Abstract

An electron bunch (e-bunch) passing through an insulator-metal-insulator (IMI) substrate can excite surface plasmons (SPs) on the substrate. Recent studies demonstrate that Smith-Purcell radiation (SPR) from one-dimensional gratings on an IMI substrate can be manipulated and enhanced by e-bunch excited SPs. However, under this configuration, only the emission along the direction of electron moving can be controlled. To steer both the azimuthal and polar angles of the far-field emission pattern requires other mechanisms. In this work, the SP-manipulated SPR with a Yagi–Uda nanoantenna (YUNA) array on an IMI substrate for generation of light beams with designed far-field patterns is proposed and explored by computer simulations. Emission of SPR along and perpendicular to the direction of electron movement can be manipulated by designing grating period and YUNA structure, respectively. Dependence of the azimuthal and polar angles of emitted light beam on geometry parameters of feed and directors of YUNA are elucidated. Furthermore, emission of multiple beams containing a single wavelength and multiple wavelengths with required far-field angles can be achieved using different groups of YUNA arrays on different IMI substrates. The proposed mechanism may have applications for light sources, optical imaging, optical beam steering, holography, microdisplay and cryptography.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Steerable plasmonic nanoantennas: active steering of radiation patterns using phase change materials

Priten B. Savaliya, Nitin Gupta, and Anuj Dhawan
Opt. Express 27(22) 31567-31586 (2019)

Actively tunable bistable optical Yagi-Uda nanoantenna

Ivan S. Maksymov, Andrey E. Miroshnichenko, and Yuri S. Kivshar
Opt. Express 20(8) 8929-8938 (2012)

Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission

K. R. Mahmoud, Mohamed Hussein, Mohamed Farhat. O. Hameed, and S. S. A. Obayya
J. Opt. Soc. Am. B 34(10) 2041-2049 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared Radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref]
  2. F. J. Rodríguez-Fortuño, A. Espinosa-Soria, and A. Martínez, “Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics,” J. Opt. 18(12), 123001 (2016).
    [Crossref]
  3. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
    [Crossref]
  4. A. Dasgupta, M. M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
    [Crossref]
  5. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
    [Crossref]
  6. S. Taga, K. Inafune, and E. Sano, “Analysis of Smith-Purcell radiation in optical region,” Opt. Express 15(24), 16222–16229 (2007).
    [Crossref]
  7. J. R. M. Saavedra, D. Castells-Graells, and F. Javier García de Abajo, “Smith-Purcell radiation emission in aperiodic arrays,” Phys. Rev. B 94(3), 035418 (2016).
    [Crossref]
  8. J. K. So, F. Javier García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photonics 2(9), 1236–1240 (2015).
    [Crossref]
  9. W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP Adv. 5(12), 127135 (2015).
    [Crossref]
  10. Y. C. Lai, T. C. Kuang, B. H. Cheng, Y. C. Lan, and D. P. Tsa, “Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation,” Sci. Rep. 7(1), 11096 (2017).
    [Crossref]
  11. S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  12. S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, and S. G. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22(16), 19252–19261 (2014).
    [Crossref]
  13. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
    [Crossref]
  14. B. H. Cheng, Y. S. Ye, Y. C. Lan, and D. P. Tsai, “Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating,” Sci. Rep. 7(1), 6443 (2017).
    [Crossref]
  15. L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, “Multi-color and multidirectional-steerable Smith-Purcell radiation from 2D subwavelength hole arrays,” Appl. Phys. Lett. 113(1), 013501 (2018).
    [Crossref]
  16. C. A. Balanis, Antenna Theory Analysys and Design (John Wiley & Sons, 2005).
  17. I. S. Maksymov, I. Staude, E. Andrey, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
    [Crossref]
  18. H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi–Uda antenna,” New J. Phys. 9(7), 217 (2007).
    [Crossref]
  19. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref]
  20. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2(1), 267 (2011).
    [Crossref]
  21. X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact Nonlinear Yagi-Uda Nanoantennas,” Sci. Rep. 6(1), 18872 (2016).
    [Crossref]
  22. A. M. Ghanim, M. Hussein, M. F. O. Hameed, A. Yahia, and S. S. A. Obayya, “Highly directive hybrid Yagi-Uda nanoantenna for radiation emission enhancement,” IEEE Photonics J. 8(5), 1–12 (2016).
    [Crossref]
  23. M. H. Loretto, Electron Beam Analysis of Materials (Chapman & Hall, 1994).
  24. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  25. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2018 (2)

A. Dasgupta, M. M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref]

L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, “Multi-color and multidirectional-steerable Smith-Purcell radiation from 2D subwavelength hole arrays,” Appl. Phys. Lett. 113(1), 013501 (2018).
[Crossref]

2017 (3)

Y. C. Lai, T. C. Kuang, B. H. Cheng, Y. C. Lan, and D. P. Tsa, “Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation,” Sci. Rep. 7(1), 11096 (2017).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
[Crossref]

B. H. Cheng, Y. S. Ye, Y. C. Lan, and D. P. Tsai, “Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating,” Sci. Rep. 7(1), 6443 (2017).
[Crossref]

2016 (4)

J. R. M. Saavedra, D. Castells-Graells, and F. Javier García de Abajo, “Smith-Purcell radiation emission in aperiodic arrays,” Phys. Rev. B 94(3), 035418 (2016).
[Crossref]

F. J. Rodríguez-Fortuño, A. Espinosa-Soria, and A. Martínez, “Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics,” J. Opt. 18(12), 123001 (2016).
[Crossref]

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact Nonlinear Yagi-Uda Nanoantennas,” Sci. Rep. 6(1), 18872 (2016).
[Crossref]

A. M. Ghanim, M. Hussein, M. F. O. Hameed, A. Yahia, and S. S. A. Obayya, “Highly directive hybrid Yagi-Uda nanoantenna for radiation emission enhancement,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

2015 (2)

J. K. So, F. Javier García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photonics 2(9), 1236–1240 (2015).
[Crossref]

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP Adv. 5(12), 127135 (2015).
[Crossref]

2014 (1)

2012 (2)

I. S. Maksymov, I. Staude, E. Andrey, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared Radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref]

2011 (1)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2(1), 267 (2011).
[Crossref]

2010 (3)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2007 (2)

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi–Uda antenna,” New J. Phys. 9(7), 217 (2007).
[Crossref]

S. Taga, K. Inafune, and E. Sano, “Analysis of Smith-Purcell radiation in optical region,” Opt. Express 15(24), 16222–16229 (2007).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1953 (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Aieta, F.

Andrey, E.

I. S. Maksymov, I. Staude, E. Andrey, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Balanis, C. A.

C. A. Balanis, Antenna Theory Analysys and Design (John Wiley & Sons, 2005).

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Biagioni, P.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared Radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref]

Bouhelier, A.

A. Dasgupta, M. M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref]

Buret, M.

A. Dasgupta, M. M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref]

Capasso, F.

Castells-Graells, D.

J. R. M. Saavedra, D. Castells-Graells, and F. Javier García de Abajo, “Smith-Purcell radiation emission in aperiodic arrays,” Phys. Rev. B 94(3), 035418 (2016).
[Crossref]

Cazier, N.

A. Dasgupta, M. M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref]

Chen, X.

Cheng, B. H.

B. H. Cheng, Y. S. Ye, Y. C. Lan, and D. P. Tsai, “Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating,” Sci. Rep. 7(1), 6443 (2017).
[Crossref]

Y. C. Lai, T. C. Kuang, B. H. Cheng, Y. C. Lan, and D. P. Tsa, “Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation,” Sci. Rep. 7(1), 11096 (2017).
[Crossref]

Chew, W. C.

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact Nonlinear Yagi-Uda Nanoantennas,” Sci. Rep. 6(1), 18872 (2016).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Colas-des-Francs, G.

A. Dasgupta, M. M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Dasgupta, A.

A. Dasgupta, M. M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref]

Devlin, R.

Dorfmüller, J.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2(1), 267 (2011).
[Crossref]

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2(1), 267 (2011).
[Crossref]

Espinosa-Soria, A.

F. J. Rodríguez-Fortuño, A. Espinosa-Soria, and A. Martínez, “Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics,” J. Opt. 18(12), 123001 (2016).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Genevet, P.

Ghanim, A. M.

A. M. Ghanim, M. Hussein, M. F. O. Hameed, A. Yahia, and S. S. A. Obayya, “Highly directive hybrid Yagi-Uda nanoantenna for radiation emission enhancement,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

Giessen, H.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2(1), 267 (2011).
[Crossref]

Gong, S.

Hameed, M. F. O.

A. M. Ghanim, M. Hussein, M. F. O. Hameed, A. Yahia, and S. S. A. Obayya, “Highly directive hybrid Yagi-Uda nanoantenna for radiation emission enhancement,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

He, Z.

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP Adv. 5(12), 127135 (2015).
[Crossref]

Hecht, B.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared Radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref]

Hofmann, H. F.

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi–Uda antenna,” New J. Phys. 9(7), 217 (2007).
[Crossref]

Hu, M.

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared Radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref]

Hussein, M.

A. M. Ghanim, M. Hussein, M. F. O. Hameed, A. Yahia, and S. S. A. Obayya, “Highly directive hybrid Yagi-Uda nanoantenna for radiation emission enhancement,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Inafune, K.

Javier García de Abajo, F.

J. R. M. Saavedra, D. Castells-Graells, and F. Javier García de Abajo, “Smith-Purcell radiation emission in aperiodic arrays,” Phys. Rev. B 94(3), 035418 (2016).
[Crossref]

J. K. So, F. Javier García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photonics 2(9), 1236–1240 (2015).
[Crossref]

Jia, Q.

L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, “Multi-color and multidirectional-steerable Smith-Purcell radiation from 2D subwavelength hole arrays,” Appl. Phys. Lett. 113(1), 013501 (2018).
[Crossref]

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP Adv. 5(12), 127135 (2015).
[Crossref]

Jiang, L. J.

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact Nonlinear Yagi-Uda Nanoantennas,” Sci. Rep. 6(1), 18872 (2016).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Kadoya, Y.

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi–Uda antenna,” New J. Phys. 9(7), 217 (2007).
[Crossref]

Kern, K.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2(1), 267 (2011).
[Crossref]

Khorasaninejad, M.

Kivshar, Y. S.

I. S. Maksymov, I. Staude, E. Andrey, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Kosako, T.

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi–Uda antenna,” New J. Phys. 9(7), 217 (2007).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Kuang, T. C.

Y. C. Lai, T. C. Kuang, B. H. Cheng, Y. C. Lan, and D. P. Tsa, “Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation,” Sci. Rep. 7(1), 11096 (2017).
[Crossref]

Lai, Y. C.

Y. C. Lai, T. C. Kuang, B. H. Cheng, Y. C. Lan, and D. P. Tsa, “Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation,” Sci. Rep. 7(1), 11096 (2017).
[Crossref]

Lan, Y. C.

Y. C. Lai, T. C. Kuang, B. H. Cheng, Y. C. Lan, and D. P. Tsa, “Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation,” Sci. Rep. 7(1), 11096 (2017).
[Crossref]

B. H. Cheng, Y. S. Ye, Y. C. Lan, and D. P. Tsai, “Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating,” Sci. Rep. 7(1), 6443 (2017).
[Crossref]

Li, W.

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP Adv. 5(12), 127135 (2015).
[Crossref]

Liang, L.

L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, “Multi-color and multidirectional-steerable Smith-Purcell radiation from 2D subwavelength hole arrays,” Appl. Phys. Lett. 113(1), 013501 (2018).
[Crossref]

Liu, S. G.

Liu, W.

L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, “Multi-color and multidirectional-steerable Smith-Purcell radiation from 2D subwavelength hole arrays,” Appl. Phys. Lett. 113(1), 013501 (2018).
[Crossref]

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP Adv. 5(12), 127135 (2015).
[Crossref]

Liu, Y.

L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, “Multi-color and multidirectional-steerable Smith-Purcell radiation from 2D subwavelength hole arrays,” Appl. Phys. Lett. 113(1), 013501 (2018).
[Crossref]

Lo, Y. H.

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact Nonlinear Yagi-Uda Nanoantennas,” Sci. Rep. 6(1), 18872 (2016).
[Crossref]

Loretto, M. H.

M. H. Loretto, Electron Beam Analysis of Materials (Chapman & Hall, 1994).

Lu, Y.

L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, “Multi-color and multidirectional-steerable Smith-Purcell radiation from 2D subwavelength hole arrays,” Appl. Phys. Lett. 113(1), 013501 (2018).
[Crossref]

MacDonald, K. F.

J. K. So, F. Javier García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photonics 2(9), 1236–1240 (2015).
[Crossref]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).

Maksymov, I. S.

I. S. Maksymov, I. Staude, E. Andrey, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Martínez, A.

F. J. Rodríguez-Fortuño, A. Espinosa-Soria, and A. Martínez, “Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics,” J. Opt. 18(12), 123001 (2016).
[Crossref]

Mennemanteuil, M. M.

A. Dasgupta, M. M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref]

Miroshnichenko, A. E.

I. S. Maksymov, I. Staude, E. Andrey, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Obayya, S. S. A.

A. M. Ghanim, M. Hussein, M. F. O. Hameed, A. Yahia, and S. S. A. Obayya, “Highly directive hybrid Yagi-Uda nanoantenna for radiation emission enhancement,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Purcell, E. M.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, A. Espinosa-Soria, and A. Martínez, “Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics,” J. Opt. 18(12), 123001 (2016).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Saavedra, J. R. M.

J. R. M. Saavedra, D. Castells-Graells, and F. Javier García de Abajo, “Smith-Purcell radiation emission in aperiodic arrays,” Phys. Rev. B 94(3), 035418 (2016).
[Crossref]

Sano, E.

Sha, W. E. I.

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact Nonlinear Yagi-Uda Nanoantennas,” Sci. Rep. 6(1), 18872 (2016).
[Crossref]

Smith, S. J.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

So, J. K.

J. K. So, F. Javier García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photonics 2(9), 1236–1240 (2015).
[Crossref]

Staude, I.

I. S. Maksymov, I. Staude, E. Andrey, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Taga, S.

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2(1), 267 (2011).
[Crossref]

Tsa, D. P.

Y. C. Lai, T. C. Kuang, B. H. Cheng, Y. C. Lan, and D. P. Tsa, “Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation,” Sci. Rep. 7(1), 11096 (2017).
[Crossref]

Tsai, D. P.

B. H. Cheng, Y. S. Ye, Y. C. Lan, and D. P. Tsai, “Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating,” Sci. Rep. 7(1), 6443 (2017).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Vogelgesang, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2(1), 267 (2011).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Wang, L.

L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, “Multi-color and multidirectional-steerable Smith-Purcell radiation from 2D subwavelength hole arrays,” Appl. Phys. Lett. 113(1), 013501 (2018).
[Crossref]

Xiong, X. Y. Z.

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact Nonlinear Yagi-Uda Nanoantennas,” Sci. Rep. 6(1), 18872 (2016).
[Crossref]

Yahia, A.

A. M. Ghanim, M. Hussein, M. F. O. Hameed, A. Yahia, and S. S. A. Obayya, “Highly directive hybrid Yagi-Uda nanoantenna for radiation emission enhancement,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

Ye, Y. S.

B. H. Cheng, Y. S. Ye, Y. C. Lan, and D. P. Tsai, “Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating,” Sci. Rep. 7(1), 6443 (2017).
[Crossref]

Zhang, P.

Zhao, T.

Zheludev, N. I.

J. K. So, F. Javier García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photonics 2(9), 1236–1240 (2015).
[Crossref]

Zhong, R.

ACS Photonics (1)

J. K. So, F. Javier García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photonics 2(9), 1236–1240 (2015).
[Crossref]

AIP Adv. (1)

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP Adv. 5(12), 127135 (2015).
[Crossref]

Appl. Phys. Lett. (1)

L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, “Multi-color and multidirectional-steerable Smith-Purcell radiation from 2D subwavelength hole arrays,” Appl. Phys. Lett. 113(1), 013501 (2018).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE Photonics J. (1)

A. M. Ghanim, M. Hussein, M. F. O. Hameed, A. Yahia, and S. S. A. Obayya, “Highly directive hybrid Yagi-Uda nanoantenna for radiation emission enhancement,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

J. Opt. (1)

F. J. Rodríguez-Fortuño, A. Espinosa-Soria, and A. Martínez, “Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics,” J. Opt. 18(12), 123001 (2016).
[Crossref]

Nanophotonics (1)

I. S. Maksymov, I. Staude, E. Andrey, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Nat. Commun. (2)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2(1), 267 (2011).
[Crossref]

A. Dasgupta, M. M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref]

New J. Phys. (1)

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi–Uda antenna,” New J. Phys. 9(7), 217 (2007).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Phys. Rev. B (2)

J. R. M. Saavedra, D. Castells-Graells, and F. Javier García de Abajo, “Smith-Purcell radiation emission in aperiodic arrays,” Phys. Rev. B 94(3), 035418 (2016).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared Radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Sci. Rep. (3)

B. H. Cheng, Y. S. Ye, Y. C. Lan, and D. P. Tsai, “Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating,” Sci. Rep. 7(1), 6443 (2017).
[Crossref]

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact Nonlinear Yagi-Uda Nanoantennas,” Sci. Rep. 6(1), 18872 (2016).
[Crossref]

Y. C. Lai, T. C. Kuang, B. H. Cheng, Y. C. Lan, and D. P. Tsa, “Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation,” Sci. Rep. 7(1), 11096 (2017).
[Crossref]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Other (3)

C. A. Balanis, Antenna Theory Analysys and Design (John Wiley & Sons, 2005).

S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).

M. H. Loretto, Electron Beam Analysis of Materials (Chapman & Hall, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Simulation structure for generation of SPR from a YUNA array deposited on an IMI substrate. The electron bunch moves along the +x direction under the IMI substrate and directly below the feed elements to excite SP on the IMI substrate. (b) Top view of (a). Definitions of geometry parameters and their values are listed in Table 1. (c) Simulation structure for x-polarized plane wave normally incident to a single feed element deposited on an IMI substrate. (d) Simulation structure for SP-manipulated SPR on an IMI substrate with the feed elements as gratings. (e) Simulation structure for a dipole current density source placed at the side of the feed element of a single YUNA on an IMI substrate. (f) and (g) Simulation structures for generating two beams, using two groups of YUNA arrays, and for three beams, using three groups of YUNA arrays.
Fig. 2.
Fig. 2. (a) Excited Ex field spectra for different values of LF. (b) and (c) Simulated time-averaged electric field energy density in the x-z plane and the x-y plane, respectively, for LF = 80 nm at ${\lambda _0} = 478\;\textrm{nm}$. (d) Simulated peak wavelength of a dipole-like mode as a function of LF.
Fig. 3.
Fig. 3. (a) – (c) Snapshots of simulated electric energy density contours around the feed elements in x-z plane for P = 136, 176 and 240 nm, respectively (LF = 112 nm and WF = 40 nm). (d) The same simulated contour as in (b) except for in the y-z plane (cut at the center of the third feed element in x direction).
Fig. 4.
Fig. 4. (a) Simulated far-field polar angles as a function of LF for LD = 48 nm, 88 nm and LF (P = 176 nm). Inset: Rectangular (x, y, z) and spherical ($r,\,\theta ,\,\phi$) coordinate systems. (b) – (f) Simulated far-field radiation power contours in polar coordinates (normalized to the maximum radiation power) for (LF, LD) equal to (48 nm, 88 nm), (96 nm, 48 nm), (152 nm, 48 nm), (152 nm, 88 nm) and (128 nm, 128 nm), respectively. These are marked as 1, 2, 3, 4 and 5, respectively in (a).
Fig. 5.
Fig. 5. (a) and (b) Simulated far-field radiation contours in polar coordinates (normalized to the maximum radiation power) for structures of Figs. 1(a) and 1(e), respectively (LF = 96 nm and LD = 88nm for both Figs. 1(a) and 1(e), and P = 176 nm in Fig. 1(a)). (c) Semi-analytical model of (b) with the monochromatic line dipole sources F, D1, D2 and D3. (d) Simulated far-field radiation contours in polar coordinates (also normalized to the maximum radiation power) for the semi-analytical model.
Fig. 6.
Fig. 6. (a) and (b) Simulated far-field radiation power contours (normalized to the maximum radiation power) for structures of Figs. 1(f) and 1(g), respectively. In (a), the geometrical parameters for the first (second) group of YUNA are: P = 136 nm (216 nm), N = 6 (4), LF = 96 nm (72 nm) and LD = 48 nm (48 nm). LG = 600 nm. In (b), the geometric parameters for the first (second, third) group are: P = 176 nm (136 nm, 240 nm) and LF = 72 nm (96 nm, 72 nm), where LD = 48 nm for all groups of arrays, LG = 400 nm.
Fig. 7.
Fig. 7. (a) – (c) Simulated far-field radiation power contours for green, red and blue light, respectively. For each light, the power is normalized to its maximum radiation power. The structure is the same as Fig. 1(g) and Fig. 6(b) except that refractive indices of the dielectric films, P and LF in the second (third) region are 2.6 (1.7), 160 nm (200 nm) and 80 nm (80 nm), respectively.

Tables (1)

Tables Icon

Table 1. Definitions and values of geometry parameters used in simulations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ = P | m | ( β 1 sin θ 0 )

Metrics