Abstract

We explore the arguably most fundamental aspect of energy-transfer upconversion (ETU), namely the dependence of upconversion luminescence from a higher-energy level, following ETU excitation from a metastable lower-energy level, on direct luminescence from that metastable level. We investigate ETU among neighboring Nd3+ ions in single crystals of GdVO4 and LaSc3(BO3)4 with different doping concentrations by measuring, after short-pulse laser excitation with different pump energies, the infrared luminescence decay from the metastable 4F3/2 level and the yellow upconversion luminescence decay from the 4G7/2 level. We observe a highly super-quadratic dependence of upconversion on direct luminescence intensity. We conclude that the commonly assumed quadratic law of ETU, as proposed by Grant’s model and frequently employed in rate-equation simulations, is inadequate to the description of ETU processes. Whereas Zubenko’s model, which considers a finite migration rate, provides significantly better fits to the experimental luminescence-decay curves, also this model cannot accurately reproduce the measured decay curves, partly because it does not take the non-homogeneous distribution of active ions into account.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov
J. Opt. Soc. Am. B 15(3) 1052-1060 (1998)

Energy-transfer upconversion and excited-state absorption in KGdxLuyEr1-x-y(WO4)2 waveguide amplifiers

Sergio A. Vázquez-Córdova, Shanmugam Aravazhi, Alexander M. Heuer, Christian Kränkel, Yean-Sheng Yong, Sonia M. García-Blanco, Jennifer L. Herek, and Markus Pollnau
Opt. Mater. Express 9(12) 4782-4795 (2019)

Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide

Laura Agazzi, Kerstin Wörhoff, Andreas Kahn, Matthias Fechner, Günter Huber, and Markus Pollnau
J. Opt. Soc. Am. B 30(3) 663-677 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  2. F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61(6), 758–786 (1973).
    [Crossref]
  3. J. C. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Topics in Applied Physics: Radiationless Processes in Molecules and Condensed Phases, Vol. 15, F. K. Fong, ed. (Springer, Berlin, 1976), pp. 239–295.
  4. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref]
  5. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
    [Crossref]
  6. P. Villanueva-Delgado, K. W. Krämer, R. Valiente, M. de Jong, and A. Meijerink, “Modeling blue to UV upconversion in β-NaYF4:Tm3+,” Phys. Chem. Chem. Phys. 18(39), 27396–27404 (2016).
    [Crossref]
  7. W. J. C. Grant, “Role of rate equations in the theory of luminescent energy transfer,” Phys. Rev. B 4(2), 648–663 (1971).
    [Crossref]
  8. A. I. Burshteîn, “The concentration quenching of non-coherent excitations in solutions,” Usp. Fiz. Nauk 143(4), 553–600 (1984). [Engl. Transl.: Sov. Phys. Usp. 27(8), 579-606 (1984).]
    [Crossref]
  9. L. D. Zusman, “Kinetics of luminescence damping in the hopping mechanism of quenching,” Sov. Phys. JETP 46(2), 347–351 (1977).
  10. D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
    [Crossref]
  11. V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
    [Crossref]
  12. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
    [Crossref]
  13. M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
    [Crossref]
  14. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
    [Crossref]
  15. T. Chuang and H. R. Verdún, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron. 32(1), 79–91 (1996).
    [Crossref]
  16. J. D. Zuegel and W. Seka, “Upconversion and reduced 4F3/2 upper-state lifetime in intensely pumped Nd:YLF,” Appl. Opt. 38(12), 2714–2723 (1999).
    [Crossref]
  17. M. Malinowski, B. Jacquier, M. Bouazaoui, M. F. Joubert, and C. Linares, “Laser-induced fluorescence and up-conversion processes in LiYF4:Nd3+ laser crystals,” Phys. Rev. B 41(1), 31–40 (1990).
    [Crossref]
  18. H. Y. P. Hong and K. Dwight, “Crystal structure and fluorescence lifetime of NdAl3(BO3)4, a promising laser material,” Mater. Res. Bull. 9(12), 1661–1665 (1974).
    [Crossref]
  19. V. A. Dotsenko and N. P. Efryushina, “Static energy transfer in YAl3B4O12:Ln3+ (Ln3+ = Sm3+, Dy3+),” Phys. Stat. Sol. A 130(1), 199–205 (1992).
    [Crossref]
  20. C. Bibeau, S. A. Payne, and H. T. Powell, “Direct measurements of the terminal laser level lifetime in neodymium-doped crystals and glasses,” J. Opt. Soc. Am. B 12(10), 1981–1992 (1995).
    [Crossref]
  21. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
    [Crossref]
  22. Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carvajal, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Direct confocal lifetime measurements on rare-earth-doped media exhibiting radiation trapping,” Opt. Mater. Express 7(2), 527–532 (2017).
    [Crossref]
  23. L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
    [Crossref]
  24. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
    [Crossref]
  25. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [Crossref]
  26. J. P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanun scandium borate,” IEEE J. Quantum Electron. 30(4), 913–917 (1994).
    [Crossref]
  27. H. Siebold and J. Heber, “’Discrete shell model’ for analysing time-resolved energy transfer in solids,” J. Lumin. 22(3), 297–319 (1981).
    [Crossref]
  28. S. O. Vasquez and C. D. Flint, “A shell model for cross relaxation in elpasolite crystals: application to the 3P0 and 1G4 states of Cs2NaY1-xPrxCl6,” Chem. Phys. Lett. 238(4-6), 378–386 (1995).
    [Crossref]
  29. C. Z. Hadad and S. O. Vasquez, “Statistical approach to the transient up-converted population in monodoped amorphous solids,” Phys. Chem. Chem. Phys. 5(14), 3027–3033 (2003).
    [Crossref]
  30. F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5(1), 3610 (2014).
    [Crossref]
  31. D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
    [Crossref]
  32. F. T. Rabouw and A. Meijerink, “Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells,” J. Phys. Chem. C 119(5), 2364–2370 (2015).
    [Crossref]
  33. P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
    [Crossref]

2017 (1)

2016 (2)

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

P. Villanueva-Delgado, K. W. Krämer, R. Valiente, M. de Jong, and A. Meijerink, “Modeling blue to UV upconversion in β-NaYF4:Tm3+,” Phys. Chem. Chem. Phys. 18(39), 27396–27404 (2016).
[Crossref]

2015 (1)

F. T. Rabouw and A. Meijerink, “Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells,” J. Phys. Chem. C 119(5), 2364–2370 (2015).
[Crossref]

2014 (3)

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5(1), 3610 (2014).
[Crossref]

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref]

2013 (1)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

2007 (1)

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

2003 (1)

C. Z. Hadad and S. O. Vasquez, “Statistical approach to the transient up-converted population in monodoped amorphous solids,” Phys. Chem. Chem. Phys. 5(14), 3027–3033 (2003).
[Crossref]

1999 (1)

1998 (3)

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

1997 (1)

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

1996 (1)

T. Chuang and H. R. Verdún, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron. 32(1), 79–91 (1996).
[Crossref]

1995 (3)

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
[Crossref]

S. O. Vasquez and C. D. Flint, “A shell model for cross relaxation in elpasolite crystals: application to the 3P0 and 1G4 states of Cs2NaY1-xPrxCl6,” Chem. Phys. Lett. 238(4-6), 378–386 (1995).
[Crossref]

C. Bibeau, S. A. Payne, and H. T. Powell, “Direct measurements of the terminal laser level lifetime in neodymium-doped crystals and glasses,” J. Opt. Soc. Am. B 12(10), 1981–1992 (1995).
[Crossref]

1994 (2)

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
[Crossref]

J. P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanun scandium borate,” IEEE J. Quantum Electron. 30(4), 913–917 (1994).
[Crossref]

1992 (1)

V. A. Dotsenko and N. P. Efryushina, “Static energy transfer in YAl3B4O12:Ln3+ (Ln3+ = Sm3+, Dy3+),” Phys. Stat. Sol. A 130(1), 199–205 (1992).
[Crossref]

1990 (1)

M. Malinowski, B. Jacquier, M. Bouazaoui, M. F. Joubert, and C. Linares, “Laser-induced fluorescence and up-conversion processes in LiYF4:Nd3+ laser crystals,” Phys. Rev. B 41(1), 31–40 (1990).
[Crossref]

1984 (1)

A. I. Burshteîn, “The concentration quenching of non-coherent excitations in solutions,” Usp. Fiz. Nauk 143(4), 553–600 (1984). [Engl. Transl.: Sov. Phys. Usp. 27(8), 579-606 (1984).]
[Crossref]

1981 (1)

H. Siebold and J. Heber, “’Discrete shell model’ for analysing time-resolved energy transfer in solids,” J. Lumin. 22(3), 297–319 (1981).
[Crossref]

1977 (1)

L. D. Zusman, “Kinetics of luminescence damping in the hopping mechanism of quenching,” Sov. Phys. JETP 46(2), 347–351 (1977).

1974 (1)

H. Y. P. Hong and K. Dwight, “Crystal structure and fluorescence lifetime of NdAl3(BO3)4, a promising laser material,” Mater. Res. Bull. 9(12), 1661–1665 (1974).
[Crossref]

1973 (1)

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61(6), 758–786 (1973).
[Crossref]

1971 (1)

W. J. C. Grant, “Role of rate equations in the theory of luminescent energy transfer,” Phys. Rev. B 4(2), 648–663 (1971).
[Crossref]

1965 (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Agazzi, L.

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

Aravazhi, S.

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61(6), 758–786 (1973).
[Crossref]

Bibeau, C.

Bon, M.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
[Crossref]

Boon, W. Q.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Bouazaoui, M.

M. Malinowski, B. Jacquier, M. Bouazaoui, M. F. Joubert, and C. Linares, “Laser-induced fluorescence and up-conversion processes in LiYF4:Nd3+ laser crystals,” Phys. Rev. B 41(1), 31–40 (1990).
[Crossref]

Burshteîn, A. I.

A. I. Burshteîn, “The concentration quenching of non-coherent excitations in solutions,” Usp. Fiz. Nauk 143(4), 553–600 (1984). [Engl. Transl.: Sov. Phys. Usp. 27(8), 579-606 (1984).]
[Crossref]

Carvajal, J. J.

Chuang, T.

T. Chuang and H. R. Verdún, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron. 32(1), 79–91 (1996).
[Crossref]

Clarkson, W. A.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

de Jong, M.

P. Villanueva-Delgado, K. W. Krämer, R. Valiente, M. de Jong, and A. Meijerink, “Modeling blue to UV upconversion in β-NaYF4:Tm3+,” Phys. Chem. Chem. Phys. 18(39), 27396–27404 (2016).
[Crossref]

den Hartog, S. A.

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5(1), 3610 (2014).
[Crossref]

Descroix, E.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Díaz, F.

Dotsenko, V. A.

V. A. Dotsenko and N. P. Efryushina, “Static energy transfer in YAl3B4O12:Ln3+ (Ln3+ = Sm3+, Dy3+),” Phys. Stat. Sol. A 130(1), 199–205 (1992).
[Crossref]

Dwight, K.

H. Y. P. Hong and K. Dwight, “Crystal structure and fluorescence lifetime of NdAl3(BO3)4, a promising laser material,” Mater. Res. Bull. 9(12), 1661–1665 (1974).
[Crossref]

Efryushina, N. P.

V. A. Dotsenko and N. P. Efryushina, “Static energy transfer in YAl3B4O12:Ln3+ (Ln3+ = Sm3+, Dy3+),” Phys. Stat. Sol. A 130(1), 199–205 (1992).
[Crossref]

Fan, T. Y.

Flint, C. D.

S. O. Vasquez and C. D. Flint, “A shell model for cross relaxation in elpasolite crystals: application to the 3P0 and 1G4 states of Cs2NaY1-xPrxCl6,” Chem. Phys. Lett. 238(4-6), 378–386 (1995).
[Crossref]

Fredrich-Thornton, S. T.

García-Blanco, S. M.

Garnier, N.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
[Crossref]

Grant, W. J. C.

W. J. C. Grant, “Role of rate equations in the theory of luminescent energy transfer,” Phys. Rev. B 4(2), 648–663 (1971).
[Crossref]

Grivas, C.

Guyot, Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
[Crossref]

Hadad, C. Z.

C. Z. Hadad and S. O. Vasquez, “Statistical approach to the transient up-converted population in monodoped amorphous solids,” Phys. Chem. Chem. Phys. 5(14), 3027–3033 (2003).
[Crossref]

Hanna, D. C.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Hardman, P. J.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Heber, J.

H. Siebold and J. Heber, “’Discrete shell model’ for analysing time-resolved energy transfer in solids,” J. Lumin. 22(3), 297–319 (1981).
[Crossref]

Herek, J. L.

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

Hong, H. Y. P.

H. Y. P. Hong and K. Dwight, “Crystal structure and fluorescence lifetime of NdAl3(BO3)4, a promising laser material,” Mater. Res. Bull. 9(12), 1661–1665 (1974).
[Crossref]

Huber, G.

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
[Crossref]

J. P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanun scandium borate,” IEEE J. Quantum Electron. 30(4), 913–917 (1994).
[Crossref]

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

Jacquier, B.

M. Malinowski, B. Jacquier, M. Bouazaoui, M. F. Joubert, and C. Linares, “Laser-induced fluorescence and up-conversion processes in LiYF4:Nd3+ laser crystals,” Phys. Rev. B 41(1), 31–40 (1990).
[Crossref]

Jensen, T.

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
[Crossref]

J. P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanun scandium borate,” IEEE J. Quantum Electron. 30(4), 913–917 (1994).
[Crossref]

Joubert, M. F.

M. Malinowski, B. Jacquier, M. Bouazaoui, M. F. Joubert, and C. Linares, “Laser-induced fluorescence and up-conversion processes in LiYF4:Nd3+ laser crystals,” Phys. Rev. B 41(1), 31–40 (1990).
[Crossref]

Kern, M. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Kieboom, T.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Krämer, K. W.

P. Villanueva-Delgado, K. W. Krämer, R. Valiente, M. de Jong, and A. Meijerink, “Modeling blue to UV upconversion in β-NaYF4:Tm3+,” Phys. Chem. Chem. Phys. 18(39), 27396–27404 (2016).
[Crossref]

Kränkel, C.

Kühn, H.

Laporte, P.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
[Crossref]

Linares, C.

M. Malinowski, B. Jacquier, M. Bouazaoui, M. F. Joubert, and C. Linares, “Laser-induced fluorescence and up-conversion processes in LiYF4:Nd3+ laser crystals,” Phys. Rev. B 41(1), 31–40 (1990).
[Crossref]

Loiko, P.

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

Malinowski, M.

M. Malinowski, B. Jacquier, M. Bouazaoui, M. F. Joubert, and C. Linares, “Laser-induced fluorescence and up-conversion processes in LiYF4:Nd3+ laser crystals,” Phys. Rev. B 41(1), 31–40 (1990).
[Crossref]

Manaa, H.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
[Crossref]

Meijerink, A.

P. Villanueva-Delgado, K. W. Krämer, R. Valiente, M. de Jong, and A. Meijerink, “Modeling blue to UV upconversion in β-NaYF4:Tm3+,” Phys. Chem. Chem. Phys. 18(39), 27396–27404 (2016).
[Crossref]

F. T. Rabouw and A. Meijerink, “Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells,” J. Phys. Chem. C 119(5), 2364–2370 (2015).
[Crossref]

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5(1), 3610 (2014).
[Crossref]

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Meyn, J. P.

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
[Crossref]

J. P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanun scandium borate,” IEEE J. Quantum Electron. 30(4), 913–917 (1994).
[Crossref]

Moncorgé, R.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
[Crossref]

Noginov, M. A.

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
[Crossref]

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

Ostroumov, V.

Payne, S. A.

Petermann, K.

Peters, R.

Pollnau, M.

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carvajal, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Direct confocal lifetime measurements on rare-earth-doped media exhibiting radiation trapping,” Opt. Mater. Express 7(2), 527–532 (2017).
[Crossref]

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Powell, H. T.

Rabouw, F. T.

F. T. Rabouw and A. Meijerink, “Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells,” J. Phys. Chem. C 119(5), 2364–2370 (2015).
[Crossref]

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5(1), 3610 (2014).
[Crossref]

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Rivoire, J. Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
[Crossref]

Seka, W.

Senden, T.

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5(1), 3610 (2014).
[Crossref]

Shcherbakov, I. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

Siebold, H.

H. Siebold and J. Heber, “’Discrete shell model’ for analysing time-resolved energy transfer in solids,” J. Lumin. 22(3), 297–319 (1981).
[Crossref]

Smirnov, V. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

Sumida, D. S.

Valiente, R.

P. Villanueva-Delgado, K. W. Krämer, R. Valiente, M. de Jong, and A. Meijerink, “Modeling blue to UV upconversion in β-NaYF4:Tm3+,” Phys. Chem. Chem. Phys. 18(39), 27396–27404 (2016).
[Crossref]

van Dalfsen, K.

Vasquez, S. O.

C. Z. Hadad and S. O. Vasquez, “Statistical approach to the transient up-converted population in monodoped amorphous solids,” Phys. Chem. Chem. Phys. 5(14), 3027–3033 (2003).
[Crossref]

S. O. Vasquez and C. D. Flint, “A shell model for cross relaxation in elpasolite crystals: application to the 3P0 and 1G4 states of Cs2NaY1-xPrxCl6,” Chem. Phys. Lett. 238(4-6), 378–386 (1995).
[Crossref]

Vázquez-Córdova, S. A.

Verdún, H. R.

T. Chuang and H. R. Verdún, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron. 32(1), 79–91 (1996).
[Crossref]

Villanueva-Delgado, P.

P. Villanueva-Delgado, K. W. Krämer, R. Valiente, M. de Jong, and A. Meijerink, “Modeling blue to UV upconversion in β-NaYF4:Tm3+,” Phys. Chem. Chem. Phys. 18(39), 27396–27404 (2016).
[Crossref]

Wörhoff, K.

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

Wright, J. C.

J. C. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Topics in Applied Physics: Radiationless Processes in Molecules and Condensed Phases, Vol. 15, F. K. Fong, ed. (Springer, Berlin, 1976), pp. 239–295.

Ye, S.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Yong, Y. S.

Yu, D. C.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Zhang, Q. Y.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Zubenko, D. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

Zuegel, J. D.

Zusman, L. D.

L. D. Zusman, “Kinetics of luminescence damping in the hopping mechanism of quenching,” Sov. Phys. JETP 46(2), 347–351 (1977).

Appl. Opt. (1)

Chem. Phys. Lett. (1)

S. O. Vasquez and C. D. Flint, “A shell model for cross relaxation in elpasolite crystals: application to the 3P0 and 1G4 states of Cs2NaY1-xPrxCl6,” Chem. Phys. Lett. 238(4-6), 378–386 (1995).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

IEEE J. Quantum Electron. (2)

J. P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanun scandium borate,” IEEE J. Quantum Electron. 30(4), 913–917 (1994).
[Crossref]

T. Chuang and H. R. Verdún, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron. 32(1), 79–91 (1996).
[Crossref]

J. Chem. Phys. (2)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

J. Lumin. (1)

H. Siebold and J. Heber, “’Discrete shell model’ for analysing time-resolved energy transfer in solids,” J. Lumin. 22(3), 297–319 (1981).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (3)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

F. T. Rabouw and A. Meijerink, “Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells,” J. Phys. Chem. C 119(5), 2364–2370 (2015).
[Crossref]

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

Mater. Res. Bull. (1)

H. Y. P. Hong and K. Dwight, “Crystal structure and fluorescence lifetime of NdAl3(BO3)4, a promising laser material,” Mater. Res. Bull. 9(12), 1661–1665 (1974).
[Crossref]

Nat. Commun. (1)

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5(1), 3610 (2014).
[Crossref]

Opt. Commun. (1)

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (2)

C. Z. Hadad and S. O. Vasquez, “Statistical approach to the transient up-converted population in monodoped amorphous solids,” Phys. Chem. Chem. Phys. 5(14), 3027–3033 (2003).
[Crossref]

P. Villanueva-Delgado, K. W. Krämer, R. Valiente, M. de Jong, and A. Meijerink, “Modeling blue to UV upconversion in β-NaYF4:Tm3+,” Phys. Chem. Chem. Phys. 18(39), 27396–27404 (2016).
[Crossref]

Phys. Rev. B (6)

W. J. C. Grant, “Role of rate equations in the theory of luminescent energy transfer,” Phys. Rev. B 4(2), 648–663 (1971).
[Crossref]

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51(2), 784–799 (1995).
[Crossref]

M. Malinowski, B. Jacquier, M. Bouazaoui, M. F. Joubert, and C. Linares, “Laser-induced fluorescence and up-conversion processes in LiYF4:Nd3+ laser crystals,” Phys. Rev. B 41(1), 31–40 (1990).
[Crossref]

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Phys. Stat. Sol. A (1)

V. A. Dotsenko and N. P. Efryushina, “Static energy transfer in YAl3B4O12:Ln3+ (Ln3+ = Sm3+, Dy3+),” Phys. Stat. Sol. A 130(1), 199–205 (1992).
[Crossref]

Proc. IEEE (1)

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61(6), 758–786 (1973).
[Crossref]

Sov. Phys. JETP (1)

L. D. Zusman, “Kinetics of luminescence damping in the hopping mechanism of quenching,” Sov. Phys. JETP 46(2), 347–351 (1977).

Usp. Fiz. Nauk (1)

A. I. Burshteîn, “The concentration quenching of non-coherent excitations in solutions,” Usp. Fiz. Nauk 143(4), 553–600 (1984). [Engl. Transl.: Sov. Phys. Usp. 27(8), 579-606 (1984).]
[Crossref]

Other (1)

J. C. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Topics in Applied Physics: Radiationless Processes in Molecules and Condensed Phases, Vol. 15, F. K. Fong, ed. (Springer, Berlin, 1976), pp. 239–295.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Partial energy-level diagram of Nd3+ indicating the relevant spectroscopic processes: ground-state absorption (GSA), luminescence decay (LUM), reabsorption (REABS), cross relaxation (CR), energy-transfer upconversion (ETU), and multiphonon relaxation (dotted arrows). The levels considered for the simplified three-level scheme are numbered on the left-hand side.
Fig. 2.
Fig. 2. Luminescence transients of (a) infrared luminescence from the 4F3/2 level and (b) visible upconversion luminescence from the 4G7/2 level of Nd3+ in GdVO4 crystals with three different Nd3+ concentrations and two different pump energies.
Fig. 3.
Fig. 3. Luminescence transients of (a) infrared luminescence from the 4F3/2 level and (b) visible upconversion luminescence from the 4G7/2 level of Nd3+ in LaSc3(BO3)4 crystals with three different Nd3+ concentrations and two different pump energies.
Fig. 4.
Fig. 4. Effective luminescence-decay time measured in LaSc3(BO3)4 (black circles [11]) and GdVO4 (white circles [present work]; yellow star [11]) as a function of Nd3+ concentration. The corresponding fits calculated according to Eqs. (6) and (7) are also included (red line for LaSc3(BO3)4, blue line for GdVO4).
Fig. 5.
Fig. 5. Measured infrared luminescence-decay curves from the 4F3/2 level of Nd3+ for the three different Nd3+ concentrations and pump energies of (a − c) 0.08 mJ in GdVO4 and (d − f) 0.5 mJ in LaSc3(BO3)4, compared with fits when sequentially including the following processes in the model: (a, d) ETU, (b, e) ETU and CR, and (c, f) ETU, CR, and REABS. The simulated curves calculated with Grant’s model are shown as solid lines, whereas those corresponding to Zubenko’s model are shown as dotted lines.
Fig. 6.
Fig. 6. Measured infrared (black) and visible (grey) luminescence-decay curves from the 4F3/2 and 4G7/2 levels, respectively, in GdVO4 for low pump energy of 0.08 mJ (a − c) and high pump energy of 0.2 mJ (d − f) and for (a, d) low, (b, e) medium, and (d, f) high dopant concentration, compared with fits using Grant’s and Zubenko’s models including ETU, CR, and REABS. The simulated decay curves obtained using Grant’s model are shown in red, whereas the ones obtained with Zubenko’s model are shown in yellow. For both models the solid curves correspond to the infrared and the dotted ones to the visible luminescence.
Fig. 7.
Fig. 7. Measured infrared (black) and visible (grey) luminescence-decay curves from the 4F3/2 and 4G7/2 levels, respectively, in LaSc3(BO3)4 for low pump energy of 0.5 mJ (a − c) and high pump energy of 1 mJ (d − f) and for (a, d) low, (b, e) medium, and (d, f) high dopant concentration, compared with fits using Grant’s and Zubenko’s models including ETU, CR, and REABS. The simulated decay curves obtained using Grant’s model are shown in red, whereas the ones obtained with Zubenko’s model are shown in yellow. For both models the solid curves correspond to the infrared and the dotted ones to the visible luminescence.

Tables (1)

Tables Icon

Table 1. Parameter values used in luminescence-decay calculations for GdVO4 and LaSc3(BO3)4 crystals

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R E T U = 2 W E T U N 1 2 ( t ) ,
F ( t ) = 2 π 2 3 C D A τ 0 [ τ 0 π t exp ( t / t τ 0 τ 0 ) + e r f ( t τ 0 ) ] .
τ 0 = 1 C D D N d 2 ,
W E T U = π 2 3 C D A τ 0 = π 2 3 C D D C D A N d .
W E T U = C E T U N d ,
1 τ 1 , e f f ( N d ) = 1 τ 1 + W C R N d ,
W C R = C C R N d .
R R E A B S = β ( 960 nm ) σ a b s N d N 1 ( t ) τ 1 ( σ N d + 1 ) ,
d N 1 ( t ) d t = N 2 ( t ) τ 2 2 f N 1 2 ( t ) N 1 ( t ) τ 1 W C R N 0 ( t ) N 1 ( t ) + β ( 960 nm ) σ a b s N d N 1 ( t ) τ 1 ( σ N d + 1 ) ,
d N 2 d t = f N 1 2 ( t ) N 2 ( t ) τ 2 .
N 2 ( t ) = τ 2 f N 1 2 ( t ) .

Metrics