Abstract

Enhancing robustness and energy efficiency is critical in visible light communication (VLC) to support large-scale data traffic and connectivity of smart devices in the era of fifth-generation networks. To this end, we demonstrate that amorphous silicon (a-Si) thin-film solar cells with a high light absorption coefficient are particularly useful for simultaneous robust signal detection and efficient energy harvesting under the condition of weak light in this study. Moreover, a first-generation prototype called AquaE-lite is developed that consists of an a-Si thin-film solar panel and receiver circuits, which can detect weak light as low as 1 µW/cm2. Using AquaE-lite and a white-light laser, orthogonal frequency-division multiplexing signals with data rates of 1 Mb/s and 908.2 kb/s are achieved over a 20-m long-distance air channel and 2.4-m turbid outdoor pool water, respectively, under the condition of strong background light. The reliable VLC system based on energy-efficient a-Si thin-film solar cells opens a new pathway for future satellite-air-ground-ocean optical wireless communication to realize connectivity among millions of Internet of Things devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Organic solar cells as high-speed data detectors for visible light communication

Shuyu Zhang, Dobroslav Tsonev, Stefan Videv, Sanjay Ghosh, Graham A. Turnbull, Ifor D. W. Samuel, and Harald Haas
Optica 2(7) 607-610 (2015)

Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies

Vladislav Jovanov, Ujwol Palanchoke, Philipp Magnus, Helmut Stiebig, Jürgen Hüpkes, Porponth Sichanugrist, Makoto Konagai, Samuel Wiesendanger, Carsten Rockstuhl, and Dietmar Knipp
Opt. Express 21(S4) A595-A606 (2013)

Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns

Angelo Bozzola, Marco Liscidini, and Lucio Claudio Andreani
Opt. Express 20(S2) A224-A244 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
    [Crossref]
  2. H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
    [Crossref]
  3. S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2(7), 607–610 (2015).
    [Crossref]
  4. S. M. Kim, J. S. Won, and S. H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng. 53(4), 046103 (2014).
    [Crossref]
  5. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (IEEE, 2014), pp. 3348–3353.
  6. W. H. Shin, S. H. Yang, D. H. Kwon, and S. K. Han, “Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting,” Opt. Express 24(22), A1300–A1305 (2016).
    [Crossref]
  7. B. Malik and X. Zhang, “Solar panel receiver system implementation for visible light communication,” in Proceedings of IEEE International Conference on Electronics, Circuits, and Systems (IEEE, 2016), pp. 502–503.
  8. X. Chen, C. Min, and J. Guo, “Visible light communication system using silicon photocell for energy gathering and data receiving,” Int. J. Opt. 2017, 1–5 (2017).
    [Crossref]
  9. M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
    [Crossref]
  10. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33(8), 1612–1623 (2015).
    [Crossref]
  11. H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
    [Crossref]
  12. M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006).
    [Crossref]
  13. K. Gmucová and J. Müllerová, “Amorphous photovoltaics: organics versus inorganics,” in Amorphous Materials, S. B. Mishra, ed. (Nova Science Publishers Inc, UK, 2013).

2018 (3)

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

2017 (1)

X. Chen, C. Min, and J. Guo, “Visible light communication system using silicon photocell for energy gathering and data receiving,” Int. J. Opt. 2017, 1–5 (2017).
[Crossref]

2016 (2)

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
[Crossref]

W. H. Shin, S. H. Yang, D. H. Kwon, and S. K. Han, “Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting,” Opt. Express 24(22), A1300–A1305 (2016).
[Crossref]

2015 (2)

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2(7), 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33(8), 1612–1623 (2015).
[Crossref]

2014 (1)

S. M. Kim, J. S. Won, and S. H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng. 53(4), 046103 (2014).
[Crossref]

2006 (1)

M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006).
[Crossref]

Agiwal, M.

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
[Crossref]

Alouini, M. S.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Chen, J.

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

Chen, X.

X. Chen, C. Min, and J. Guo, “Visible light communication system using silicon photocell for energy gathering and data receiving,” Int. J. Opt. 2017, 1–5 (2017).
[Crossref]

Chen, Y.

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

Chen, Y. Y.

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

Chow, C. W.

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

Ghosh, S.

Gmucová, K.

K. Gmucová and J. Müllerová, “Amorphous photovoltaics: organics versus inorganics,” in Amorphous Materials, S. B. Mishra, ed. (Nova Science Publishers Inc, UK, 2013).

Guo, J.

X. Chen, C. Min, and J. Guo, “Visible light communication system using silicon photocell for energy gathering and data receiving,” Int. J. Opt. 2017, 1–5 (2017).
[Crossref]

Haas, H.

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2(7), 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33(8), 1612–1623 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (IEEE, 2014), pp. 3348–3353.

Han, J.

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

Han, S. K.

Kammoun, A.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Kang, C. H.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Kim, S. M.

S. M. Kim, J. S. Won, and S. H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng. 53(4), 046103 (2014).
[Crossref]

Kong, M.

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

Kwon, D. H.

Liao, X. L.

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

Lin, K. H.

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

Liu, G.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Liu, Y.

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

Malik, B.

B. Malik and X. Zhang, “Solar panel receiver system implementation for visible light communication,” in Proceedings of IEEE International Conference on Electronics, Circuits, and Systems (IEEE, 2016), pp. 502–503.

Min, C.

X. Chen, C. Min, and J. Guo, “Visible light communication system using silicon photocell for energy gathering and data receiving,” Int. J. Opt. 2017, 1–5 (2017).
[Crossref]

Müllerová, J.

K. Gmucová and J. Müllerová, “Amorphous photovoltaics: organics versus inorganics,” in Amorphous Materials, S. B. Mishra, ed. (Nova Science Publishers Inc, UK, 2013).

Nahm, S. H.

S. M. Kim, J. S. Won, and S. H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng. 53(4), 046103 (2014).
[Crossref]

Ng, T. K.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Ooi, B. S.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Oubei, H. M.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Park, K. H.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Qin, H.

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

Qu, F.

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

Roy, A.

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
[Crossref]

Samuel, I. D.

Sarwar, R.

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

Saxena, N.

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
[Crossref]

Schubert, M. B.

M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006).
[Crossref]

Shen, C.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Shen, J.

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

Shin, W. H.

Sun, B.

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

Sun, X.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Tsonev, D.

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2(7), 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33(8), 1612–1623 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (IEEE, 2014), pp. 3348–3353.

Turnbull, G. A.

Videv, S.

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2(7), 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33(8), 1612–1623 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (IEEE, 2014), pp. 3348–3353.

Wang, H. Y.

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

Wang, Z.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33(8), 1612–1623 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (IEEE, 2014), pp. 3348–3353.

Werner, J. H.

M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006).
[Crossref]

Won, J. S.

S. M. Kim, J. S. Won, and S. H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng. 53(4), 046103 (2014).
[Crossref]

Wu, J. T.

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

Wu, W. L.

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

Xu, J.

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

Yang, S. H.

Yeh, C. H.

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

Zedini, E.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Zhang, S.

Zhang, X.

B. Malik and X. Zhang, “Solar panel receiver system implementation for visible light communication,” in Proceedings of IEEE International Conference on Electronics, Circuits, and Systems (IEEE, 2016), pp. 502–503.

IEEE Commun. Surv. Tutorials (1)

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33(8), 1612–1623 (2015).
[Crossref]

Int. J. Opt. (1)

X. Chen, C. Min, and J. Guo, “Visible light communication system using silicon photocell for energy gathering and data receiving,” Int. J. Opt. 2017, 1–5 (2017).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K. H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Mater. Today (1)

M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006).
[Crossref]

Opt. Commun. (2)

M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
[Crossref]

H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, “Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication,” Opt. Commun. 407, 245–249 (2018).
[Crossref]

Opt. Eng. (1)

S. M. Kim, J. S. Won, and S. H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng. 53(4), 046103 (2014).
[Crossref]

Opt. Express (1)

Optica (1)

Other (3)

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (IEEE, 2014), pp. 3348–3353.

B. Malik and X. Zhang, “Solar panel receiver system implementation for visible light communication,” in Proceedings of IEEE International Conference on Electronics, Circuits, and Systems (IEEE, 2016), pp. 502–503.

K. Gmucová and J. Müllerová, “Amorphous photovoltaics: organics versus inorganics,” in Amorphous Materials, S. B. Mishra, ed. (Nova Science Publishers Inc, UK, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Experimental setup of the white-light laser and a-Si thin-film solar panel-based VLC system, (b) experimental scene, (c) a-Si thin-film solar panel, (d) receiver circuits, and (e) white-light laser.
Fig. 2.
Fig. 2. (a) J-V curve of an a-Si thin-film solar cell in the dark and under an illumination intensity of 100 mW/cm2 using the AM 1.5 G solar simulator, and (b) current densities of the a-Si thin-film solar cell under different power densities.
Fig. 3.
Fig. 3. (a) L-I-V characteristics of the white-light laser, (b) optical spectrum of the white-light laser under a drive current of 570 mA, (c) CIE 1931 diagram with chromaticity coordinates (x, y) of the white-light laser, and (d) beam shape and power distribution of the white-light laser.
Fig. 4.
Fig. 4. Illuminance distributions at distances of (a) 5 m, (b) 10 m, (c) 15 m, and (d) 20 m.
Fig. 5.
Fig. 5. (a) Frequency response of the whole system measured at a transmission distance of 20 m, and (b) BERs of 908.2-kb/s, 1-Mb/s, and 1.2-Mb/s 4-QAM OFDM signals at transmission distances of 10, 15, and 20 m.
Fig. 6.
Fig. 6. Experimental scene.
Fig. 7.
Fig. 7. Under an illumination intensity of 40 mW/cm2, (a) J-V curve of one single a-Si thin-film solar cell and (b) J-V curve of three a-Si thin-film solar cells connected in series.
Fig. 8.
Fig. 8. (a) Experimental scene, (b) transmitter: white-light laser, and (c) receiver: AquaE-lite.
Fig. 9.
Fig. 9. BERs of the received OFDM signals for different subcarriers over 2.4-m outdoor pool water. Inset: the corresponding constellation map.

Tables (1)

Tables Icon

Table 1. Main parameters of the VLC system using OFDM

Metrics