Abstract

We use laser light shaped by a digital micro-mirror device to realize arbitrary optical dipole potentials for one-dimensional (1D) degenerate Bose gases of 87Rb trapped on an atom chip. Superposing optical and magnetic potentials combines the high flexibility of optical dipole traps with the advantages of magnetic trapping, such as effective evaporative cooling and the application of radio-frequency dressed state potentials. As applications, we present a 160 µm long box-like potential with a central tuneable barrier, a box-like potential with a sinusoidally modulated bottom and a linear confining potential. These potentials provide new tools to investigate the dynamics of 1D quantum systems and will allow us to address exciting questions in quantum thermodynamics and quantum simulations.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Versatile two-dimensional potentials for ultra-cold atoms

S. K. Schnelle, E. D. van Ooijen, M. J. Davis, N. R. Heckenberg, and H. Rubinsztein-Dunlop
Opt. Express 16(3) 1405-1412 (2008)

Generation of one- or two-dimensional arrays of hollow optical microtraps for cold atoms, molecules, or microparticles on a chip

Renwang Mu, Junfa Lu, Shuwu Xu, Xianming Ji., and Jianping Yin
J. Opt. Soc. Am. B 26(1) 80-88 (2009)

References

  • View by:
  • |
  • |
  • |

  1. I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80(3), 885–964 (2008).
    [Crossref]
  2. T. Langen, R. Geiger, and J. Schmiedmayer, “Ultracold atoms out of equilibrium,” Annu. Rev. Condens. Matter Phys. 6(1), 201–217 (2015).
    [Crossref]
  3. A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110(20), 200406 (2013).
    [Crossref]
  4. K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, “Two-Dimensional Homogeneous Fermi Gases,” Phys. Rev. Lett. 120(6), 060402 (2018).
    [Crossref]
  5. B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, “Homogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118(12), 123401 (2017).
    [Crossref]
  6. B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, and J. Schmiedmayer, “Recurrences in an isolated quantum many-body system,” Science 360(6386), 307–310 (2018).
    [Crossref]
  7. J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J. Dalibard, and J. Beugnon, “Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas,” Phys. Rev. Lett. 121(14), 145301 (2018).
    [Crossref]
  8. O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, “Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate,” Phys. Rev. Lett. 105(24), 240401 (2010).
    [Crossref]
  9. J. Steinhauer, “Observation of quantum Hawking radiation and its entanglement in an analogue black hole,” Nat. Phys. 12(10), 959–965 (2016).
    [Crossref]
  10. M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M. Greiner, “Microscopy of the interacting harper-hofstadter model in the two-body limit,” Nature 546(7659), 519–523 (2017).
    [Crossref]
  11. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances In Atomic, Molecular, and Optical Physics, vol. 42B. Bederson and H. Walther, eds. (Academic Press, 2000), pp. 95–170.
  12. G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop, and T. W. Neely, “Direct imaging of a digital-micromirror device for configurable microscopic optical potentials,” Optica 3(10), 1136–1143 (2016).
    [Crossref]
  13. L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114(5), 055301 (2015).
    [Crossref]
  14. P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24(13), 13881–13893 (2016).
    [Crossref]
  15. M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, and J. Beugnon, “Relaxation dynamics in the merging of $n$n independent condensates,” Phys. Rev. Lett. 119(19), 190403 (2017).
    [Crossref]
  16. R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic Atom Optics: From Wires to an Atom Chip,” in Advances in Atomic, Molecular, and Optical Physics, vol. 48B. Bederson and H. Walther, eds. (Academic Press,2008), pp. 263–356.
  17. J. Reichel, “Trapping and manipulating atoms on chips,” in Atom Chips, J. Reichel and V. Vuletić, eds. (Wiley-VCH Verlag GmbH & Co. KGaA, 2011), chap.2, pp. 33–60.
  18. J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
    [Crossref]
  19. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84(20), 4749–4752 (2000).
    [Crossref]
  20. P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
    [Crossref]
  21. D. Gallego, S. Hofferberth, T. Schumm, P. Krüger, and J. Schmiedmayer, “Optical lattice on an atom chip,” Opt. Lett. 34(22), 3463 (2009).
    [Crossref]
  22. S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, and J. Schmiedmayer, “Radiofrequency-dressed-state potentials for neutral atoms,” Nat. Phys. 2(10), 710–716 (2006).
    [Crossref]
  23. P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
    [Crossref]
  24. S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
    [Crossref]
  25. S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, and I. Bar-Joseph, “Sensing electric and magnetic fields with bose-einstein condensates,” Appl. Phys. Lett. 88(26), 264103 (2006).
    [Crossref]
  26. S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
    [Crossref]
  27. F. Yang, A. J. Kollár, S. F. Taylor, R. W. Turner, and B. L. Lev, “Scanning Quantum Cryogenic Atom Microscope,” Phys. Rev. Appl. 7(3), 034026 (2017).
    [Crossref]
  28. L. D. Landau and E. M. Lifshitz, Mechanics (Butterworth-Heinemann, 1976), vol. 1 of Courses of theoretical physics, chap. Motion in rapidly oscillating field, pp. 93–95.
  29. T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
    [Crossref]
  30. P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24(13), 13881–13893 (2016).
    [Crossref]
  31. M. Gring, “Prethermalization in an isolated many body system,” Ph.D. thesis, Technical University of Vienna, Faculty of Physics (2012).
  32. D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19(9), 8471–8485 (2011).
    [Crossref]
  33. T. Schweigler, “Correlations and dynamics of tunnel-coupled one-dimensional bose gases,” Ph.D. thesis, Techniche Universität Wien, Fakultät für Physik (2019).
  34. A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
    [Crossref]
  35. S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
    [Crossref]
  36. Y. D. van Nieuwkerk, J. Schmiedmayer, and F. H. L. Essler, “Projective phase measurements in one-dimensional Bose gases,” SciPost Phys. 5(5), 046 (2018).
    [Crossref]
  37. J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen, C. I. Westbrook, and I. Bouchoule, “Roughness suppression via rapid current modulation on an atom chip,” Phys. Rev. Lett. 98(26), 263201 (2007).
    [Crossref]
  38. L. Salasnich, A. Parola, and L. Reatto, “Effective wave equations for the dynamics of cigar-shaped and disk-shaped bose condensates,” Phys. Rev. A 65(4), 043614 (2002).
    [Crossref]
  39. J. Schmiedmayer, “One-dimensional atomic superfluids as a model system for quantum thermodynamics,” in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, eds. (Springer International Publishing, 2018), pp. 823–851.

2018 (4)

K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, “Two-Dimensional Homogeneous Fermi Gases,” Phys. Rev. Lett. 120(6), 060402 (2018).
[Crossref]

B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, and J. Schmiedmayer, “Recurrences in an isolated quantum many-body system,” Science 360(6386), 307–310 (2018).
[Crossref]

J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J. Dalibard, and J. Beugnon, “Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas,” Phys. Rev. Lett. 121(14), 145301 (2018).
[Crossref]

Y. D. van Nieuwkerk, J. Schmiedmayer, and F. H. L. Essler, “Projective phase measurements in one-dimensional Bose gases,” SciPost Phys. 5(5), 046 (2018).
[Crossref]

2017 (4)

F. Yang, A. J. Kollár, S. F. Taylor, R. W. Turner, and B. L. Lev, “Scanning Quantum Cryogenic Atom Microscope,” Phys. Rev. Appl. 7(3), 034026 (2017).
[Crossref]

B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, “Homogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118(12), 123401 (2017).
[Crossref]

M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M. Greiner, “Microscopy of the interacting harper-hofstadter model in the two-body limit,” Nature 546(7659), 519–523 (2017).
[Crossref]

M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, and J. Beugnon, “Relaxation dynamics in the merging of $n$n independent condensates,” Phys. Rev. Lett. 119(19), 190403 (2017).
[Crossref]

2016 (5)

2015 (2)

T. Langen, R. Geiger, and J. Schmiedmayer, “Ultracold atoms out of equilibrium,” Annu. Rev. Condens. Matter Phys. 6(1), 201–217 (2015).
[Crossref]

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114(5), 055301 (2015).
[Crossref]

2013 (1)

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110(20), 200406 (2013).
[Crossref]

2011 (1)

2010 (2)

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, “Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate,” Phys. Rev. Lett. 105(24), 240401 (2010).
[Crossref]

2009 (2)

D. Gallego, S. Hofferberth, T. Schumm, P. Krüger, and J. Schmiedmayer, “Optical lattice on an atom chip,” Opt. Lett. 34(22), 3463 (2009).
[Crossref]

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

2008 (2)

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
[Crossref]

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80(3), 885–964 (2008).
[Crossref]

2007 (2)

J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen, C. I. Westbrook, and I. Bouchoule, “Roughness suppression via rapid current modulation on an atom chip,” Phys. Rev. Lett. 98(26), 263201 (2007).
[Crossref]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

2006 (2)

S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, and I. Bar-Joseph, “Sensing electric and magnetic fields with bose-einstein condensates,” Appl. Phys. Lett. 88(26), 264103 (2006).
[Crossref]

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, and J. Schmiedmayer, “Radiofrequency-dressed-state potentials for neutral atoms,” Nat. Phys. 2(10), 710–716 (2006).
[Crossref]

2005 (1)

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

2003 (1)

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

2002 (1)

L. Salasnich, A. Parola, and L. Reatto, “Effective wave equations for the dynamics of cigar-shaped and disk-shaped bose condensates,” Phys. Rev. A 65(4), 043614 (2002).
[Crossref]

2000 (1)

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84(20), 4749–4752 (2000).
[Crossref]

1999 (1)

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
[Crossref]

Aidelsburger, M.

J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J. Dalibard, and J. Beugnon, “Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas,” Phys. Rev. Lett. 121(14), 145301 (2018).
[Crossref]

M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, and J. Beugnon, “Relaxation dynamics in the merging of $n$n independent condensates,” Phys. Rev. Lett. 119(19), 190403 (2017).
[Crossref]

Aigner, S.

D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19(9), 8471–8485 (2011).
[Crossref]

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
[Crossref]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

Anderson, B. M.

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114(5), 055301 (2015).
[Crossref]

Andersson, L.

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

Andersson, L. M.

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

Andersson, M.

Baker, M.

Baker, M. A.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
[Crossref]

Bar-Joseph, I.

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, and I. Bar-Joseph, “Sensing electric and magnetic fields with bose-einstein condensates,” Appl. Phys. Lett. 88(26), 264103 (2006).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

Bell, T. A.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
[Crossref]

Betz, T.

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

Beugnon, J.

J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J. Dalibard, and J. Beugnon, “Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas,” Phys. Rev. Lett. 121(14), 145301 (2018).
[Crossref]

M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, and J. Beugnon, “Relaxation dynamics in the merging of $n$n independent condensates,” Phys. Rev. Lett. 119(19), 190403 (2017).
[Crossref]

Bloch, I.

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80(3), 885–964 (2008).
[Crossref]

Blumkin, A.

O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, “Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate,” Phys. Rev. Lett. 105(24), 240401 (2010).
[Crossref]

Borgnia, D.

M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M. Greiner, “Microscopy of the interacting harper-hofstadter model in the two-body limit,” Nature 546(7659), 519–523 (2017).
[Crossref]

Bouchoule, I.

J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen, C. I. Westbrook, and I. Bouchoule, “Roughness suppression via rapid current modulation on an atom chip,” Phys. Rev. Lett. 98(26), 263201 (2007).
[Crossref]

Bromley, M. W. J.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
[Crossref]

Brugger, K.

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

Bücker, R.

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

Cassettari, D.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84(20), 4749–4752 (2000).
[Crossref]

Cataldini, F.

B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, and J. Schmiedmayer, “Recurrences in an isolated quantum many-body system,” Science 360(6386), 307–310 (2018).
[Crossref]

Chin, C.

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114(5), 055301 (2015).
[Crossref]

Clark, L. W.

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114(5), 055301 (2015).
[Crossref]

Cornelussen, R.

J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen, C. I. Westbrook, and I. Bouchoule, “Roughness suppression via rapid current modulation on an atom chip,” Phys. Rev. Lett. 98(26), 263201 (2007).
[Crossref]

Dalibard, J.

J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J. Dalibard, and J. Beugnon, “Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas,” Phys. Rev. Lett. 121(14), 145301 (2018).
[Crossref]

M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, and J. Beugnon, “Relaxation dynamics in the merging of $n$n independent condensates,” Phys. Rev. Lett. 119(19), 190403 (2017).
[Crossref]

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80(3), 885–964 (2008).
[Crossref]

David, T.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
[Crossref]

Davis, M. J.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
[Crossref]

G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop, and T. W. Neely, “Direct imaging of a digital-micromirror device for configurable microscopic optical potentials,” Optica 3(10), 1136–1143 (2016).
[Crossref]

Della Pietra, L.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
[Crossref]

Demler, E.

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

Denschlag, J.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic Atom Optics: From Wires to an Atom Chip,” in Advances in Atomic, Molecular, and Optical Physics, vol. 48B. Bederson and H. Walther, eds. (Academic Press,2008), pp. 263–356.

Entin-Wohlman, O.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
[Crossref]

Erne, S.

B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, and J. Schmiedmayer, “Recurrences in an isolated quantum many-body system,” Science 360(6386), 307–310 (2018).
[Crossref]

Essler, F. H. L.

Y. D. van Nieuwkerk, J. Schmiedmayer, and F. H. L. Essler, “Projective phase measurements in one-dimensional Bose gases,” SciPost Phys. 5(5), 046 (2018).
[Crossref]

Fischer, B.

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, and J. Schmiedmayer, “Radiofrequency-dressed-state potentials for neutral atoms,” Nat. Phys. 2(10), 710–716 (2006).
[Crossref]

Folman, R.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
[Crossref]

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84(20), 4749–4752 (2000).
[Crossref]

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic Atom Optics: From Wires to an Atom Chip,” in Advances in Atomic, Molecular, and Optical Physics, vol. 48B. Bederson and H. Walther, eds. (Academic Press,2008), pp. 263–356.

Gallego, D.

Garrido Alzar, C. L.

J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen, C. I. Westbrook, and I. Bouchoule, “Roughness suppression via rapid current modulation on an atom chip,” Phys. Rev. Lett. 98(26), 263201 (2007).
[Crossref]

Gaunt, A. L.

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110(20), 200406 (2013).
[Crossref]

Gauthier, G.

Geiger, R.

T. Langen, R. Geiger, and J. Schmiedmayer, “Ultracold atoms out of equilibrium,” Annu. Rev. Condens. Matter Phys. 6(1), 201–217 (2015).
[Crossref]

Glidden, J. A. P.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
[Crossref]

Gordon, C.

O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, “Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate,” Phys. Rev. Lett. 105(24), 240401 (2010).
[Crossref]

Gotlibovych, I.

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110(20), 200406 (2013).
[Crossref]

Greiner, M.

Grimm, R.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances In Atomic, Molecular, and Optical Physics, vol. 42B. Bederson and H. Walther, eds. (Academic Press, 2000), pp. 95–170.

Gring, M.

Gritsev, V.

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

Groth, S.

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, and I. Bar-Joseph, “Sensing electric and magnetic fields with bose-einstein condensates,” Appl. Phys. Lett. 88(26), 264103 (2006).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

Grusdt, F.

M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M. Greiner, “Microscopy of the interacting harper-hofstadter model in the two-body limit,” Nature 546(7659), 519–523 (2017).
[Crossref]

Ha, L.-C.

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114(5), 055301 (2015).
[Crossref]

Haase, A.

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

Hadzibabic, Z.

B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, “Homogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118(12), 123401 (2017).
[Crossref]

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110(20), 200406 (2013).
[Crossref]

Haine, S. A.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
[Crossref]

Haller, E.

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

Hänsch, T. W.

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
[Crossref]

Hänsel, W.

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
[Crossref]

Henkel, C.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic Atom Optics: From Wires to an Atom Chip,” in Advances in Atomic, Molecular, and Optical Physics, vol. 48B. Bederson and H. Walther, eds. (Academic Press,2008), pp. 263–356.

Hessmo, B.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84(20), 4749–4752 (2000).
[Crossref]

Hofferberth, S.

D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19(9), 8471–8485 (2011).
[Crossref]

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

D. Gallego, S. Hofferberth, T. Schumm, P. Krüger, and J. Schmiedmayer, “Optical lattice on an atom chip,” Opt. Lett. 34(22), 3463 (2009).
[Crossref]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, and J. Schmiedmayer, “Radiofrequency-dressed-state potentials for neutral atoms,” Nat. Phys. 2(10), 710–716 (2006).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, and I. Bar-Joseph, “Sensing electric and magnetic fields with bose-einstein condensates,” Appl. Phys. Lett. 88(26), 264103 (2006).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

Hueck, K.

K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, “Two-Dimensional Homogeneous Fermi Gases,” Phys. Rev. Lett. 120(6), 060402 (2018).
[Crossref]

Humbert, L.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
[Crossref]

Imambekov, A.

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

Islam, R.

Itah, A.

O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, “Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate,” Phys. Rev. Lett. 105(24), 240401 (2010).
[Crossref]

Japha, Y.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
[Crossref]

Kaufman, A. M.

M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M. Greiner, “Microscopy of the interacting harper-hofstadter model in the two-body limit,” Nature 546(7659), 519–523 (2017).
[Crossref]

Klein, M.

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

Kollár, A. J.

F. Yang, A. J. Kollár, S. F. Taylor, R. W. Turner, and B. L. Lev, “Scanning Quantum Cryogenic Atom Microscope,” Phys. Rev. Appl. 7(3), 034026 (2017).
[Crossref]

Koller, C.

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

Kruger, P.

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

Krüger, P.

D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19(9), 8471–8485 (2011).
[Crossref]

D. Gallego, S. Hofferberth, T. Schumm, P. Krüger, and J. Schmiedmayer, “Optical lattice on an atom chip,” Opt. Lett. 34(22), 3463 (2009).
[Crossref]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, and I. Bar-Joseph, “Sensing electric and magnetic fields with bose-einstein condensates,” Appl. Phys. Lett. 88(26), 264103 (2006).
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84(20), 4749–4752 (2000).
[Crossref]

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic Atom Optics: From Wires to an Atom Chip,” in Advances in Atomic, Molecular, and Optical Physics, vol. 48B. Bederson and H. Walther, eds. (Academic Press,2008), pp. 263–356.

Lahav, O.

O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, “Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate,” Phys. Rev. Lett. 105(24), 240401 (2010).
[Crossref]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Mechanics (Butterworth-Heinemann, 1976), vol. 1 of Courses of theoretical physics, chap. Motion in rapidly oscillating field, pp. 93–95.

Langen, T.

T. Langen, R. Geiger, and J. Schmiedmayer, “Ultracold atoms out of equilibrium,” Annu. Rev. Condens. Matter Phys. 6(1), 201–217 (2015).
[Crossref]

Le Cerf, É.

J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J. Dalibard, and J. Beugnon, “Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas,” Phys. Rev. Lett. 121(14), 145301 (2018).
[Crossref]

Lenton, I.

Lesanovsky, I.

S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, and I. Bar-Joseph, “Sensing electric and magnetic fields with bose-einstein condensates,” Appl. Phys. Lett. 88(26), 264103 (2006).
[Crossref]

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, and J. Schmiedmayer, “Radiofrequency-dressed-state potentials for neutral atoms,” Nat. Phys. 2(10), 710–716 (2006).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

Lev, B. L.

F. Yang, A. J. Kollár, S. F. Taylor, R. W. Turner, and B. L. Lev, “Scanning Quantum Cryogenic Atom Microscope,” Phys. Rev. Appl. 7(3), 034026 (2017).
[Crossref]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Mechanics (Butterworth-Heinemann, 1976), vol. 1 of Courses of theoretical physics, chap. Motion in rapidly oscillating field, pp. 93–95.

Lompe, T.

K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, “Two-Dimensional Homogeneous Fermi Gases,” Phys. Rev. Lett. 120(6), 060402 (2018).
[Crossref]

Luick, N.

K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, “Two-Dimensional Homogeneous Fermi Gases,” Phys. Rev. Lett. 120(6), 060402 (2018).
[Crossref]

Lukin, A.

Luo, X.

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

Ma, R.

Maier, T.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84(20), 4749–4752 (2000).
[Crossref]

Manz, S.

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

Mazets, I. E.

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

Menke, T.

M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M. Greiner, “Microscopy of the interacting harper-hofstadter model in the two-body limit,” Nature 546(7659), 519–523 (2017).
[Crossref]

Moritz, H.

K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, “Two-Dimensional Homogeneous Fermi Gases,” Phys. Rev. Lett. 120(6), 060402 (2018).
[Crossref]

Mukherjee, B.

B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, “Homogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118(12), 123401 (2017).
[Crossref]

Nascimbène, S.

J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J. Dalibard, and J. Beugnon, “Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas,” Phys. Rev. Lett. 121(14), 145301 (2018).
[Crossref]

M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, and J. Beugnon, “Relaxation dynamics in the merging of $n$n independent condensates,” Phys. Rev. Lett. 119(19), 190403 (2017).
[Crossref]

Neely, T. W.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
[Crossref]

G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop, and T. W. Neely, “Direct imaging of a digital-micromirror device for configurable microscopic optical potentials,” Optica 3(10), 1136–1143 (2016).
[Crossref]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances In Atomic, Molecular, and Optical Physics, vol. 42B. Bederson and H. Walther, eds. (Academic Press, 2000), pp. 95–170.

Parker, C. V.

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114(5), 055301 (2015).
[Crossref]

Parola, A.

L. Salasnich, A. Parola, and L. Reatto, “Effective wave equations for the dynamics of cigar-shaped and disk-shaped bose condensates,” Phys. Rev. A 65(4), 043614 (2002).
[Crossref]

Parry, N. M.

Patel, P. B.

B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, “Homogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118(12), 123401 (2017).
[Crossref]

Perrin, A.

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

Petrov, D. S.

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

Preiss, P. M.

Rauer, B.

B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, and J. Schmiedmayer, “Recurrences in an isolated quantum many-body system,” Science 360(6386), 307–310 (2018).
[Crossref]

Reatto, L.

L. Salasnich, A. Parola, and L. Reatto, “Effective wave equations for the dynamics of cigar-shaped and disk-shaped bose condensates,” Phys. Rev. A 65(4), 043614 (2002).
[Crossref]

Reichel, J.

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
[Crossref]

J. Reichel, “Trapping and manipulating atoms on chips,” in Atom Chips, J. Reichel and V. Vuletić, eds. (Wiley-VCH Verlag GmbH & Co. KGaA, 2011), chap.2, pp. 33–60.

Rinott, S.

O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, “Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate,” Phys. Rev. Lett. 105(24), 240401 (2010).
[Crossref]

Rispoli, M.

Rubinsztein-Dunlop, H.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
[Crossref]

G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop, and T. W. Neely, “Direct imaging of a digital-micromirror device for configurable microscopic optical potentials,” Optica 3(10), 1136–1143 (2016).
[Crossref]

Saint-Jalm, R.

J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J. Dalibard, and J. Beugnon, “Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas,” Phys. Rev. Lett. 121(14), 145301 (2018).
[Crossref]

M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, and J. Beugnon, “Relaxation dynamics in the merging of $n$n independent condensates,” Phys. Rev. Lett. 119(19), 190403 (2017).
[Crossref]

Salasnich, L.

L. Salasnich, A. Parola, and L. Reatto, “Effective wave equations for the dynamics of cigar-shaped and disk-shaped bose condensates,” Phys. Rev. A 65(4), 043614 (2002).
[Crossref]

Salem, R.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
[Crossref]

Schittko, R.

M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M. Greiner, “Microscopy of the interacting harper-hofstadter model in the two-body limit,” Nature 546(7659), 519–523 (2017).
[Crossref]

Schmidutz, T. F.

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110(20), 200406 (2013).
[Crossref]

Schmiedmayer, J.

B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, and J. Schmiedmayer, “Recurrences in an isolated quantum many-body system,” Science 360(6386), 307–310 (2018).
[Crossref]

Y. D. van Nieuwkerk, J. Schmiedmayer, and F. H. L. Essler, “Projective phase measurements in one-dimensional Bose gases,” SciPost Phys. 5(5), 046 (2018).
[Crossref]

T. Langen, R. Geiger, and J. Schmiedmayer, “Ultracold atoms out of equilibrium,” Annu. Rev. Condens. Matter Phys. 6(1), 201–217 (2015).
[Crossref]

D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19(9), 8471–8485 (2011).
[Crossref]

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

D. Gallego, S. Hofferberth, T. Schumm, P. Krüger, and J. Schmiedmayer, “Optical lattice on an atom chip,” Opt. Lett. 34(22), 3463 (2009).
[Crossref]

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
[Crossref]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, and J. Schmiedmayer, “Radiofrequency-dressed-state potentials for neutral atoms,” Nat. Phys. 2(10), 710–716 (2006).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, and I. Bar-Joseph, “Sensing electric and magnetic fields with bose-einstein condensates,” Appl. Phys. Lett. 88(26), 264103 (2006).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84(20), 4749–4752 (2000).
[Crossref]

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic Atom Optics: From Wires to an Atom Chip,” in Advances in Atomic, Molecular, and Optical Physics, vol. 48B. Bederson and H. Walther, eds. (Academic Press,2008), pp. 263–356.

J. Schmiedmayer, “One-dimensional atomic superfluids as a model system for quantum thermodynamics,” in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, eds. (Springer International Publishing, 2018), pp. 823–851.

Schneider, S.

Schumm, T.

D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19(9), 8471–8485 (2011).
[Crossref]

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

D. Gallego, S. Hofferberth, T. Schumm, P. Krüger, and J. Schmiedmayer, “Optical lattice on an atom chip,” Opt. Lett. 34(22), 3463 (2009).
[Crossref]

Schweigler, T.

B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, and J. Schmiedmayer, “Recurrences in an isolated quantum many-body system,” Science 360(6386), 307–310 (2018).
[Crossref]

T. Schweigler, “Correlations and dynamics of tunnel-coupled one-dimensional bose gases,” Ph.D. thesis, Techniche Universität Wien, Fakultät für Physik (2019).

Siegl, J.

K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, “Two-Dimensional Homogeneous Fermi Gases,” Phys. Rev. Lett. 120(6), 060402 (2018).
[Crossref]

Smith, D. A.

Smith, R. P.

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110(20), 200406 (2013).
[Crossref]

Sobirey, L.

K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, “Two-Dimensional Homogeneous Fermi Gases,” Phys. Rev. Lett. 120(6), 060402 (2018).
[Crossref]

Steinhauer, J.

J. Steinhauer, “Observation of quantum Hawking radiation and its entanglement in an analogue black hole,” Nat. Phys. 12(10), 959–965 (2016).
[Crossref]

O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, “Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate,” Phys. Rev. Lett. 105(24), 240401 (2010).
[Crossref]

Struck, J.

B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, “Homogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118(12), 123401 (2017).
[Crossref]

Tai, M. E.

Tajik, M.

B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, and J. Schmiedmayer, “Recurrences in an isolated quantum many-body system,” Science 360(6386), 307–310 (2018).
[Crossref]

Taylor, S. F.

F. Yang, A. J. Kollár, S. F. Taylor, R. W. Turner, and B. L. Lev, “Scanning Quantum Cryogenic Atom Microscope,” Phys. Rev. Appl. 7(3), 034026 (2017).
[Crossref]

Trebbia, J.-B.

J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen, C. I. Westbrook, and I. Bouchoule, “Roughness suppression via rapid current modulation on an atom chip,” Phys. Rev. Lett. 98(26), 263201 (2007).
[Crossref]

Turner, R. W.

F. Yang, A. J. Kollár, S. F. Taylor, R. W. Turner, and B. L. Lev, “Scanning Quantum Cryogenic Atom Microscope,” Phys. Rev. Appl. 7(3), 034026 (2017).
[Crossref]

van Nieuwkerk, Y. D.

Y. D. van Nieuwkerk, J. Schmiedmayer, and F. H. L. Essler, “Projective phase measurements in one-dimensional Bose gases,” SciPost Phys. 5(5), 046 (2018).
[Crossref]

Verdu, J.

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, and J. Schmiedmayer, “Radiofrequency-dressed-state potentials for neutral atoms,” Nat. Phys. 2(10), 710–716 (2006).
[Crossref]

Ville, J. L.

J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J. Dalibard, and J. Beugnon, “Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas,” Phys. Rev. Lett. 121(14), 145301 (2018).
[Crossref]

M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, and J. Beugnon, “Relaxation dynamics in the merging of $n$n independent condensates,” Phys. Rev. Lett. 119(19), 190403 (2017).
[Crossref]

Weidemüller, M.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances In Atomic, Molecular, and Optical Physics, vol. 42B. Bederson and H. Walther, eds. (Academic Press, 2000), pp. 95–170.

Westbrook, C. I.

J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen, C. I. Westbrook, and I. Bouchoule, “Roughness suppression via rapid current modulation on an atom chip,” Phys. Rev. Lett. 98(26), 263201 (2007).
[Crossref]

Wildermuth, S.

D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19(9), 8471–8485 (2011).
[Crossref]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, and I. Bar-Joseph, “Sensing electric and magnetic fields with bose-einstein condensates,” Appl. Phys. Lett. 88(26), 264103 (2006).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

Yan, Z.

B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, “Homogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118(12), 123401 (2017).
[Crossref]

Yang, F.

F. Yang, A. J. Kollár, S. F. Taylor, R. W. Turner, and B. L. Lev, “Scanning Quantum Cryogenic Atom Microscope,” Phys. Rev. Appl. 7(3), 034026 (2017).
[Crossref]

Yefsah, T.

B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, “Homogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118(12), 123401 (2017).
[Crossref]

Zayats, A.

O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, “Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate,” Phys. Rev. Lett. 105(24), 240401 (2010).
[Crossref]

Zupancic, P.

Zwerger, W.

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80(3), 885–964 (2008).
[Crossref]

Zwierlein, M. W.

B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, “Homogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118(12), 123401 (2017).
[Crossref]

Annu. Rev. Condens. Matter Phys. (1)

T. Langen, R. Geiger, and J. Schmiedmayer, “Ultracold atoms out of equilibrium,” Annu. Rev. Condens. Matter Phys. 6(1), 201–217 (2015).
[Crossref]

Appl. Phys. Lett. (1)

S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, and I. Bar-Joseph, “Sensing electric and magnetic fields with bose-einstein condensates,” Appl. Phys. Lett. 88(26), 264103 (2006).
[Crossref]

Nat. Phys. (2)

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, and J. Schmiedmayer, “Radiofrequency-dressed-state potentials for neutral atoms,” Nat. Phys. 2(10), 710–716 (2006).
[Crossref]

J. Steinhauer, “Observation of quantum Hawking radiation and its entanglement in an analogue black hole,” Nat. Phys. 12(10), 959–965 (2016).
[Crossref]

Nature (2)

M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M. Greiner, “Microscopy of the interacting harper-hofstadter model in the two-body limit,” Nature 546(7659), 519–523 (2017).
[Crossref]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Andersson, S. Groth, I. Bar-Joseph, P. Kruger, and J. Schmiedmayer, “Bose-Einstein condensates - Microscopic magnetic-field imaging,” Nature 435(7041), 440 (2005).
[Crossref]

New J. Phys. (1)

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18(3), 035003 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (4)

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76(6), 063621 (2007).
[Crossref]

A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, “Density ripples in expanding low-dimensional gases as a probe of correlations,” Phys. Rev. A 80(3), 033604 (2009).
[Crossref]

S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, “Two-point density correlations of quasicondensates in free expansion,” Phys. Rev. A 81(3), 031610 (2010).
[Crossref]

L. Salasnich, A. Parola, and L. Reatto, “Effective wave equations for the dynamics of cigar-shaped and disk-shaped bose condensates,” Phys. Rev. A 65(4), 043614 (2002).
[Crossref]

Phys. Rev. Appl. (1)

F. Yang, A. J. Kollár, S. F. Taylor, R. W. Turner, and B. L. Lev, “Scanning Quantum Cryogenic Atom Microscope,” Phys. Rev. Appl. 7(3), 034026 (2017).
[Crossref]

Phys. Rev. Lett. (11)

J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen, C. I. Westbrook, and I. Bouchoule, “Roughness suppression via rapid current modulation on an atom chip,” Phys. Rev. Lett. 98(26), 263201 (2007).
[Crossref]

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114(5), 055301 (2015).
[Crossref]

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84(20), 4749–4752 (2000).
[Crossref]

P. Kruger, X. Luo, M. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91(23), 233201 (2003).
[Crossref]

M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, and J. Beugnon, “Relaxation dynamics in the merging of $n$n independent condensates,” Phys. Rev. Lett. 119(19), 190403 (2017).
[Crossref]

J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J. Dalibard, and J. Beugnon, “Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas,” Phys. Rev. Lett. 121(14), 145301 (2018).
[Crossref]

O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, “Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate,” Phys. Rev. Lett. 105(24), 240401 (2010).
[Crossref]

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110(20), 200406 (2013).
[Crossref]

K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, “Two-Dimensional Homogeneous Fermi Gases,” Phys. Rev. Lett. 120(6), 060402 (2018).
[Crossref]

B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, “Homogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118(12), 123401 (2017).
[Crossref]

Rev. Mod. Phys. (1)

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80(3), 885–964 (2008).
[Crossref]

Science (2)

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319(5867), 1226–1229 (2008).
[Crossref]

B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, and J. Schmiedmayer, “Recurrences in an isolated quantum many-body system,” Science 360(6386), 307–310 (2018).
[Crossref]

SciPost Phys. (1)

Y. D. van Nieuwkerk, J. Schmiedmayer, and F. H. L. Essler, “Projective phase measurements in one-dimensional Bose gases,” SciPost Phys. 5(5), 046 (2018).
[Crossref]

Other (7)

T. Schweigler, “Correlations and dynamics of tunnel-coupled one-dimensional bose gases,” Ph.D. thesis, Techniche Universität Wien, Fakultät für Physik (2019).

M. Gring, “Prethermalization in an isolated many body system,” Ph.D. thesis, Technical University of Vienna, Faculty of Physics (2012).

L. D. Landau and E. M. Lifshitz, Mechanics (Butterworth-Heinemann, 1976), vol. 1 of Courses of theoretical physics, chap. Motion in rapidly oscillating field, pp. 93–95.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances In Atomic, Molecular, and Optical Physics, vol. 42B. Bederson and H. Walther, eds. (Academic Press, 2000), pp. 95–170.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic Atom Optics: From Wires to an Atom Chip,” in Advances in Atomic, Molecular, and Optical Physics, vol. 48B. Bederson and H. Walther, eds. (Academic Press,2008), pp. 263–356.

J. Reichel, “Trapping and manipulating atoms on chips,” in Atom Chips, J. Reichel and V. Vuletić, eds. (Wiley-VCH Verlag GmbH & Co. KGaA, 2011), chap.2, pp. 33–60.

J. Schmiedmayer, “One-dimensional atomic superfluids as a model system for quantum thermodynamics,” in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, eds. (Springer International Publishing, 2018), pp. 823–851.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Combining optical dipole potentials with the magnetic confinement created by current carrying micro-wires of an atom chip. The DMD pattern is imaged onto the plane of the atomic cloud trapped below the atom chip. The controllable light field can be used to modify and ‘correct’ the trapping potential created by the atom chip. In the remainder of the manuscript, the $x$-axis is oriented along the propagation direction of the dipole light. The $y$-axis points towards gravity and the $z$-axis is oriented along the longitudinal direction of the atom chip trap. For simplicity, the DMD pattern shown in this schematic only cuts out the center of the elongated Gaussian beam and produces steep walls on the sides.
Fig. 2.
Fig. 2. Creating a box-like potential (green) by superposing blue- or red-detuned light fields ($\Delta \;> \;0$ and $\Delta \;< \;0$ respectively) with a rough harmonic potential (black). The intensity profiles needed to achieve the target potential is shown for each case.
Fig. 3.
Fig. 3. Expanding the dynamical range of intensity using the concept of spatial averaging and spatial filtering. The images of single DMD pixels are shown in the image plane. For a diffraction limited spot much smaller than the pixel size, the DMD pixels are well resolved in the image plane, and of the five pixels switched on (shown in different colors), only one (red) would contribute to the intensity of point $\mathrm {P}$ ($\mathrm {P}^\prime$). If the image is blurred due to the finite imaging resolution, the pixels are imaged as broad, overlapping spots. In this case all pixels within the orange circle (ellipse) contribute to the intensity of point P ($\mathrm {P}^\prime$). In (a), the point spread function (PSF) of the imaging system is symmetric and three of the five active pixels (red, blue, green) contribute substantially to the intensity at point P. In (b), horizontal-pass spatial filtering broadens the PSF in the vertical direction, which leads to an increased number of pixels contributing to the intensity at point $\mathrm {P}^\prime$.
Fig. 4.
Fig. 4. Integration of the optical setup for DMD shaped dipole potentials into the absorption imaging system (AIS). In the first demagnification stage, lens 1 (Thorlabs LA1256-B) along with lens 2 (Thorlabs LA1050-B) form a 4f system which is connected to the second demagnification stage by two mirrors. The first mirror has its backside polished and an overview camera placed behind it to observe the DMD pattern (not shown). Lens 3 (Thorlabs LA1727-B) together with the objective of the AIS forms the second demagnification stage. This lens can be shifted with a motorized stage to adjust the focus of the DMD imaging system in the plane of atoms. The dipole trap path is then superimposed to the imaging path on a polarizing beamsplitter (PBS) cube. While the p-polarized imaging light, $\lambda =780$ nm (pink) passes through the PBS cube, the s-polarized optical trap light, $\lambda =660$ nm (blue) is reflected into the home-built diffraction limited objective of the AIS. The objective consists of four commercially available lenses (Thorlabs LE1527, LE1359, AC508-150-B and LF1129) and has a NA of $0.26$ [31]. The imaging beam is focused on the CCD chip via lens 4 (Thorlabs AC508-400-B) and lens 5 (ThorlabsLF1764) that form a telephoto group to shrink the size of the optical system.
Fig. 5.
Fig. 5. An example of data used for (a) horizontal (longitudinal) calibration and (b) vertical calibration. (a) multiple super pixels ($190\times \, 3$ pixels) are turned on $100$ DMD pixels apart from each other. The red vertical line corresponds to the image of the super pixel in the center of the DMD pattern. The distance between two orange lines and the position of the red line can be used for a linear mapping between DMD pixels and corresponding camera pixels. (b) height of the barrier ($V_{\mathrm {B}}$) created by a super pixel ($3\times \, 15$ pixels) is plotted for different vertical positions of the super pixel on the DMD pattern. The row $y_{\mathrm {DMD}} = 0$ is the central DMD row. The blue circles represent the data taken from $y_{\mathrm {DMD}} = -15$ to $9$ with steps of $3$ DMD pixels and the red curve is a Gaussian fit.
Fig. 6.
Fig. 6. Updating the DMD pattern based on the comparison between the averaged measured density, $\bar {\rho }^i(z_k)$, and the target density, $\rho _T^i(z_k)$. The process is explained in detail in the final part of Sec. 4. The example here shows a small longitudinal segment of iteration number $i =14$ of the optimization leading to the results shown in Fig.  7(c). The region on the DMD corresponds to an interval $z_1= -39.89$ µm to $z_{13}= -26.23$ µm.
Fig. 7.
Fig. 7. Results of pattern optimization process for four different cases: (a) a box-like potential with length $L = 160$ µm, (b) two box-like potentials separated by a barrier, (c) a $L = 160$ µm box-like potential with a sinusoidally modulated bottom and (d) a V-shaped potential. In the left (right) column, orange curves are initial averaged 1D densities (potentials), red curves are target densities (potentials) and blue curves are averaged 1D density profiles (potentials) and their standard errors for optimized patterns. The green curves in the right column are the target potentials broadened by the DMD imaging system. The measured potentials show a good agreement with these broadened target potentials. Note that the scale of density (potential) axis is not the same for different cases. For the final density profiles, $\epsilon _{\mathrm {RMS}}$ calculated over the gray shaded region is (a) $4.4\%$, (b) $5.5\%$, (c) $4.2\%$ and (d) $5.9\%$. For (b) the optimization process started with the optimized pattern achieved in (a). For (c) the optimization started with an older optimized pattern for a box-like potential which had a slightly different calibration settings. In (a) and (d) however, the optimization process started with a pattern in which all DMD pixels were off, i.e. orange curves in (a) and (d) represent our longitudinal magnetic potential when the condensate is split transversally in a double-well. Since the measured density for the first iteration is only averaged over two experimental realizations, the effect of shot noise is evident in the orange curves.
Fig. 8.
Fig. 8. Realization of a $L = 160$ µm long box-like potential with different barrier heights, $V_{\mathrm {B}}$, from $0$ to 1 kHz. Density profiles and potentials are shown with different colors. Thin red curves represent the target densities for each case. The figure suggests that the widths of barriers of the measured densities agree with the simulated target densities.
Fig. 9.
Fig. 9. Evolution of $\epsilon _{\mathrm {RMS}}$ for three different cases (lines are guides to the eye): a box-like potential with length $L = 160$ µm (black), two box-like potentials separated by a barrier (brown), a box-like potential with a sinusoidally modulated bottom (green) and a V-shaped potential (pink). All initial and final densities and potentials are plotted in Figs.  7(a)–7(d).
Fig. 10.
Fig. 10. Stability measurement: (a) evolution of $\epsilon _{\mathrm {RMS}}$ before and after optimization for a box-like potential with length $L = 100$ µm. The horizontal axis on the top is the time corresponding to different iterations. The optimization stopped at iteration number $40$ (orange line) and the DMD pattern is kept unchanged through out the measurement. (b) normalized target density (red), normalized density profiles for iteration numbers $40$ (orange), $120$ (green) and $200$ (blue) are plotted.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϵ R M S i = 1 j l k = j l ( ρ T i ( z k ) ρ ¯ i ( z k ) ρ T i ( z k ) ) 2 ,
V ( z ) = μ g 2 π a 2 ρ ( z ) 1 + 2 a s ρ ( z ) ω 2 ( 1 + 2 a s ρ ( z ) + 1 1 + 2 a s ρ ( z ) ) .

Metrics