Abstract

An Al2O3:Mn4+, Mg2+ red emitting ceramic phosphor, which can be effectively excited by ultraviolet and blue light, was successfully synthesized via solid-state reaction in an oxygen and air atmosphere. The ceramic sintered in oxygen atmosphere has higher optical transmittance and stronger luminescence intensity than the ceramic sintered in the air, which is more suitable for LED application. Since the structure of α-Al2O3 is very simple, it is convenient to study the factors affecting the Mn4+ luminescence. The crystal-strength parameter Dq, Racah parameters B and C, and the nephelauxetic ratio β1 were calculated to investigate the influence of crystal field strength and nephelauxetic effect on the emission of Mn4+ in the Al2O3 host. The ratio of Dq to B was 1.74, which was lower than 2.2. This indicated that the Mn4+ ions in the α-Al2O3 host were in a weak crystal field environment. Under the 395 nm and 460 nm excitations, quantum yields (QY) of the sample were measured to be 46% and 28.7%, respectively. The density measured by the Archimedes method was 3.61 g/cm3. The ceramic also showed an excellent thermal conductivity value, which was as high as 26.27 W·m−1·K−1@30 °C.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
K2SiF6:Mn4+ as a red phosphor for displays and warm-white LEDs: a review of properties and perspectives

Heleen F. Sijbom, Reinert Verstraete, Jonas J. Joos, Dirk Poelman, and Philippe F. Smet
Opt. Mater. Express 7(9) 3332-3365 (2017)

ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor

Wei-Ren Liu, Chun Che Lin, Yi-Chen Chiu, Yao-Tsung Yeh, Shyue-Ming Jang, and Ru-Shi Liu
Opt. Express 18(3) 2946-2951 (2010)

Al2O3-YAG:Ce composite ceramics for high-brightness lighting

M. Xu, J. Chang, J. Wang, C. Wu, and F. Hu
Opt. Express 27(2) 872-885 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308(5726), 1274–1278 (2005).
    [Crossref]
  2. J. J. Wierer, J. Y. Taso, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
    [Crossref]
  3. D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
    [Crossref]
  4. R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser Photonics Rev. 8(1), 158–164 (2014).
    [Crossref]
  5. L. Lv, X. Jiang, S. Huang, X. chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C 2(20), 3879–3884 (2014).
    [Crossref]
  6. C. Ma, Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long, and X. Yuan, “High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications,” Opt. Mater. 69, 105–114 (2017).
    [Crossref]
  7. A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18(14), 3314–3322 (2006).
    [Crossref]
  8. H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
    [Crossref]
  9. B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
    [Crossref]
  10. C. Bulloni, A. Garcia-Fuente, W. Urland, and C. Daul, “Effect of Ca2+ codoping on the Eu2+ luminescence properties in the Sr2Si5N8 host lattice: a theoretical approach,” Phys. Chem. Chem. Phys. 17(38), 24925–24930 (2015).
    [Crossref]
  11. K. Li, H. Lian, and R. V. Deun, “Site occupancy and photoluminescence properties of a novel deep-red-emitting phosphor NaMgGdTeO6: Mn4+ with perovskite structure for w-LEDs,” J. Lumin. 198, 155–162 (2018).
    [Crossref]
  12. J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
    [Crossref]
  13. C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
    [Crossref]
  14. B. Wang, H. Lin, J. Xu, H. Chen, and Y. Sheng, “CaMg2Al16O27:Mn4+-based Red Phosphor: A Potential Color Converter for High-Powered Warm W-LED,” ACS Appl. Mater. Interfaces 6(24), 22905–22913 (2014).
    [Crossref]
  15. K. Li, H. Lian, and R. V. Deun, “A novel deep red-emitting phosphor KMgLaTeO6:Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties,” Dalton Trans. 47(8), 2501–2505 (2018).
    [Crossref]
  16. A. Fu, L. Zhou, S. Wang, and Y. Li, “Preparation, structural and optical characteristics of a deep red-emitting Mg2Al4Si5O18: Mn4+ phosphor for warm w-LEDs,” Dyes Pigm. 148, 9–15 (2018).
    [Crossref]
  17. Q. Zhang, R. Zheng, J. Ding, and W. Wei, “Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode-pumped green-emitting phosphor,” Opt. Lett. 43(15), 3566–3569 (2018).
    [Crossref]
  18. H. Su, Y. Nie, H. Yang, D. Tang, K. Chen, and T. Zhang, “Improving the thermal stability of phosphor in a white light-emitting diode (LED) by glass-ceramics: Effect of Al2O3 dopant,” J. Eur. Ceram. Soc. 38(4), 2005–2009 (2018).
    [Crossref]
  19. A. Wagner, B. Ratzker, S. Kalabukhov, and N. Frage, “Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening,” J. Lumin. 213, 454–458 (2019).
    [Crossref]
  20. B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
    [Crossref]
  21. S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
    [Crossref]
  22. J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
    [Crossref]
  23. T. Arai and S. Adachi, “Mn-activated Na2SiF6 red and yellowish-green phosphors: A comparative study,” J. Appl. Phys. 110(6), 063514 (2011).
    [Crossref]
  24. Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
    [Crossref]
  25. S. Dey, R. A. Ricciardo, H. L. Cuthbert, and P. M. Woodward, “Metal-to-Metal Charge Transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu or Zn) Compounds with the Wolframite Structure,” Inorg. Chem. 53(9), 4394–4399 (2014).
    [Crossref]
  26. X. Huang and H. Guo, “Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application,” Dyes Pigm. 152, 36–42 (2018).
    [Crossref]
  27. X. Zhang, J. Nie, S. Liu, Y. Li, and J. Qiu, “Deep-Red Photoluminescence and Long Persistent Luminescence in Double Perovstkite-type La2MgGeO6:Mn4+,” J. Am. Ceram. Soc. 101(4), 1576–1584 (2018).
    [Crossref]
  28. A. M. Srivastava and W. W. Beers, “Luminescence of Mn4+ in the Distorted Perovskite Gd2MgTiO6,” J. Electrochem. Soc. 143(9), L203–L205 (1996).
    [Crossref]
  29. M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of Covalency on Mn4+2Eg→4A2g Emission Energy in Crystals,” ECS J. Solid. State. Sc. 4(3), R39–R43 (2014).
  30. M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
    [Crossref]
  31. Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
    [Crossref]
  32. Y. Zhang, S. Hu, Y. Liu, Z. Wang, G. Zhou, and S. Wang, “Red-emitting Lu3Al5O12: Mn transparent ceramic phosphors: valence state evolution studies of Mn ions,” Ceram. Int. 44(18), 23259–23262 (2018).
    [Crossref]
  33. L. Wang, R. J. Xie, T. Suehiro, T. Takeda, and N. Hirosaki, “Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives,” Chem. Rev. 118(4), 1951–2009 (2018).
    [Crossref]
  34. W. Chen, Y. Cheng, L. Shen, C. Shen, X. Liang, and W. Xiang, “Red-emitting Sr2MgGe2O7:Mn4+, phosphors: Structure, luminescence properties, and application in warm white light emitting diodes,” J. Alloys Compd. 762, 688–696 (2018).
    [Crossref]
  35. Y. Xu, L. Wang, B. Qu, D. Li, J. Lu, and R. Zhou, “The role of co-dopants on the luminescent properties of α-Al2O3:Mn4+ and BaMgAl1O7:Mn4+,” J. Am. Ceram. Soc. 102(5), 2737–2744 (2018).
    [Crossref]
  36. S. Li, L. Wang, N. Hirosaki, and R. J. Xie, “Color Conversion Materials for High-Brightness Laser-Driven Solid-State Lighting,” Laser Photonics Rev. 12(12), 1800173 (2018).
    [Crossref]
  37. Z. Zhang, C. Ma, R. Gautier, M. S. Molokeev, Q. Liu, and Z. Guo, “Structural Confinement toward Giant Enhancement of Red Emission in Mn2+-Based Phosphors,” Adv. Funct. Mater. 28(41), 1804150 (2018).
    [Crossref]
  38. J. Qiao, L. Ning, M. S. Molokeev, Y. Chuang, Q. Zhang, K. R. Poeppelmeier, and Z. Xia, “Site-Selective Occupancy of Eu2+ Toward Blue-Light-Excited Red Emission in a Rb3YSi2O7:Eu Phosphor,” Angew. Chem., Int. Ed. 58(33), 11521–11526 (2019).
    [Crossref]

2019 (6)

B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
[Crossref]

A. Wagner, B. Ratzker, S. Kalabukhov, and N. Frage, “Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening,” J. Lumin. 213, 454–458 (2019).
[Crossref]

B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

J. Qiao, L. Ning, M. S. Molokeev, Y. Chuang, Q. Zhang, K. R. Poeppelmeier, and Z. Xia, “Site-Selective Occupancy of Eu2+ Toward Blue-Light-Excited Red Emission in a Rb3YSi2O7:Eu Phosphor,” Angew. Chem., Int. Ed. 58(33), 11521–11526 (2019).
[Crossref]

2018 (15)

Y. Zhang, S. Hu, Y. Liu, Z. Wang, G. Zhou, and S. Wang, “Red-emitting Lu3Al5O12: Mn transparent ceramic phosphors: valence state evolution studies of Mn ions,” Ceram. Int. 44(18), 23259–23262 (2018).
[Crossref]

L. Wang, R. J. Xie, T. Suehiro, T. Takeda, and N. Hirosaki, “Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives,” Chem. Rev. 118(4), 1951–2009 (2018).
[Crossref]

W. Chen, Y. Cheng, L. Shen, C. Shen, X. Liang, and W. Xiang, “Red-emitting Sr2MgGe2O7:Mn4+, phosphors: Structure, luminescence properties, and application in warm white light emitting diodes,” J. Alloys Compd. 762, 688–696 (2018).
[Crossref]

Y. Xu, L. Wang, B. Qu, D. Li, J. Lu, and R. Zhou, “The role of co-dopants on the luminescent properties of α-Al2O3:Mn4+ and BaMgAl1O7:Mn4+,” J. Am. Ceram. Soc. 102(5), 2737–2744 (2018).
[Crossref]

S. Li, L. Wang, N. Hirosaki, and R. J. Xie, “Color Conversion Materials for High-Brightness Laser-Driven Solid-State Lighting,” Laser Photonics Rev. 12(12), 1800173 (2018).
[Crossref]

Z. Zhang, C. Ma, R. Gautier, M. S. Molokeev, Q. Liu, and Z. Guo, “Structural Confinement toward Giant Enhancement of Red Emission in Mn2+-Based Phosphors,” Adv. Funct. Mater. 28(41), 1804150 (2018).
[Crossref]

X. Huang and H. Guo, “Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application,” Dyes Pigm. 152, 36–42 (2018).
[Crossref]

X. Zhang, J. Nie, S. Liu, Y. Li, and J. Qiu, “Deep-Red Photoluminescence and Long Persistent Luminescence in Double Perovstkite-type La2MgGeO6:Mn4+,” J. Am. Ceram. Soc. 101(4), 1576–1584 (2018).
[Crossref]

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

K. Li, H. Lian, and R. V. Deun, “Site occupancy and photoluminescence properties of a novel deep-red-emitting phosphor NaMgGdTeO6: Mn4+ with perovskite structure for w-LEDs,” J. Lumin. 198, 155–162 (2018).
[Crossref]

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

K. Li, H. Lian, and R. V. Deun, “A novel deep red-emitting phosphor KMgLaTeO6:Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties,” Dalton Trans. 47(8), 2501–2505 (2018).
[Crossref]

A. Fu, L. Zhou, S. Wang, and Y. Li, “Preparation, structural and optical characteristics of a deep red-emitting Mg2Al4Si5O18: Mn4+ phosphor for warm w-LEDs,” Dyes Pigm. 148, 9–15 (2018).
[Crossref]

Q. Zhang, R. Zheng, J. Ding, and W. Wei, “Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode-pumped green-emitting phosphor,” Opt. Lett. 43(15), 3566–3569 (2018).
[Crossref]

H. Su, Y. Nie, H. Yang, D. Tang, K. Chen, and T. Zhang, “Improving the thermal stability of phosphor in a white light-emitting diode (LED) by glass-ceramics: Effect of Al2O3 dopant,” J. Eur. Ceram. Soc. 38(4), 2005–2009 (2018).
[Crossref]

2017 (1)

C. Ma, Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long, and X. Yuan, “High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications,” Opt. Mater. 69, 105–114 (2017).
[Crossref]

2016 (2)

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

2015 (1)

C. Bulloni, A. Garcia-Fuente, W. Urland, and C. Daul, “Effect of Ca2+ codoping on the Eu2+ luminescence properties in the Sr2Si5N8 host lattice: a theoretical approach,” Phys. Chem. Chem. Phys. 17(38), 24925–24930 (2015).
[Crossref]

2014 (6)

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser Photonics Rev. 8(1), 158–164 (2014).
[Crossref]

L. Lv, X. Jiang, S. Huang, X. chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C 2(20), 3879–3884 (2014).
[Crossref]

B. Wang, H. Lin, J. Xu, H. Chen, and Y. Sheng, “CaMg2Al16O27:Mn4+-based Red Phosphor: A Potential Color Converter for High-Powered Warm W-LED,” ACS Appl. Mater. Interfaces 6(24), 22905–22913 (2014).
[Crossref]

M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of Covalency on Mn4+2Eg→4A2g Emission Energy in Crystals,” ECS J. Solid. State. Sc. 4(3), R39–R43 (2014).

S. Dey, R. A. Ricciardo, H. L. Cuthbert, and P. M. Woodward, “Metal-to-Metal Charge Transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu or Zn) Compounds with the Wolframite Structure,” Inorg. Chem. 53(9), 4394–4399 (2014).
[Crossref]

2013 (3)

J. J. Wierer, J. Y. Taso, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

2011 (1)

T. Arai and S. Adachi, “Mn-activated Na2SiF6 red and yellowish-green phosphors: A comparative study,” J. Appl. Phys. 110(6), 063514 (2011).
[Crossref]

2006 (1)

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18(14), 3314–3322 (2006).
[Crossref]

2005 (1)

E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

1996 (1)

A. M. Srivastava and W. W. Beers, “Luminescence of Mn4+ in the Distorted Perovskite Gd2MgTiO6,” J. Electrochem. Soc. 143(9), L203–L205 (1996).
[Crossref]

Adachi, S.

T. Arai and S. Adachi, “Mn-activated Na2SiF6 red and yellowish-green phosphors: A comparative study,” J. Appl. Phys. 110(6), 063514 (2011).
[Crossref]

Arai, T.

T. Arai and S. Adachi, “Mn-activated Na2SiF6 red and yellowish-green phosphors: A comparative study,” J. Appl. Phys. 110(6), 063514 (2011).
[Crossref]

Avram, N. M.

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

Beers, W. W.

A. M. Srivastava and W. W. Beers, “Luminescence of Mn4+ in the Distorted Perovskite Gd2MgTiO6,” J. Electrochem. Soc. 143(9), L203–L205 (1996).
[Crossref]

Brik, M. G.

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of Covalency on Mn4+2Eg→4A2g Emission Energy in Crystals,” ECS J. Solid. State. Sc. 4(3), R39–R43 (2014).

Bulloni, C.

C. Bulloni, A. Garcia-Fuente, W. Urland, and C. Daul, “Effect of Ca2+ codoping on the Eu2+ luminescence properties in the Sr2Si5N8 host lattice: a theoretical approach,” Phys. Chem. Chem. Phys. 17(38), 24925–24930 (2015).
[Crossref]

Camardello, S. J.

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of Covalency on Mn4+2Eg→4A2g Emission Energy in Crystals,” ECS J. Solid. State. Sc. 4(3), R39–R43 (2014).

Cao, R.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Cao, Y.

C. Ma, Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long, and X. Yuan, “High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications,” Opt. Mater. 69, 105–114 (2017).
[Crossref]

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Chandran, R. G.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18(14), 3314–3322 (2006).
[Crossref]

Chen, D.

R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser Photonics Rev. 8(1), 158–164 (2014).
[Crossref]

Chen, H.

B. Wang, H. Lin, J. Xu, H. Chen, and Y. Sheng, “CaMg2Al16O27:Mn4+-based Red Phosphor: A Potential Color Converter for High-Powered Warm W-LED,” ACS Appl. Mater. Interfaces 6(24), 22905–22913 (2014).
[Crossref]

Chen, K.

H. Su, Y. Nie, H. Yang, D. Tang, K. Chen, and T. Zhang, “Improving the thermal stability of phosphor in a white light-emitting diode (LED) by glass-ceramics: Effect of Al2O3 dopant,” J. Eur. Ceram. Soc. 38(4), 2005–2009 (2018).
[Crossref]

Chen, W.

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

W. Chen, Y. Cheng, L. Shen, C. Shen, X. Liang, and W. Xiang, “Red-emitting Sr2MgGe2O7:Mn4+, phosphors: Structure, luminescence properties, and application in warm white light emitting diodes,” J. Alloys Compd. 762, 688–696 (2018).
[Crossref]

Chen, X.

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

L. Lv, X. Jiang, S. Huang, X. chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C 2(20), 3879–3884 (2014).
[Crossref]

Cheng, Y.

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

W. Chen, Y. Cheng, L. Shen, C. Shen, X. Liang, and W. Xiang, “Red-emitting Sr2MgGe2O7:Mn4+, phosphors: Structure, luminescence properties, and application in warm white light emitting diodes,” J. Alloys Compd. 762, 688–696 (2018).
[Crossref]

Cho, Y.

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Chuang, Y.

J. Qiao, L. Ning, M. S. Molokeev, Y. Chuang, Q. Zhang, K. R. Poeppelmeier, and Z. Xia, “Site-Selective Occupancy of Eu2+ Toward Blue-Light-Excited Red Emission in a Rb3YSi2O7:Eu Phosphor,” Angew. Chem., Int. Ed. 58(33), 11521–11526 (2019).
[Crossref]

Cuthbert, H. L.

S. Dey, R. A. Ricciardo, H. L. Cuthbert, and P. M. Woodward, “Metal-to-Metal Charge Transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu or Zn) Compounds with the Wolframite Structure,” Inorg. Chem. 53(9), 4394–4399 (2014).
[Crossref]

Daul, C.

C. Bulloni, A. Garcia-Fuente, W. Urland, and C. Daul, “Effect of Ca2+ codoping on the Eu2+ luminescence properties in the Sr2Si5N8 host lattice: a theoretical approach,” Phys. Chem. Chem. Phys. 17(38), 24925–24930 (2015).
[Crossref]

Denbaars, S. P.

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

Deun, R. V.

K. Li, H. Lian, and R. V. Deun, “Site occupancy and photoluminescence properties of a novel deep-red-emitting phosphor NaMgGdTeO6: Mn4+ with perovskite structure for w-LEDs,” J. Lumin. 198, 155–162 (2018).
[Crossref]

K. Li, H. Lian, and R. V. Deun, “A novel deep red-emitting phosphor KMgLaTeO6:Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties,” Dalton Trans. 47(8), 2501–2505 (2018).
[Crossref]

Dey, S.

S. Dey, R. A. Ricciardo, H. L. Cuthbert, and P. M. Woodward, “Metal-to-Metal Charge Transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu or Zn) Compounds with the Wolframite Structure,” Inorg. Chem. 53(9), 4394–4399 (2014).
[Crossref]

Ding, J.

Dong, G.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Du, B.

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

Feezell, D. F.

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

Frage, N.

A. Wagner, B. Ratzker, S. Kalabukhov, and N. Frage, “Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening,” J. Lumin. 213, 454–458 (2019).
[Crossref]

Fu, A.

A. Fu, L. Zhou, S. Wang, and Y. Li, “Preparation, structural and optical characteristics of a deep red-emitting Mg2Al4Si5O18: Mn4+ phosphor for warm w-LEDs,” Dyes Pigm. 148, 9–15 (2018).
[Crossref]

Gao, Y.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18(14), 3314–3322 (2006).
[Crossref]

Garcia-Fuente, A.

C. Bulloni, A. Garcia-Fuente, W. Urland, and C. Daul, “Effect of Ca2+ codoping on the Eu2+ luminescence properties in the Sr2Si5N8 host lattice: a theoretical approach,” Phys. Chem. Chem. Phys. 17(38), 24925–24930 (2015).
[Crossref]

Gautier, R.

Z. Zhang, C. Ma, R. Gautier, M. S. Molokeev, Q. Liu, and Z. Guo, “Structural Confinement toward Giant Enhancement of Red Emission in Mn2+-Based Phosphors,” Adv. Funct. Mater. 28(41), 1804150 (2018).
[Crossref]

Gong, Y.

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

Guo, H.

X. Huang and H. Guo, “Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application,” Dyes Pigm. 152, 36–42 (2018).
[Crossref]

Guo, Z.

Z. Zhang, C. Ma, R. Gautier, M. S. Molokeev, Q. Liu, and Z. Guo, “Structural Confinement toward Giant Enhancement of Red Emission in Mn2+-Based Phosphors,” Adv. Funct. Mater. 28(41), 1804150 (2018).
[Crossref]

He, M.

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

Heward, W. J.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18(14), 3314–3322 (2006).
[Crossref]

Hirosaki, N.

S. Li, L. Wang, N. Hirosaki, and R. J. Xie, “Color Conversion Materials for High-Brightness Laser-Driven Solid-State Lighting,” Laser Photonics Rev. 12(12), 1800173 (2018).
[Crossref]

L. Wang, R. J. Xie, T. Suehiro, T. Takeda, and N. Hirosaki, “Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives,” Chem. Rev. 118(4), 1951–2009 (2018).
[Crossref]

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Hong, M.

B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Hong, M. C.

B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Hu, B.

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

Hu, S.

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, G. Zhou, and S. Wang, “Red-emitting Lu3Al5O12: Mn transparent ceramic phosphors: valence state evolution studies of Mn ions,” Ceram. Int. 44(18), 23259–23262 (2018).
[Crossref]

Huang, S.

L. Lv, X. Jiang, S. Huang, X. chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C 2(20), 3879–3884 (2014).
[Crossref]

Huang, X.

X. Huang and H. Guo, “Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application,” Dyes Pigm. 152, 36–42 (2018).
[Crossref]

Huang, Z.

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Jiang, J.

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

Jiang, X.

L. Lv, X. Jiang, S. Huang, X. chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C 2(20), 3879–3884 (2014).
[Crossref]

Kalabukhov, S.

A. Wagner, B. Ratzker, S. Kalabukhov, and N. Frage, “Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening,” J. Lumin. 213, 454–458 (2019).
[Crossref]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Kong, J.

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Li, D.

Y. Xu, L. Wang, B. Qu, D. Li, J. Lu, and R. Zhou, “The role of co-dopants on the luminescent properties of α-Al2O3:Mn4+ and BaMgAl1O7:Mn4+,” J. Am. Ceram. Soc. 102(5), 2737–2744 (2018).
[Crossref]

Li, H.

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

Li, K.

K. Li, H. Lian, and R. V. Deun, “A novel deep red-emitting phosphor KMgLaTeO6:Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties,” Dalton Trans. 47(8), 2501–2505 (2018).
[Crossref]

K. Li, H. Lian, and R. V. Deun, “Site occupancy and photoluminescence properties of a novel deep-red-emitting phosphor NaMgGdTeO6: Mn4+ with perovskite structure for w-LEDs,” J. Lumin. 198, 155–162 (2018).
[Crossref]

Li, S.

S. Li, L. Wang, N. Hirosaki, and R. J. Xie, “Color Conversion Materials for High-Brightness Laser-Driven Solid-State Lighting,” Laser Photonics Rev. 12(12), 1800173 (2018).
[Crossref]

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Li, Y.

A. Fu, L. Zhou, S. Wang, and Y. Li, “Preparation, structural and optical characteristics of a deep red-emitting Mg2Al4Si5O18: Mn4+ phosphor for warm w-LEDs,” Dyes Pigm. 148, 9–15 (2018).
[Crossref]

X. Zhang, J. Nie, S. Liu, Y. Li, and J. Qiu, “Deep-Red Photoluminescence and Long Persistent Luminescence in Double Perovstkite-type La2MgGeO6:Mn4+,” J. Am. Ceram. Soc. 101(4), 1576–1584 (2018).
[Crossref]

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Lian, H.

K. Li, H. Lian, and R. V. Deun, “A novel deep red-emitting phosphor KMgLaTeO6:Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties,” Dalton Trans. 47(8), 2501–2505 (2018).
[Crossref]

K. Li, H. Lian, and R. V. Deun, “Site occupancy and photoluminescence properties of a novel deep-red-emitting phosphor NaMgGdTeO6: Mn4+ with perovskite structure for w-LEDs,” J. Lumin. 198, 155–162 (2018).
[Crossref]

Liang, X.

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

W. Chen, Y. Cheng, L. Shen, C. Shen, X. Liang, and W. Xiang, “Red-emitting Sr2MgGe2O7:Mn4+, phosphors: Structure, luminescence properties, and application in warm white light emitting diodes,” J. Alloys Compd. 762, 688–696 (2018).
[Crossref]

Liao, C.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Lin, C.

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Lin, H.

B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
[Crossref]

B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
[Crossref]

B. Wang, H. Lin, J. Xu, H. Chen, and Y. Sheng, “CaMg2Al16O27:Mn4+-based Red Phosphor: A Potential Color Converter for High-Powered Warm W-LED,” ACS Appl. Mater. Interfaces 6(24), 22905–22913 (2014).
[Crossref]

R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser Photonics Rev. 8(1), 158–164 (2014).
[Crossref]

Ling, J.

B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Ling, J. R.

B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Liu, B.

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

Liu, Q.

Z. Zhang, C. Ma, R. Gautier, M. S. Molokeev, Q. Liu, and Z. Guo, “Structural Confinement toward Giant Enhancement of Red Emission in Mn2+-Based Phosphors,” Adv. Funct. Mater. 28(41), 1804150 (2018).
[Crossref]

Liu, R.

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Liu, S.

X. Zhang, J. Nie, S. Liu, Y. Li, and J. Qiu, “Deep-Red Photoluminescence and Long Persistent Luminescence in Double Perovstkite-type La2MgGeO6:Mn4+,” J. Am. Ceram. Soc. 101(4), 1576–1584 (2018).
[Crossref]

Liu, X.

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Liu, Y.

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, G. Zhou, and S. Wang, “Red-emitting Lu3Al5O12: Mn transparent ceramic phosphors: valence state evolution studies of Mn ions,” Ceram. Int. 44(18), 23259–23262 (2018).
[Crossref]

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Liu, Z.

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Long, J.

C. Ma, Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long, and X. Yuan, “High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications,” Opt. Mater. 69, 105–114 (2017).
[Crossref]

Lu, J.

Y. Xu, L. Wang, B. Qu, D. Li, J. Lu, and R. Zhou, “The role of co-dopants on the luminescent properties of α-Al2O3:Mn4+ and BaMgAl1O7:Mn4+,” J. Am. Ceram. Soc. 102(5), 2737–2744 (2018).
[Crossref]

Lu, S.

B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
[Crossref]

B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Luo, W.

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Lv, L.

L. Lv, X. Jiang, S. Huang, X. chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C 2(20), 3879–3884 (2014).
[Crossref]

Ma, C.

Z. Zhang, C. Ma, R. Gautier, M. S. Molokeev, Q. Liu, and Z. Guo, “Structural Confinement toward Giant Enhancement of Red Emission in Mn2+-Based Phosphors,” Adv. Funct. Mater. 28(41), 1804150 (2018).
[Crossref]

C. Ma, Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long, and X. Yuan, “High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications,” Opt. Mater. 69, 105–114 (2017).
[Crossref]

Ma, E.

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Ma, R.

C. Ma, Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long, and X. Yuan, “High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications,” Opt. Mater. 69, 105–114 (2017).
[Crossref]

Ma, Z.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Molokeev, M. S.

J. Qiao, L. Ning, M. S. Molokeev, Y. Chuang, Q. Zhang, K. R. Poeppelmeier, and Z. Xia, “Site-Selective Occupancy of Eu2+ Toward Blue-Light-Excited Red Emission in a Rb3YSi2O7:Eu Phosphor,” Angew. Chem., Int. Ed. 58(33), 11521–11526 (2019).
[Crossref]

Z. Zhang, C. Ma, R. Gautier, M. S. Molokeev, Q. Liu, and Z. Guo, “Structural Confinement toward Giant Enhancement of Red Emission in Mn2+-Based Phosphors,” Adv. Funct. Mater. 28(41), 1804150 (2018).
[Crossref]

Nakamura, S.

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

Nie, J.

X. Zhang, J. Nie, S. Liu, Y. Li, and J. Qiu, “Deep-Red Photoluminescence and Long Persistent Luminescence in Double Perovstkite-type La2MgGeO6:Mn4+,” J. Am. Ceram. Soc. 101(4), 1576–1584 (2018).
[Crossref]

Nie, Y.

H. Su, Y. Nie, H. Yang, D. Tang, K. Chen, and T. Zhang, “Improving the thermal stability of phosphor in a white light-emitting diode (LED) by glass-ceramics: Effect of Al2O3 dopant,” J. Eur. Ceram. Soc. 38(4), 2005–2009 (2018).
[Crossref]

Ning, L.

J. Qiao, L. Ning, M. S. Molokeev, Y. Chuang, Q. Zhang, K. R. Poeppelmeier, and Z. Xia, “Site-Selective Occupancy of Eu2+ Toward Blue-Light-Excited Red Emission in a Rb3YSi2O7:Eu Phosphor,” Angew. Chem., Int. Ed. 58(33), 11521–11526 (2019).
[Crossref]

Nishimura, T.

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Pan, Y.

L. Lv, X. Jiang, S. Huang, X. chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C 2(20), 3879–3884 (2014).
[Crossref]

Poeppelmeier, K. R.

J. Qiao, L. Ning, M. S. Molokeev, Y. Chuang, Q. Zhang, K. R. Poeppelmeier, and Z. Xia, “Site-Selective Occupancy of Eu2+ Toward Blue-Light-Excited Red Emission in a Rb3YSi2O7:Eu Phosphor,” Angew. Chem., Int. Ed. 58(33), 11521–11526 (2019).
[Crossref]

Qiao, J.

J. Qiao, L. Ning, M. S. Molokeev, Y. Chuang, Q. Zhang, K. R. Poeppelmeier, and Z. Xia, “Site-Selective Occupancy of Eu2+ Toward Blue-Light-Excited Red Emission in a Rb3YSi2O7:Eu Phosphor,” Angew. Chem., Int. Ed. 58(33), 11521–11526 (2019).
[Crossref]

Qin, Z.

B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Qin, Z. X.

B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Qiu, J.

X. Zhang, J. Nie, S. Liu, Y. Li, and J. Qiu, “Deep-Red Photoluminescence and Long Persistent Luminescence in Double Perovstkite-type La2MgGeO6:Mn4+,” J. Am. Ceram. Soc. 101(4), 1576–1584 (2018).
[Crossref]

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Qu, B.

Y. Xu, L. Wang, B. Qu, D. Li, J. Lu, and R. Zhou, “The role of co-dopants on the luminescent properties of α-Al2O3:Mn4+ and BaMgAl1O7:Mn4+,” J. Am. Ceram. Soc. 102(5), 2737–2744 (2018).
[Crossref]

Ratzker, B.

A. Wagner, B. Ratzker, S. Kalabukhov, and N. Frage, “Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening,” J. Lumin. 213, 454–458 (2019).
[Crossref]

Ricciardo, R. A.

S. Dey, R. A. Ricciardo, H. L. Cuthbert, and P. M. Woodward, “Metal-to-Metal Charge Transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu or Zn) Compounds with the Wolframite Structure,” Inorg. Chem. 53(9), 4394–4399 (2014).
[Crossref]

Ruan, X.

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Sekiguchi, T.

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Setlur, A. A.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18(14), 3314–3322 (2006).
[Crossref]

Shankar, M. V.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18(14), 3314–3322 (2006).
[Crossref]

Sharafudeen, K. N.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Shen, C.

W. Chen, Y. Cheng, L. Shen, C. Shen, X. Liang, and W. Xiang, “Red-emitting Sr2MgGe2O7:Mn4+, phosphors: Structure, luminescence properties, and application in warm white light emitting diodes,” J. Alloys Compd. 762, 688–696 (2018).
[Crossref]

Shen, L.

W. Chen, Y. Cheng, L. Shen, C. Shen, X. Liang, and W. Xiang, “Red-emitting Sr2MgGe2O7:Mn4+, phosphors: Structure, luminescence properties, and application in warm white light emitting diodes,” J. Alloys Compd. 762, 688–696 (2018).
[Crossref]

Shen, X.

C. Ma, Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long, and X. Yuan, “High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications,” Opt. Mater. 69, 105–114 (2017).
[Crossref]

Sheng, Y.

B. Wang, H. Lin, J. Xu, H. Chen, and Y. Sheng, “CaMg2Al16O27:Mn4+-based Red Phosphor: A Potential Color Converter for High-Powered Warm W-LED,” ACS Appl. Mater. Interfaces 6(24), 22905–22913 (2014).
[Crossref]

Shu, S.

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Sizov, D. S.

J. J. Wierer, J. Y. Taso, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Speck, J. S.

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

Srivastava, A. M.

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of Covalency on Mn4+2Eg→4A2g Emission Energy in Crystals,” ECS J. Solid. State. Sc. 4(3), R39–R43 (2014).

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18(14), 3314–3322 (2006).
[Crossref]

A. M. Srivastava and W. W. Beers, “Luminescence of Mn4+ in the Distorted Perovskite Gd2MgTiO6,” J. Electrochem. Soc. 143(9), L203–L205 (1996).
[Crossref]

Su, H.

H. Su, Y. Nie, H. Yang, D. Tang, K. Chen, and T. Zhang, “Improving the thermal stability of phosphor in a white light-emitting diode (LED) by glass-ceramics: Effect of Al2O3 dopant,” J. Eur. Ceram. Soc. 38(4), 2005–2009 (2018).
[Crossref]

Suchocki, A.

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

Suehiro, T.

L. Wang, R. J. Xie, T. Suehiro, T. Takeda, and N. Hirosaki, “Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives,” Chem. Rev. 118(4), 1951–2009 (2018).
[Crossref]

Takeda, T.

L. Wang, R. J. Xie, T. Suehiro, T. Takeda, and N. Hirosaki, “Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives,” Chem. Rev. 118(4), 1951–2009 (2018).
[Crossref]

Tang, D.

H. Su, Y. Nie, H. Yang, D. Tang, K. Chen, and T. Zhang, “Improving the thermal stability of phosphor in a white light-emitting diode (LED) by glass-ceramics: Effect of Al2O3 dopant,” J. Eur. Ceram. Soc. 38(4), 2005–2009 (2018).
[Crossref]

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Taso, J. Y.

J. J. Wierer, J. Y. Taso, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Urland, W.

C. Bulloni, A. Garcia-Fuente, W. Urland, and C. Daul, “Effect of Ca2+ codoping on the Eu2+ luminescence properties in the Sr2Si5N8 host lattice: a theoretical approach,” Phys. Chem. Chem. Phys. 17(38), 24925–24930 (2015).
[Crossref]

Wagner, A.

A. Wagner, B. Ratzker, S. Kalabukhov, and N. Frage, “Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening,” J. Lumin. 213, 454–458 (2019).
[Crossref]

Wang, B.

B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
[Crossref]

B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
[Crossref]

B. Wang, H. Lin, J. Xu, H. Chen, and Y. Sheng, “CaMg2Al16O27:Mn4+-based Red Phosphor: A Potential Color Converter for High-Powered Warm W-LED,” ACS Appl. Mater. Interfaces 6(24), 22905–22913 (2014).
[Crossref]

Wang, J.

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

Wang, L.

L. Wang, R. J. Xie, T. Suehiro, T. Takeda, and N. Hirosaki, “Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives,” Chem. Rev. 118(4), 1951–2009 (2018).
[Crossref]

Y. Xu, L. Wang, B. Qu, D. Li, J. Lu, and R. Zhou, “The role of co-dopants on the luminescent properties of α-Al2O3:Mn4+ and BaMgAl1O7:Mn4+,” J. Am. Ceram. Soc. 102(5), 2737–2744 (2018).
[Crossref]

S. Li, L. Wang, N. Hirosaki, and R. J. Xie, “Color Conversion Materials for High-Brightness Laser-Driven Solid-State Lighting,” Laser Photonics Rev. 12(12), 1800173 (2018).
[Crossref]

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Wang, S.

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, G. Zhou, and S. Wang, “Red-emitting Lu3Al5O12: Mn transparent ceramic phosphors: valence state evolution studies of Mn ions,” Ceram. Int. 44(18), 23259–23262 (2018).
[Crossref]

A. Fu, L. Zhou, S. Wang, and Y. Li, “Preparation, structural and optical characteristics of a deep red-emitting Mg2Al4Si5O18: Mn4+ phosphor for warm w-LEDs,” Dyes Pigm. 148, 9–15 (2018).
[Crossref]

Wang, X.

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

Wang, Y.

R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser Photonics Rev. 8(1), 158–164 (2014).
[Crossref]

Wang, Z.

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, G. Zhou, and S. Wang, “Red-emitting Lu3Al5O12: Mn transparent ceramic phosphors: valence state evolution studies of Mn ions,” Ceram. Int. 44(18), 23259–23262 (2018).
[Crossref]

Wei, W.

Wen, Z.

C. Ma, Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long, and X. Yuan, “High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications,” Opt. Mater. 69, 105–114 (2017).
[Crossref]

Wierer, J. J.

J. J. Wierer, J. Y. Taso, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Woodward, P. M.

S. Dey, R. A. Ricciardo, H. L. Cuthbert, and P. M. Woodward, “Metal-to-Metal Charge Transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu or Zn) Compounds with the Wolframite Structure,” Inorg. Chem. 53(9), 4394–4399 (2014).
[Crossref]

Xia, Z.

J. Qiao, L. Ning, M. S. Molokeev, Y. Chuang, Q. Zhang, K. R. Poeppelmeier, and Z. Xia, “Site-Selective Occupancy of Eu2+ Toward Blue-Light-Excited Red Emission in a Rb3YSi2O7:Eu Phosphor,” Angew. Chem., Int. Ed. 58(33), 11521–11526 (2019).
[Crossref]

Xiang, W.

W. Chen, Y. Cheng, L. Shen, C. Shen, X. Liang, and W. Xiang, “Red-emitting Sr2MgGe2O7:Mn4+, phosphors: Structure, luminescence properties, and application in warm white light emitting diodes,” J. Alloys Compd. 762, 688–696 (2018).
[Crossref]

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

Xie, R. J.

S. Li, L. Wang, N. Hirosaki, and R. J. Xie, “Color Conversion Materials for High-Brightness Laser-Driven Solid-State Lighting,” Laser Photonics Rev. 12(12), 1800173 (2018).
[Crossref]

L. Wang, R. J. Xie, T. Suehiro, T. Takeda, and N. Hirosaki, “Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives,” Chem. Rev. 118(4), 1951–2009 (2018).
[Crossref]

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Xu, J.

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

B. Wang, H. Lin, J. Xu, H. Chen, and Y. Sheng, “CaMg2Al16O27:Mn4+-based Red Phosphor: A Potential Color Converter for High-Powered Warm W-LED,” ACS Appl. Mater. Interfaces 6(24), 22905–22913 (2014).
[Crossref]

R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser Photonics Rev. 8(1), 158–164 (2014).
[Crossref]

Xu, T.

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

Xu, W.

B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Xu, W. T.

B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Xu, Y.

Y. Xu, L. Wang, B. Qu, D. Li, J. Lu, and R. Zhou, “The role of co-dopants on the luminescent properties of α-Al2O3:Mn4+ and BaMgAl1O7:Mn4+,” J. Am. Ceram. Soc. 102(5), 2737–2744 (2018).
[Crossref]

Yang, H.

H. Su, Y. Nie, H. Yang, D. Tang, K. Chen, and T. Zhang, “Improving the thermal stability of phosphor in a white light-emitting diode (LED) by glass-ceramics: Effect of Al2O3 dopant,” J. Eur. Ceram. Soc. 38(4), 2005–2009 (2018).
[Crossref]

Ying, W.

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Yu, Y.

R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser Photonics Rev. 8(1), 158–164 (2014).
[Crossref]

Yuan, R.

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

Yuan, X.

C. Ma, Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long, and X. Yuan, “High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications,” Opt. Mater. 69, 105–114 (2017).
[Crossref]

Zhang, Q.

J. Qiao, L. Ning, M. S. Molokeev, Y. Chuang, Q. Zhang, K. R. Poeppelmeier, and Z. Xia, “Site-Selective Occupancy of Eu2+ Toward Blue-Light-Excited Red Emission in a Rb3YSi2O7:Eu Phosphor,” Angew. Chem., Int. Ed. 58(33), 11521–11526 (2019).
[Crossref]

Q. Zhang, R. Zheng, J. Ding, and W. Wei, “Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode-pumped green-emitting phosphor,” Opt. Lett. 43(15), 3566–3569 (2018).
[Crossref]

Zhang, R.

R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser Photonics Rev. 8(1), 158–164 (2014).
[Crossref]

Zhang, T.

H. Su, Y. Nie, H. Yang, D. Tang, K. Chen, and T. Zhang, “Improving the thermal stability of phosphor in a white light-emitting diode (LED) by glass-ceramics: Effect of Al2O3 dopant,” J. Eur. Ceram. Soc. 38(4), 2005–2009 (2018).
[Crossref]

Zhang, X.

X. Zhang, J. Nie, S. Liu, Y. Li, and J. Qiu, “Deep-Red Photoluminescence and Long Persistent Luminescence in Double Perovstkite-type La2MgGeO6:Mn4+,” J. Am. Ceram. Soc. 101(4), 1576–1584 (2018).
[Crossref]

Zhang, Y.

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, G. Zhou, and S. Wang, “Red-emitting Lu3Al5O12: Mn transparent ceramic phosphors: valence state evolution studies of Mn ions,” Ceram. Int. 44(18), 23259–23262 (2018).
[Crossref]

Zhang, Z.

Z. Zhang, C. Ma, R. Gautier, M. S. Molokeev, Q. Liu, and Z. Guo, “Structural Confinement toward Giant Enhancement of Red Emission in Mn2+-Based Phosphors,” Adv. Funct. Mater. 28(41), 1804150 (2018).
[Crossref]

Zheng, R.

Zhou, G.

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, G. Zhou, and S. Wang, “Red-emitting Lu3Al5O12: Mn transparent ceramic phosphors: valence state evolution studies of Mn ions,” Ceram. Int. 44(18), 23259–23262 (2018).
[Crossref]

Zhou, L.

A. Fu, L. Zhou, S. Wang, and Y. Li, “Preparation, structural and optical characteristics of a deep red-emitting Mg2Al4Si5O18: Mn4+ phosphor for warm w-LEDs,” Dyes Pigm. 148, 9–15 (2018).
[Crossref]

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

Zhou, R.

Y. Xu, L. Wang, B. Qu, D. Li, J. Lu, and R. Zhou, “The role of co-dopants on the luminescent properties of α-Al2O3:Mn4+ and BaMgAl1O7:Mn4+,” J. Am. Ceram. Soc. 102(5), 2737–2744 (2018).
[Crossref]

Zhou, Y.

B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Zhou, Y. F.

B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
[Crossref]

Zhu, H.

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Zhu, Q.

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

B. Wang, H. Lin, J. Xu, H. Chen, and Y. Sheng, “CaMg2Al16O27:Mn4+-based Red Phosphor: A Potential Color Converter for High-Powered Warm W-LED,” ACS Appl. Mater. Interfaces 6(24), 22905–22913 (2014).
[Crossref]

Adv. Funct. Mater. (1)

Z. Zhang, C. Ma, R. Gautier, M. S. Molokeev, Q. Liu, and Z. Guo, “Structural Confinement toward Giant Enhancement of Red Emission in Mn2+-Based Phosphors,” Adv. Funct. Mater. 28(41), 1804150 (2018).
[Crossref]

Angew. Chem., Int. Ed. (1)

J. Qiao, L. Ning, M. S. Molokeev, Y. Chuang, Q. Zhang, K. R. Poeppelmeier, and Z. Xia, “Site-Selective Occupancy of Eu2+ Toward Blue-Light-Excited Red Emission in a Rb3YSi2O7:Eu Phosphor,” Angew. Chem., Int. Ed. 58(33), 11521–11526 (2019).
[Crossref]

Ceram. Int. (1)

Y. Zhang, S. Hu, Y. Liu, Z. Wang, G. Zhou, and S. Wang, “Red-emitting Lu3Al5O12: Mn transparent ceramic phosphors: valence state evolution studies of Mn ions,” Ceram. Int. 44(18), 23259–23262 (2018).
[Crossref]

Chem. Mater. (1)

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18(14), 3314–3322 (2006).
[Crossref]

Chem. Rev. (1)

L. Wang, R. J. Xie, T. Suehiro, T. Takeda, and N. Hirosaki, “Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives,” Chem. Rev. 118(4), 1951–2009 (2018).
[Crossref]

Dalton Trans. (1)

K. Li, H. Lian, and R. V. Deun, “A novel deep red-emitting phosphor KMgLaTeO6:Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties,” Dalton Trans. 47(8), 2501–2505 (2018).
[Crossref]

Dyes Pigm. (2)

A. Fu, L. Zhou, S. Wang, and Y. Li, “Preparation, structural and optical characteristics of a deep red-emitting Mg2Al4Si5O18: Mn4+ phosphor for warm w-LEDs,” Dyes Pigm. 148, 9–15 (2018).
[Crossref]

X. Huang and H. Guo, “Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application,” Dyes Pigm. 152, 36–42 (2018).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

ECS J. Solid. State. Sc. (1)

M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of Covalency on Mn4+2Eg→4A2g Emission Energy in Crystals,” ECS J. Solid. State. Sc. 4(3), R39–R43 (2014).

Inorg. Chem. (1)

S. Dey, R. A. Ricciardo, H. L. Cuthbert, and P. M. Woodward, “Metal-to-Metal Charge Transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu or Zn) Compounds with the Wolframite Structure,” Inorg. Chem. 53(9), 4394–4399 (2014).
[Crossref]

J. Alloys Compd. (1)

W. Chen, Y. Cheng, L. Shen, C. Shen, X. Liang, and W. Xiang, “Red-emitting Sr2MgGe2O7:Mn4+, phosphors: Structure, luminescence properties, and application in warm white light emitting diodes,” J. Alloys Compd. 762, 688–696 (2018).
[Crossref]

J. Am. Ceram. Soc. (3)

Y. Xu, L. Wang, B. Qu, D. Li, J. Lu, and R. Zhou, “The role of co-dopants on the luminescent properties of α-Al2O3:Mn4+ and BaMgAl1O7:Mn4+,” J. Am. Ceram. Soc. 102(5), 2737–2744 (2018).
[Crossref]

X. Zhang, J. Nie, S. Liu, Y. Li, and J. Qiu, “Deep-Red Photoluminescence and Long Persistent Luminescence in Double Perovstkite-type La2MgGeO6:Mn4+,” J. Am. Ceram. Soc. 101(4), 1576–1584 (2018).
[Crossref]

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

J. Appl. Phys. (1)

T. Arai and S. Adachi, “Mn-activated Na2SiF6 red and yellowish-green phosphors: A comparative study,” J. Appl. Phys. 110(6), 063514 (2011).
[Crossref]

J. Disp. Technol. (1)

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

J. Electrochem. Soc. (1)

A. M. Srivastava and W. W. Beers, “Luminescence of Mn4+ in the Distorted Perovskite Gd2MgTiO6,” J. Electrochem. Soc. 143(9), L203–L205 (1996).
[Crossref]

J. Eur. Ceram. Soc. (4)

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang, and B. Du, “Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting,” J. Eur. Ceram. Soc. 38(1), 343–347 (2018).
[Crossref]

H. Su, Y. Nie, H. Yang, D. Tang, K. Chen, and T. Zhang, “Improving the thermal stability of phosphor in a white light-emitting diode (LED) by glass-ceramics: Effect of Al2O3 dopant,” J. Eur. Ceram. Soc. 38(4), 2005–2009 (2018).
[Crossref]

Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang, “Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12:Mn4+ ceramic phosphor,” J. Eur. Ceram. Soc. 39(2-3), 584–591 (2019).
[Crossref]

J. Lumin. (4)

A. Wagner, B. Ratzker, S. Kalabukhov, and N. Frage, “Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening,” J. Lumin. 213, 454–458 (2019).
[Crossref]

B. Wang, J. Ling, Y. Zhou, W. Xu, H. Lin, S. Lu, Z. Qin, and M. Hong, “YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs,” J. Lumin. 213, 421–426 (2019).
[Crossref]

B. Wang, J. R. Ling, Y. F. Zhou, W. T. Xu, H. Lin, S. Lu, Z. X. Qin, and M. C. Hong, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” J. Lumin. 213, 421–426 (2019).
[Crossref]

K. Li, H. Lian, and R. V. Deun, “Site occupancy and photoluminescence properties of a novel deep-red-emitting phosphor NaMgGdTeO6: Mn4+ with perovskite structure for w-LEDs,” J. Lumin. 198, 155–162 (2018).
[Crossref]

J. Mater. Chem. C (2)

L. Lv, X. Jiang, S. Huang, X. chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C 2(20), 3879–3884 (2014).
[Crossref]

S. Li, Q. Zhu, L. Wang, D. Tang, Y. Cho, X. Liu, N. Hirosaki, T. Nishimura, T. Sekiguchi, Z. Huang, and R. J. Xie, “CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting,” J. Mater. Chem. C 4(35), 8197–8205 (2016).
[Crossref]

Laser Photonics Rev. (3)

S. Li, L. Wang, N. Hirosaki, and R. J. Xie, “Color Conversion Materials for High-Brightness Laser-Driven Solid-State Lighting,” Laser Photonics Rev. 12(12), 1800173 (2018).
[Crossref]

R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser Photonics Rev. 8(1), 158–164 (2014).
[Crossref]

J. J. Wierer, J. Y. Taso, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Mater. Res. Bull. (1)

J. Jiang, Y. Cheng, W. Chen, Z. Liu, T. Xu, M. He, L. Zhou, R. Yuan, W. Xiang, and X. Liang, “Mn4+/Zn2+:YAG glass ceramic for light emitting devices,” Mater. Res. Bull. 105, 277–285 (2018).
[Crossref]

Nat. Commun. (1)

H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

C. Ma, Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long, and X. Yuan, “High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications,” Opt. Mater. 69, 105–114 (2017).
[Crossref]

Phys. Chem. Chem. Phys. (1)

C. Bulloni, A. Garcia-Fuente, W. Urland, and C. Daul, “Effect of Ca2+ codoping on the Eu2+ luminescence properties in the Sr2Si5N8 host lattice: a theoretical approach,” Phys. Chem. Chem. Phys. 17(38), 24925–24930 (2015).
[Crossref]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. XRD patterns of Al2(1-x-y)O3 (x = y = 0.1‰, 0.5‰, 1‰, 5‰, and 1%) samples sintered at 1700 °C in oxygen and the standard XRD card of α-Al2O3 (PDF#10-0173).
Fig. 2.
Fig. 2. Schematic diagram of α-Al2O3`s crystalline structure (a); A single AlO6 octahedron. The Al3+ cation, which can be replaced by Mn4+, is surrounded by six O2- ions, forming an octahedron (b).
Fig. 3.
Fig. 3. Optical reflectance spectra of Al2(1-x-y)O3:xMn4+, yMg2+ (x = y = 0.1‰, 0.5‰, 1‰, and 5‰) phosphor ceramics sintered at 1700 °C in oxygen.
Fig. 4.
Fig. 4. SEM images of Al2O3:0.5‰ Mn4+, 0.5‰ Mg2+ ceramics sintered at different temperatures (a) 1200 °C, (b) 1300 °C, (c) 1400 °C, (d) 1500 °C, (e) 1600 °C, (f) 1700 °C, (g) 1750 °C in oxygen, (h) the thermally etched fine surface of the Al2O3:0.5‰Mn4+, 0.5‰Mg2+ ceramic sintered at 1700 °C in oxygen
Fig. 5.
Fig. 5. The room temperature PLE (λem=678 nm) and PL (λex=395 nm) spectra of Al2O3:0.5at‰Mn4+, 0.5at‰Mg2+ ceramic sintered at 1700 °C in oxygen. The PLE spectrum was fitted by three Gaussian curves.
Fig. 6.
Fig. 6. The PL spectra of Al2(1-x-y)O3:xMn4+, yMg2+ (x = y = 0.1‰, 0.5‰, 1‰, 5‰) (a); the PL (b) and PLE (c) spectra of Al2O3:0.5at‰Mn4+, 0.5at‰Mg2+ sintered at different temperatures from 1200 °C to 1750 °C in oxygen; the fluorescence decay curves of Al2O3:0.5at‰Mn4+, 0.5at‰Mg2+ sintered at different temperature from 1200 °C to 1750 °C in oxygen (d).
Fig. 7.
Fig. 7. The optical transmittance spectra of Al2O3:0.5at‰Mn4+, 0.5at‰Mg2+ ceramic samples sintered at different temperatures and atmosphere (thickness:2 mm).
Fig. 8.
Fig. 8. Tanabe-Sugano energy-level diagram of Mn4+ in the octahedral crystal field of Al2O3:Mn4+, Mg2+.
Fig. 9.
Fig. 9. Room temperature ESR spectrum of AMMO:0.5‰-1700 °C.
Fig. 10.
Fig. 10. Temperature-dependent PL spectra of AMMO:0.5‰-1700 °C measured from 20 ℃ to 200 ℃ (a); a plot of the dependence of ln(I0/I(T)-1) on 1/kT according Eq. 7 (b).
Fig. 11.
Fig. 11. Thermal conductivity measured by the laser flash method as a function of temperature of the AMMO: 0.5‰-1700 °C sample.
Fig. 12.
Fig. 12. CIE chromaticity diagram of LEDs fabricated by combining AMMO:0.5‰-1700 °C (The thickness of sample is 0.3 mm, 0.5 mm, 1 mm and 1.5 mm, respectly) with blue chips (a). EL spectrum of LEDs (The thickness of ceramic is 1.5 mm) (b).The electrical driven power of LEDs is 44.55 W.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = A 1 exp ( t τ ) + A 2
D q = E ( 4 A 2g 4 T 2 g ) 10
D q B = 15( x  - 8) x 2 10 x
x = E ( 4 A 2 g 4 T 1 g ) E ( 4 A 2 g 4 T 2 g ) D q
E ( 2 E g 4 A 2 g ) B = 3.05 C B + 7.9 1.8 B D q
β 1 = ( B B 0 ) 2 + ( C C 0 ) 2
I ( T ) = I 0 1 +  A exp ( Δ E k T )

Metrics