network aggregates,” Nature 404(6779), 746–748 (2000).
[Crossref]

Dholakia, K.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref]

Dorpe, P. V.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Eychmüller, A.

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

Feldmann, J.

S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2(4), 491–496 (2015).
[Crossref]

Ferdinando, B.

B. Ferdinando, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles, (Springer, Berlin, Heidelberg, 2007).

Gervinskas, G.

G. Gervinskas, L. Rosa, E. Brasselet, and S. Juodkazis, “Chiral plasmonic nanostructures: experimental and numerical tools,” Proc. SPIE 8613, 861304 (2013).
[Crossref]

G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S. Juodkazis, “3D nano-structures for laser nano-manipulation,” Beilstein J. Nanotechnol. 4, 534–541 (2013).
[Crossref]

Gordon, R.

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Grier, D.

D. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref]

Guo, H.

J. Liu, H. Guo, and Z. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8(47), 19894–19900 (2016).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, 2nd Edition, (Artech House, Boston, 2000).

Halas, N. J.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref]

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. 107(30), 7327–7333 (2003).
[Crossref]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]

Huang, W.

Ilhan, F.

A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of nanoparticles into structured spherical and network aggregates,” Nature 404(6779), 746–748 (2000).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Juodkazis, S.

T. Shoji, A. Mototsuji, A. Balčytis, D. Linklater, S. Juodkazis, and Y. Tsuboi, “Optical tweezing and binding at high irradiation powers on black-Si,” Sci. Rep. 7(1), 12298 (2017).
[Crossref]

G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S. Juodkazis, “3D nano-structures for laser nano-manipulation,” Beilstein J. Nanotechnol. 4, 534–541 (2013).
[Crossref]

G. Gervinskas, L. Rosa, E. Brasselet, and S. Juodkazis, “Chiral plasmonic nanostructures: experimental and numerical tools,” Proc. SPIE 8613, 861304 (2013).
[Crossref]

Kaler, E. W.

O. D. Velev and E. W. Kaler, “In situ assembly of colloidal particles into miniaturized biosensors,” Langmuir 15(11), 3693–3698 (1999).
[Crossref]

Kershaw, S.

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

Kheirandish, F.

Kornowski, A.

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

Kühler, P.

S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2(4), 491–496 (2015).
[Crossref]

Lahann, J.

H. Wang, S. Bhaskar, J. Lahann, and Y. G. Lee, “Optical trapping of Janus particles,” Proc. SPIE 7038, 703813 (2008).
[Crossref]

Landfester, K.

C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet, “Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions,” Beilstein J. Nanotechnol. 5, 2403–2412 (2014).
[Crossref]

Lassiter, J. B.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref]

Lee, A.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. 107(30), 7327–7333 (2003).
[Crossref]

Lee, Y. G.

H. Wang, S. Bhaskar, J. Lahann, and Y. G. Lee, “Optical trapping of Janus particles,” Proc. SPIE 7038, 703813 (2008).
[Crossref]

Li, S.

Li, Z.

J. Liu, H. Guo, and Z. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8(47), 19894–19900 (2016).
[Crossref]

Linklater, D.

T. Shoji, A. Mototsuji, A. Balčytis, D. Linklater, S. Juodkazis, and Y. Tsuboi, “Optical tweezing and binding at high irradiation powers on black-Si,” Sci. Rep. 7(1), 12298 (2017).
[Crossref]

Liu, J.

J. Liu, H. Guo, and Z. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8(47), 19894–19900 (2016).
[Crossref]

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal “nanocaps” and their red-shifted optical absorption spectra,” Adv. Mater. (Weinheim, Ger.) 17(10), 1276–1281 (2005).
[Crossref]

Lodewijks, K.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Lohmüller, T.

S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2(4), 491–496 (2015).
[Crossref]

Long, Y.

Loos, C.

C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet, “Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions,” Beilstein J. Nanotechnol. 5, 2403–2412 (2014).
[Crossref]

Ma, L.

X. Zhang, L. Ma, and Y. Zhang, “High-resolution optical tweezers for single-molecule manipulation,” Yale J Biol Med. 86(3), 367–383 (2013).

Maaroof, A. I.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal “nanocaps” and their red-shifted optical absorption spectra,” Adv. Mater. (Weinheim, Ger.) 17(10), 1276–1281 (2005).
[Crossref]

Maes, G.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Mailänder, V.

C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet, “Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions,” Beilstein J. Nanotechnol. 5, 2403–2412 (2014).
[Crossref]

Man, S.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. 107(30), 7327–7333 (2003).
[Crossref]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]

Möhwald, H.

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

Moran, C. E.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. 107(30), 7327–7333 (2003).
[Crossref]

Mototsuji, A.

T. Shoji, A. Mototsuji, A. Balčytis, D. Linklater, S. Juodkazis, and Y. Tsuboi, “Optical tweezing and binding at high irradiation powers on black-Si,” Sci. Rep. 7(1), 12298 (2017).
[Crossref]

Musyanovych, A.

C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet, “Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions,” Beilstein J. Nanotechnol. 5, 2403–2412 (2014).
[Crossref]

Nedev, S.

S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2(4), 491–496 (2015).
[Crossref]

Nienhaus, G. U.

C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet, “Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions,” Beilstein J. Nanotechnol. 5, 2403–2412 (2014).
[Crossref]

Nordlander, P.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[Crossref]

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Radloff, C.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. 107(30), 7327–7333 (2003).
[Crossref]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rogach, A.

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

Rosa, L.

G. Gervinskas, L. Rosa, E. Brasselet, and S. Juodkazis, “Chiral plasmonic nanostructures: experimental and numerical tools,” Proc. SPIE 8613, 861304 (2013).
[Crossref]

G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S. Juodkazis, “3D nano-structures for laser nano-manipulation,” Beilstein J. Nanotechnol. 4, 534–541 (2013).
[Crossref]

Rotello, V. M.

A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of nanoparticles into structured spherical and network aggregates,” Nature 404(6779), 746–748 (2000).
[Crossref]

Roy, W. V.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Russell, T. P.

A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of nanoparticles into structured spherical and network aggregates,” Nature 404(6779), 746–748 (2000).
[Crossref]

Saija, R.

B. Ferdinando, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles, (Springer, Berlin, Heidelberg, 2007).

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]

Sasaki, K.

Seniutinas, G.

G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S. Juodkazis, “3D nano-structures for laser nano-manipulation,” Beilstein J. Nanotechnol. 4, 534–541 (2013).
[Crossref]

Shen, Z.

Shoji, T.

T. Shoji, A. Mototsuji, A. Balčytis, D. Linklater, S. Juodkazis, and Y. Tsuboi, “Optical tweezing and binding at high irradiation powers on black-Si,” Sci. Rep. 7(1), 12298 (2017).
[Crossref]

Simmet, T.

C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet, “Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions,” Beilstein J. Nanotechnol. 5, 2403–2412 (2014).
[Crossref]

Sobhani, H.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref]

Su, L.

Sukhorukov, G.

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

Susha, A.

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

Syrovets, T.

C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet, “Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions,” Beilstein J. Nanotechnol. 5, 2403–2412 (2014).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, 2nd Edition, (Artech House, Boston, 2000).

Tanaka, Y.

Thurn-Albrecht, T.

A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of nanoparticles into structured spherical and network aggregates,” Nature 404(6779), 746–748 (2000).
[Crossref]

Tsuboi, Y.

T. Shoji, A. Mototsuji, A. Balčytis, D. Linklater, S. Juodkazis, and Y. Tsuboi, “Optical tweezing and binding at high irradiation powers on black-Si,” Sci. Rep. 7(1), 12298 (2017).
[Crossref]

Urban, A. S.

S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2(4), 491–496 (2015).
[Crossref]

Velev, O. D.

O. D. Velev and E. W. Kaler, “In situ assembly of colloidal particles into miniaturized biosensors,” Langmuir 15(11), 3693–3698 (1999).
[Crossref]

Vlaminck, I. D.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Volpe, G.

Wang, H.

H. Wang, S. Bhaskar, J. Lahann, and Y. G. Lee, “Optical trapping of Janus particles,” Proc. SPIE 7038, 703813 (2008).
[Crossref]

Weller, H.

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

Wieczorek, L.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal “nanocaps” and their red-shifted optical absorption spectra,” Adv. Mater. (Weinheim, Ger.) 17(10), 1276–1281 (2005).
[Crossref]

Xiang, Z.

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[Crossref]

Xu, H.

Ye, J.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]

Zhang, X.

X. Zhang, L. Ma, and Y. Zhang, “High-resolution optical tweezers for single-molecule manipulation,” Yale J Biol Med. 86(3), 367–383 (2013).

Zhang, Y.

X. Zhang, L. Ma, and Y. Zhang, “High-resolution optical tweezers for single-molecule manipulation,” Yale J Biol Med. 86(3), 367–383 (2013).

ACS Nano (1)

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref]

ACS Photonics (1)

S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2(4), 491–496 (2015).
[Crossref]

Adv. Mater. (1)

A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, “Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Adv. Mater. 12(5), 333–337 (2000).
[Crossref]

Adv. Mater. (Weinheim, Ger.) (1)

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal “nanocaps” and their red-shifted optical absorption spectra,” Adv. Mater. (Weinheim, Ger.) 17(10), 1276–1281 (2005).
[Crossref]

Beilstein J. Nanotechnol. (2)

G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S. Juodkazis, “3D nano-structures for laser nano-manipulation,” Beilstein J. Nanotechnol. 4, 534–541 (2013).
[Crossref]

C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet, “Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions,” Beilstein J. Nanotechnol. 5, 2403–2412 (2014).
[Crossref]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref]

J. Phys. Chem. (1)

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. 107(30), 7327–7333 (2003).
[Crossref]

J. Phys. Chem. C (1)

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Langmuir (1)

O. D. Velev and E. W. Kaler, “In situ assembly of colloidal particles into miniaturized biosensors,” Langmuir 15(11), 3693–3698 (1999).
[Crossref]

Nano Lett. (2)

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref]

Nanoscale (1)

J. Liu, H. Guo, and Z. Li, “Self-propelled round-trip motion of Janus particles in static line optical tweezers,” Nanoscale 8(47), 19894–19900 (2016).
[Crossref]

Nat. Photonics (1)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Nature (2)

D. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of nanoparticles into structured spherical and network aggregates,” Nature 404(6779), 746–748 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[Crossref]

Proc. SPIE (2)

G. Gervinskas, L. Rosa, E. Brasselet, and S. Juodkazis, “Chiral plasmonic nanostructures: experimental and numerical tools,” Proc. SPIE 8613, 861304 (2013).
[Crossref]

H. Wang, S. Bhaskar, J. Lahann, and Y. G. Lee, “Optical trapping of Janus particles,” Proc. SPIE 7038, 703813 (2008).
[Crossref]

Sci. Rep. (1)

T. Shoji, A. Mototsuji, A. Balčytis, D. Linklater, S. Juodkazis, and Y. Tsuboi, “Optical tweezing and binding at high irradiation powers on black-Si,” Sci. Rep. 7(1), 12298 (2017).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

Yale J Biol Med. (1)

X. Zhang, L. Ma, and Y. Zhang, “High-resolution optical tweezers for single-molecule manipulation,” Yale J Biol Med. 86(3), 367–383 (2013).

Other (2)

B. Ferdinando, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles, (Springer, Berlin, Heidelberg, 2007).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, 2nd Edition, (Artech House, Boston, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. The schematic of the PS-nanocap-tip trapping system in the rectangular coordinate system with θ = 0° and ϕ = 0° (a) and θ = 45° and ϕ = 0° (b). The tip radius r = 10 nm, cone angle = 25°. The radius of PS R = 50 nm, cap thickness t = 12.5 nm, and full open-angle is 90°. The dimer distance d = 2 nm.
Fig. 2.
Fig. 2. (a) Extinction cross section calculated for the designed structure. Simulated X-Z plane spatial distribution of the electric field in the irradiation of x-polarized light of 717 nm, for angle θ = 0° (b) and 817 nm, θ = 45° (c).
Fig. 3.
Fig. 3. The evolution of lateral optical force Fy acting on the nanoparticle when it just moving along the Y axis (0, y, 0) with different θ at incident wavelength λ = 717 nm (a), 767 nm (b), and 817 nm(c). The simulated near field distributions in X-Z plane at λ = 717 nm with θ = 0° (d), θ = 45° (e), θ = 90° (f), θ = 135° (g) and θ = 180° (h).
Fig. 4.
Fig. 4. The optical potential Uy with different θ at incident wavelength λ = 717 nm (a), 767 nm (b), and 817 nm (c). Only when θ = 0° and θ = 45° the potential well depth can be larger than 10 KBT and for the other angles the potential well depth is too small to stably trap the nanoparticle.
Fig. 5.
Fig. 5. The evolution of longitudinal optical force Fz acting on the nanoparticle when it just moving along Z axis (0, 0, z) with different θ at incident wavelength λ = 717 nm (a), 767 nm (b), and 817 nm (c). And the corresponding optical trapping potential for λ = 717 nm (d), 767 nm (e), and 817 nm (f). The other angles were not shown as they have no potential well.
Fig. 6.
Fig. 6. The calculated optical potential Ux exerting on PS nanoparticle when moving along X axis at incident wavelength λ = 717 nm (a), 767 nm (b), and 817 nm (c).
Fig. 7.
Fig. 7. (a) Lateral optical force Fy acting on PS nanoparticle when it moves along Y axis at incident wavelength λ = 717 nm, 767 nm, and 817 nm. (b) The corresponding optical potential Uy. (c) Longitudinal optical force Fz acting on PS nanoparticle when it moves along Z axis at the three incident wavelengths. (d) The corresponding optical potential Uz. (e) Lateral optical force Fx acting on PS nanoparticle and (f) the corresponding optical potential Ux.
Fig. 8.
Fig. 8. (a) Lateral optical force Fy acting on designed asymmetric nanoparticle with angle θ = 45° and ϕ = 45° when it moves along Y axis at incident wavelength λ = 717 nm, 767 nm, and 817 nm. (b) The corresponding optical potential Uy. (c) Longitudinal optical force Fz acting on the designed nanoparticle when it moves along Z axis at the three incident wavelengths. (d) The corresponding optical potential Uz. (e) Lateral optical force Fx acting on the designed nanoparticle and (f) the corresponding optical potential Ux.
Fig. 9.
Fig. 9. The optical force distribution on the asymmetric nanoparticle with angle θ = 45° and ϕ = 45°. The red cube represents MST analysis group and the white arrows indicate main in-plane forces.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F = S 1 2 Re T n ^ d S ,
T = ε E E + μ H H I 2 ( ε | E | 2 + μ | H | 2 ) ,
F ( r ) = U ( r ) .

Metrics