Abstract

Orbital angular momentum (OAM) beam generators have attracted tremendous interests recently due to their excellent performance and potential applications in wireless communication. However, the existing transmissive OAM generators suffer from several limitations, such as narrow bandwidth, high profile and low efficiency. In this study, a new wideband third-order meta-frequency selective surface (meta-FSS) for generating focusing vortex beam is developed. The proposed meta-FSS element is designed at X- band with a third-order band-pass filter property, which exhibits the merits of low profile, high transmissivity, and large angular stability. By employing the proposed meta-FSS element, prototypes of OAM generators for + 1 and −2 modes are designed, fabricated, and measured. Experimental results verify the ability of the proposed design to convert an incident left/right-handed circularly polarized (L/RHCP) spherical wave into a transmitted R/LHCP vortex carrying OAM wave from 9.0 GHz to 11.0 GHz with high mode purity. A good agreement is achieved between the experimental and numerical results, which demonstrates that the proposed structure paves the wave for generating desired OAM modes, and provides new possibility for designing novel low-profile wireless communication devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-band vortex beam generation with different OAM modes using single-layer metasurface

Chen Ji, Jiakun Song, Cheng Huang, Xiaoyu Wu, and Xiangang Luo
Opt. Express 27(1) 34-44 (2019)

Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces

Shixing Yu, Long Li, and Na Kou
Opt. Mater. Express 7(9) 3312-3321 (2017)

Multiple OAM vortex beams generation using 1-bit metasurface

Di Zhang, Xiangyu Cao, Huanhuan Yang, Jun Gao, and Xuewen Zhu
Opt. Express 26(19) 24804-24815 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
    [Crossref]
  2. L. Marrucci, C. manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref]
  3. P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
    [Crossref]
  4. X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
    [Crossref]
  5. F. Bouchard, I. D. Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
    [Crossref]
  6. L. Gong, Q. Zhao, H. Zhang, X.-Y. Hu, K. Huang, J.-M. Yang, and Y.-M. Li, “Optical orbital-angular-momentum-multiplexed data transmission under high scatting,” Light: Sci. Appl. 8(1), 27 (2019).
    [Crossref]
  7. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  8. C. M. Liu, J. S. Liu, L. T. Niu, X. L. Wei, K. J. Wang, and Z. G. Yang, “Terahertz circular airy vortex beams,” Sci. Rep. 7(1), 3891 (2017).
    [Crossref]
  9. H. L. Zhou, J. J. Dong, S. Q. Yan, Y. F. Zhou, and X. L. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photonics J. 6(6), 1–7 (2014).
    [Crossref]
  10. J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
    [Crossref]
  11. P. Schemmel, G. Piasno, and B. Maffei, “Modular spiral phase plate design for orbital angular momentum generation at millimeter wave lengths,” Opt. Express 22(12), 14712–14726 (2014).
    [Crossref]
  12. Y. L. Chen, S. L. Zheng, Y. Li, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
    [Crossref]
  13. X. N. Hui, S. L. Zheng, Y. P. Hu, C. Xu, X. F. Jin, H. Chi, and X. M. Zhang, “Ultralow reflectivity spiral phase plate for generation millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
    [Crossref]
  14. B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
    [Crossref]
  15. Y. F. Zhang, Y. Lyu, H. G. Wang, X. M. Zhang, and X. F. Jin, “Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency,” IEEE Antennas Wirel. Propag. Lett. 17(1), 172–175 (2018).
    [Crossref]
  16. X. S. Meng, J. J. Wu, Z. S. Wu, L. Yang, L. Huang, X. Li, T. Qu, and Z. Wu, “Generation of multiple beams carrying different orbital angular momentum modes based on anisotropic holographic metasurfaces in the radio-frequency domain,” Appl. Phys. Lett. 114(9), 093504 (2019).
    [Crossref]
  17. M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
    [Crossref]
  18. S. X. Yu, L. Li, G. M. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
    [Crossref]
  19. T. Arikawa, S. Morimoto, and K. Tanaka, “Focusing light with orbital angular momentum by circular array antenna,” Opt. Express 25(12), 13728–13735 (2017).
    [Crossref]
  20. Z.-G. Guo and G.-M. Yang, “Radial uniform circular antenna array for dual-mode OAM communication,” IEEE Antennas Wireless. Propag. Lett. 16, 404–407 (2017).
    [Crossref]
  21. B. Y. Liu, Y. H. Cui, and R. L. Li, “A broadband udal-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
    [Crossref]
  22. D. Zelenchuk and V. Fusco, “Split-ring FSS spiral phase plate,” IEEE Antennas Wirel. Propag. Lett. 12, 284–287 (2013).
    [Crossref]
  23. H. L. Li, D. V. Phillips, X. Y. Wang, Y.-L. D. Ho, L. F. Chen, X. Q. Zhou, J. B. Zhu, S. Y. Yu, and X. L. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2(6), 547–552 (2015).
    [Crossref]
  24. L. Cheng, W. Hong, and Z.-C. Hao, “Generation of electromagnetic waves with orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
    [Crossref]
  25. W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes,” Sci. Rep. 6(1), 27339 (2016).
    [Crossref]
  26. X. S. Meng, J. J. Wu, Z. S. Wu, T. Qu, and L. Yang, “Dual-polarized reflectarray for generating dual beams with two different orbital angular momentum modes based on independent feeds in C- and X-bands,” Opt. Express 26(18), 23185–23195 (2018).
    [Crossref]
  27. C. Ji, J. K. Song, C. Huang, X. Y. Wu, and X. G. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
    [Crossref]
  28. X. S. Meng, J. J. Wu, Z. S. Wu, L. Yang, L. Huang, X. Li, and T. Qu, “Design, fabrication, and measurement of an anisotropic holographic metasurface for generating vortex beams carrying orbital angular momentum,” Opt. Lett. 44(6), 1452–1455 (2019).
    [Crossref]
  29. S. X. Yu, L. Li, and N. Kou, “Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces,” Opt. Mater. Express 7(9), 3312–3321 (2017).
    [Crossref]
  30. M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Quasi-continuous metasurfaces for orbital angular momentum generation,” IEEE Antennas Wirel. Propag. Lett. 18(3), 477–481 (2019).
    [Crossref]
  31. H.-F. Huang and S.-N. Li, “High-efficiency planar reflectarray with small-size for OAM generation at microwave range,” IEEE Antennas Wirel. Propag. Lett. 18(3), 432–436 (2019).
    [Crossref]
  32. D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
    [Crossref]
  33. H.-X. Xu, H. W. Liu, X. H. Ling, Y. M. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
    [Crossref]
  34. S. X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
    [Crossref]
  35. X. Qi, Z. Y. Zhang, X. Z. Zong, X. F. Que, Z. P. Nie, and J. Hu, “Generating dual-mode dual-polarization OAM based on transmissive metasurface,” Sci. Rep. 9(1), 97 (2019).
    [Crossref]
  36. S. W. Tan, T. Cai, J.-G. Liang, Y. Xiao, C.-W. Zhang, Q. Zhang, Z. Y. Hu, and T. Jiang, “High-efficiency transparent vortex beam generator based on ultrathin Pancharatnam-Berry metasurfaces,” Opt. Express 27(3), 1816–1824 (2019).
    [Crossref]
  37. Y.-W. Huang, N. A. Rubin, A. Ambrosio, Z. J. Shi, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Versatile total angular momentum generation using cascaded J-plates,” Opt. Express 27(5), 7469–7484 (2019).
    [Crossref]
  38. L. N. Ma, C. Chen, L. Y. Zhou, S. Jiang, and H. L. Zhang, “Single-layer transmissive metasurface for generation OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity,” Appl. Phys. Lett. 114(8), 081603 (2019).
    [Crossref]
  39. K. Zhang, Y. Y. Yuan, D. W. Zhang, X. M. Ding, B. Ratni, S. N. Burokur, M. J. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
    [Crossref]
  40. F. Qin, S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, “A high-gain transmitarray for generating dual-mode OAM beams,” IEEE Access 6(1), 61006–61013 (2018).
    [Crossref]
  41. F. Qin, L. L. Wan, L. H. Li, H. L. Zhang, G. Wei, and S. Gao, “A transmission metasurface for generating OAM beams,” IEEE Antennas Wirel. Propag. Lett. 17(10), 1793–1796 (2018).
    [Crossref]
  42. Y. S. Xu, Z. G. Guo, and G. M. Yang, “Honeycombed metasurface plate for generation of X-band orbital angular momentum beam,” Microw. Opt. Technol. Lett. 61(10), 2392–2398 (2019).
    [Crossref]
  43. K. Zhang, Y. Y. Yuan, X. M. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “High-efficiency metalenses with switchable functionalities in microwave region,” ACS Appl. Mater. Interfaces 11(31), 28423–28430 (2019).
    [Crossref]
  44. Y. F. Meng, J. J. Yi, S. N. Burokur, L. Kang, H. L. Zhang, and D. H. Werner, “Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum,” Opt. Express 26(17), 22019–22028 (2018).
    [Crossref]
  45. S. Jiang, C. Chen, H. L. Zhang, and W. D. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
    [Crossref]
  46. M. Euler and V. F. Fusco, “Frequency selective surface using nested split ring slot elements as a lens with mechanically reconfigurable beam steering capability,” IEEE Trans. Antennas Propag. 58(10), 3417–3421 (2010).
    [Crossref]
  47. http://www.hdmicrowave.com
  48. B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
    [Crossref]

2019 (13)

L. Gong, Q. Zhao, H. Zhang, X.-Y. Hu, K. Huang, J.-M. Yang, and Y.-M. Li, “Optical orbital-angular-momentum-multiplexed data transmission under high scatting,” Light: Sci. Appl. 8(1), 27 (2019).
[Crossref]

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

X. S. Meng, J. J. Wu, Z. S. Wu, L. Yang, L. Huang, X. Li, T. Qu, and Z. Wu, “Generation of multiple beams carrying different orbital angular momentum modes based on anisotropic holographic metasurfaces in the radio-frequency domain,” Appl. Phys. Lett. 114(9), 093504 (2019).
[Crossref]

M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Quasi-continuous metasurfaces for orbital angular momentum generation,” IEEE Antennas Wirel. Propag. Lett. 18(3), 477–481 (2019).
[Crossref]

H.-F. Huang and S.-N. Li, “High-efficiency planar reflectarray with small-size for OAM generation at microwave range,” IEEE Antennas Wirel. Propag. Lett. 18(3), 432–436 (2019).
[Crossref]

X. Qi, Z. Y. Zhang, X. Z. Zong, X. F. Que, Z. P. Nie, and J. Hu, “Generating dual-mode dual-polarization OAM based on transmissive metasurface,” Sci. Rep. 9(1), 97 (2019).
[Crossref]

S. W. Tan, T. Cai, J.-G. Liang, Y. Xiao, C.-W. Zhang, Q. Zhang, Z. Y. Hu, and T. Jiang, “High-efficiency transparent vortex beam generator based on ultrathin Pancharatnam-Berry metasurfaces,” Opt. Express 27(3), 1816–1824 (2019).
[Crossref]

Y.-W. Huang, N. A. Rubin, A. Ambrosio, Z. J. Shi, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Versatile total angular momentum generation using cascaded J-plates,” Opt. Express 27(5), 7469–7484 (2019).
[Crossref]

L. N. Ma, C. Chen, L. Y. Zhou, S. Jiang, and H. L. Zhang, “Single-layer transmissive metasurface for generation OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity,” Appl. Phys. Lett. 114(8), 081603 (2019).
[Crossref]

Y. S. Xu, Z. G. Guo, and G. M. Yang, “Honeycombed metasurface plate for generation of X-band orbital angular momentum beam,” Microw. Opt. Technol. Lett. 61(10), 2392–2398 (2019).
[Crossref]

K. Zhang, Y. Y. Yuan, X. M. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “High-efficiency metalenses with switchable functionalities in microwave region,” ACS Appl. Mater. Interfaces 11(31), 28423–28430 (2019).
[Crossref]

C. Ji, J. K. Song, C. Huang, X. Y. Wu, and X. G. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
[Crossref]

X. S. Meng, J. J. Wu, Z. S. Wu, L. Yang, L. Huang, X. Li, and T. Qu, “Design, fabrication, and measurement of an anisotropic holographic metasurface for generating vortex beams carrying orbital angular momentum,” Opt. Lett. 44(6), 1452–1455 (2019).
[Crossref]

2018 (8)

Y. F. Meng, J. J. Yi, S. N. Burokur, L. Kang, H. L. Zhang, and D. H. Werner, “Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum,” Opt. Express 26(17), 22019–22028 (2018).
[Crossref]

S. Jiang, C. Chen, H. L. Zhang, and W. D. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
[Crossref]

K. Zhang, Y. Y. Yuan, D. W. Zhang, X. M. Ding, B. Ratni, S. N. Burokur, M. J. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

F. Qin, S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, “A high-gain transmitarray for generating dual-mode OAM beams,” IEEE Access 6(1), 61006–61013 (2018).
[Crossref]

F. Qin, L. L. Wan, L. H. Li, H. L. Zhang, G. Wei, and S. Gao, “A transmission metasurface for generating OAM beams,” IEEE Antennas Wirel. Propag. Lett. 17(10), 1793–1796 (2018).
[Crossref]

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

X. S. Meng, J. J. Wu, Z. S. Wu, T. Qu, and L. Yang, “Dual-polarized reflectarray for generating dual beams with two different orbital angular momentum modes based on independent feeds in C- and X-bands,” Opt. Express 26(18), 23185–23195 (2018).
[Crossref]

Y. F. Zhang, Y. Lyu, H. G. Wang, X. M. Zhang, and X. F. Jin, “Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency,” IEEE Antennas Wirel. Propag. Lett. 17(1), 172–175 (2018).
[Crossref]

2017 (8)

M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
[Crossref]

C. M. Liu, J. S. Liu, L. T. Niu, X. L. Wei, K. J. Wang, and Z. G. Yang, “Terahertz circular airy vortex beams,” Sci. Rep. 7(1), 3891 (2017).
[Crossref]

M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
[Crossref]

T. Arikawa, S. Morimoto, and K. Tanaka, “Focusing light with orbital angular momentum by circular array antenna,” Opt. Express 25(12), 13728–13735 (2017).
[Crossref]

Z.-G. Guo and G.-M. Yang, “Radial uniform circular antenna array for dual-mode OAM communication,” IEEE Antennas Wireless. Propag. Lett. 16, 404–407 (2017).
[Crossref]

B. Y. Liu, Y. H. Cui, and R. L. Li, “A broadband udal-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
[Crossref]

H.-X. Xu, H. W. Liu, X. H. Ling, Y. M. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

S. X. Yu, L. Li, and N. Kou, “Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces,” Opt. Mater. Express 7(9), 3312–3321 (2017).
[Crossref]

2016 (4)

S. X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

S. X. Yu, L. Li, G. M. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Y. L. Chen, S. L. Zheng, Y. Li, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

2015 (4)

X. N. Hui, S. L. Zheng, Y. P. Hu, C. Xu, X. F. Jin, H. Chi, and X. M. Zhang, “Ultralow reflectivity spiral phase plate for generation millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

H. L. Li, D. V. Phillips, X. Y. Wang, Y.-L. D. Ho, L. F. Chen, X. Q. Zhou, J. B. Zhu, S. Y. Yu, and X. L. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2(6), 547–552 (2015).
[Crossref]

L. Cheng, W. Hong, and Z.-C. Hao, “Generation of electromagnetic waves with orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref]

2014 (3)

F. Bouchard, I. D. Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

H. L. Zhou, J. J. Dong, S. Q. Yan, Y. F. Zhou, and X. L. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

P. Schemmel, G. Piasno, and B. Maffei, “Modular spiral phase plate design for orbital angular momentum generation at millimeter wave lengths,” Opt. Express 22(12), 14712–14726 (2014).
[Crossref]

2013 (1)

D. Zelenchuk and V. Fusco, “Split-ring FSS spiral phase plate,” IEEE Antennas Wirel. Propag. Lett. 12, 284–287 (2013).
[Crossref]

2012 (1)

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

2010 (1)

M. Euler and V. F. Fusco, “Frequency selective surface using nested split ring slot elements as a lens with mechanically reconfigurable beam steering capability,” IEEE Trans. Antennas Propag. 58(10), 3417–3421 (2010).
[Crossref]

2008 (1)

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

2007 (1)

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

2006 (1)

L. Marrucci, C. manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Aieta, F.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Ambrosio, A.

Arikawa, T.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Bergman, J.

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Blanchard, R.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Bouchard, F.

F. Bouchard, I. D. Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Boyd, R. W.

F. Bouchard, I. D. Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Burokur, S. N.

Byun, W. J.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Cai, T.

Cai, X. L.

Cao, X. Y.

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

Capasso, F.

Y.-W. Huang, N. A. Rubin, A. Ambrosio, Z. J. Shi, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Versatile total angular momentum generation using cascaded J-plates,” Opt. Express 27(5), 7469–7484 (2019).
[Crossref]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Carozzi, T. D.

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Chen, C.

L. N. Ma, C. Chen, L. Y. Zhou, S. Jiang, and H. L. Zhang, “Single-layer transmissive metasurface for generation OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity,” Appl. Phys. Lett. 114(8), 081603 (2019).
[Crossref]

S. Jiang, C. Chen, H. L. Zhang, and W. D. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
[Crossref]

Chen, H.

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Chen, L. F.

Chen, M. L. N. L.

M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Quasi-continuous metasurfaces for orbital angular momentum generation,” IEEE Antennas Wirel. Propag. Lett. 18(3), 477–481 (2019).
[Crossref]

M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
[Crossref]

Chen, W. D.

Chen, Y. L.

Y. L. Chen, S. L. Zheng, Y. Li, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

Cheng, L.

L. Cheng, W. Hong, and Z.-C. Hao, “Generation of electromagnetic waves with orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref]

Cheng, W.-C.

F. Qin, S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, “A high-gain transmitarray for generating dual-mode OAM beams,” IEEE Access 6(1), 61006–61013 (2018).
[Crossref]

Chi, H.

Y. L. Chen, S. L. Zheng, Y. Li, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. N. Hui, S. L. Zheng, Y. P. Hu, C. Xu, X. F. Jin, H. Chi, and X. M. Zhang, “Ultralow reflectivity spiral phase plate for generation millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Cho, Y. H.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Choi, H. D.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Cui, J. H.

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Cui, Y. H.

B. Y. Liu, Y. H. Cui, and R. L. Li, “A broadband udal-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
[Crossref]

Devlin, R. C.

Ding, X. M.

K. Zhang, Y. Y. Yuan, X. M. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “High-efficiency metalenses with switchable functionalities in microwave region,” ACS Appl. Mater. Interfaces 11(31), 28423–28430 (2019).
[Crossref]

K. Zhang, Y. Y. Yuan, D. W. Zhang, X. M. Ding, B. Ratni, S. N. Burokur, M. J. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Dong, J. J.

H. L. Zhou, J. J. Dong, S. Q. Yan, Y. F. Zhou, and X. L. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Euler, M.

M. Euler and V. F. Fusco, “Frequency selective surface using nested split ring slot elements as a lens with mechanically reconfigurable beam steering capability,” IEEE Trans. Antennas Propag. 58(10), 3417–3421 (2010).
[Crossref]

Franke-Arnold, S.

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Fusco, V.

D. Zelenchuk and V. Fusco, “Split-ring FSS spiral phase plate,” IEEE Antennas Wirel. Propag. Lett. 12, 284–287 (2013).
[Crossref]

Fusco, V. F.

M. Euler and V. F. Fusco, “Frequency selective surface using nested split ring slot elements as a lens with mechanically reconfigurable beam steering capability,” IEEE Trans. Antennas Propag. 58(10), 3417–3421 (2010).
[Crossref]

Gaburro, Z.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Gao, J.

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

Gao, S.

F. Qin, S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, “A high-gain transmitarray for generating dual-mode OAM beams,” IEEE Access 6(1), 61006–61013 (2018).
[Crossref]

F. Qin, L. L. Wan, L. H. Li, H. L. Zhang, G. Wei, and S. Gao, “A transmission metasurface for generating OAM beams,” IEEE Antennas Wirel. Propag. Lett. 17(10), 1793–1796 (2018).
[Crossref]

Genevet, P.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Gong, L.

L. Gong, Q. Zhao, H. Zhang, X.-Y. Hu, K. Huang, J.-M. Yang, and Y.-M. Li, “Optical orbital-angular-momentum-multiplexed data transmission under high scatting,” Light: Sci. Appl. 8(1), 27 (2019).
[Crossref]

Guo, Z. G.

Y. S. Xu, Z. G. Guo, and G. M. Yang, “Honeycombed metasurface plate for generation of X-band orbital angular momentum beam,” Microw. Opt. Technol. Lett. 61(10), 2392–2398 (2019).
[Crossref]

Guo, Z.-G.

Z.-G. Guo and G.-M. Yang, “Radial uniform circular antenna array for dual-mode OAM communication,” IEEE Antennas Wireless. Propag. Lett. 16, 404–407 (2017).
[Crossref]

Hao, Z.-C.

L. Cheng, W. Hong, and Z.-C. Hao, “Generation of electromagnetic waves with orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref]

Ho, Y.-L. D.

Hong, W.

L. Cheng, W. Hong, and Z.-C. Hao, “Generation of electromagnetic waves with orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref]

Hu, J.

X. Qi, Z. Y. Zhang, X. Z. Zong, X. F. Que, Z. P. Nie, and J. Hu, “Generating dual-mode dual-polarization OAM based on transmissive metasurface,” Sci. Rep. 9(1), 97 (2019).
[Crossref]

Hu, X.-Y.

L. Gong, Q. Zhao, H. Zhang, X.-Y. Hu, K. Huang, J.-M. Yang, and Y.-M. Li, “Optical orbital-angular-momentum-multiplexed data transmission under high scatting,” Light: Sci. Appl. 8(1), 27 (2019).
[Crossref]

Hu, Y. P.

X. N. Hui, S. L. Zheng, Y. P. Hu, C. Xu, X. F. Jin, H. Chi, and X. M. Zhang, “Ultralow reflectivity spiral phase plate for generation millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Hu, Z. Y.

Huang, C.

C. Ji, J. K. Song, C. Huang, X. Y. Wu, and X. G. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
[Crossref]

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Huang, H.-F.

H.-F. Huang and S.-N. Li, “High-efficiency planar reflectarray with small-size for OAM generation at microwave range,” IEEE Antennas Wirel. Propag. Lett. 18(3), 432–436 (2019).
[Crossref]

Huang, J.

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

Huang, K.

L. Gong, Q. Zhao, H. Zhang, X.-Y. Hu, K. Huang, J.-M. Yang, and Y.-M. Li, “Optical orbital-angular-momentum-multiplexed data transmission under high scatting,” Light: Sci. Appl. 8(1), 27 (2019).
[Crossref]

Huang, L.

X. S. Meng, J. J. Wu, Z. S. Wu, L. Yang, L. Huang, X. Li, T. Qu, and Z. Wu, “Generation of multiple beams carrying different orbital angular momentum modes based on anisotropic holographic metasurfaces in the radio-frequency domain,” Appl. Phys. Lett. 114(9), 093504 (2019).
[Crossref]

X. S. Meng, J. J. Wu, Z. S. Wu, L. Yang, L. Huang, X. Li, and T. Qu, “Design, fabrication, and measurement of an anisotropic holographic metasurface for generating vortex beams carrying orbital angular momentum,” Opt. Lett. 44(6), 1452–1455 (2019).
[Crossref]

Huang, Y.-W.

Hui, X. N.

Y. L. Chen, S. L. Zheng, Y. Li, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. N. Hui, S. L. Zheng, Y. P. Hu, C. Xu, X. F. Jin, H. Chi, and X. M. Zhang, “Ultralow reflectivity spiral phase plate for generation millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Ibragimov, N. H.

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Istomin, Y. N.

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Jack, B.

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Ji, C.

Jiang, L. J.

M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Quasi-continuous metasurfaces for orbital angular momentum generation,” IEEE Antennas Wirel. Propag. Lett. 18(3), 477–481 (2019).
[Crossref]

M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
[Crossref]

Jiang, S.

L. N. Ma, C. Chen, L. Y. Zhou, S. Jiang, and H. L. Zhang, “Single-layer transmissive metasurface for generation OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity,” Appl. Phys. Lett. 114(8), 081603 (2019).
[Crossref]

S. Jiang, C. Chen, H. L. Zhang, and W. D. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
[Crossref]

Jiang, T.

Jin, X. F.

Y. F. Zhang, Y. Lyu, H. G. Wang, X. M. Zhang, and X. F. Jin, “Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency,” IEEE Antennas Wirel. Propag. Lett. 17(1), 172–175 (2018).
[Crossref]

Y. L. Chen, S. L. Zheng, Y. Li, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. N. Hui, S. L. Zheng, Y. P. Hu, C. Xu, X. F. Jin, H. Chi, and X. M. Zhang, “Ultralow reflectivity spiral phase plate for generation millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Kang, L.

Karimi, E.

F. Bouchard, I. D. Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Kats, M. A.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Khamitova, R.

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Kim, B. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Kim, K. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Kou, N.

Lee, Y. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Leon, I. D.

F. Bouchard, I. D. Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Li, H. L.

Li, J.

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

Li, J. H.

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

Li, J. N.

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

Li, L.

S. X. Yu, L. Li, and N. Kou, “Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces,” Opt. Mater. Express 7(9), 3312–3321 (2017).
[Crossref]

S. X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

S. X. Yu, L. Li, G. M. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Li, L. H.

F. Qin, L. L. Wan, L. H. Li, H. L. Zhang, G. Wei, and S. Gao, “A transmission metasurface for generating OAM beams,” IEEE Antennas Wirel. Propag. Lett. 17(10), 1793–1796 (2018).
[Crossref]

Li, R. L.

B. Y. Liu, Y. H. Cui, and R. L. Li, “A broadband udal-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
[Crossref]

Li, S.-N.

H.-F. Huang and S.-N. Li, “High-efficiency planar reflectarray with small-size for OAM generation at microwave range,” IEEE Antennas Wirel. Propag. Lett. 18(3), 432–436 (2019).
[Crossref]

Li, X.

X. S. Meng, J. J. Wu, Z. S. Wu, L. Yang, L. Huang, X. Li, T. Qu, and Z. Wu, “Generation of multiple beams carrying different orbital angular momentum modes based on anisotropic holographic metasurfaces in the radio-frequency domain,” Appl. Phys. Lett. 114(9), 093504 (2019).
[Crossref]

X. S. Meng, J. J. Wu, Z. S. Wu, L. Yang, L. Huang, X. Li, and T. Qu, “Design, fabrication, and measurement of an anisotropic holographic metasurface for generating vortex beams carrying orbital angular momentum,” Opt. Lett. 44(6), 1452–1455 (2019).
[Crossref]

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Li, Y.

Y. L. Chen, S. L. Zheng, Y. Li, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

Li, Y.-M.

L. Gong, Q. Zhao, H. Zhang, X.-Y. Hu, K. Huang, J.-M. Yang, and Y.-M. Li, “Optical orbital-angular-momentum-multiplexed data transmission under high scatting,” Light: Sci. Appl. 8(1), 27 (2019).
[Crossref]

Liang, J.-G.

Liang, L. J.

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

Lin, J.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Ling, X. H.

H.-X. Xu, H. W. Liu, X. H. Ling, Y. M. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

Liu, B. Y.

B. Y. Liu, Y. H. Cui, and R. L. Li, “A broadband udal-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
[Crossref]

Liu, C. M.

C. M. Liu, J. S. Liu, L. T. Niu, X. L. Wei, K. J. Wang, and Z. G. Yang, “Terahertz circular airy vortex beams,” Sci. Rep. 7(1), 3891 (2017).
[Crossref]

Liu, H. W.

H.-X. Xu, H. W. Liu, X. H. Ling, Y. M. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

Liu, J. S.

C. M. Liu, J. S. Liu, L. T. Niu, X. L. Wei, K. J. Wang, and Z. G. Yang, “Terahertz circular airy vortex beams,” Sci. Rep. 7(1), 3891 (2017).
[Crossref]

Liu, Y.

F. Qin, S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, “A high-gain transmitarray for generating dual-mode OAM beams,” IEEE Access 6(1), 61006–61013 (2018).
[Crossref]

Lu, M. J.

Luo, X. G.

C. Ji, J. K. Song, C. Huang, X. Y. Wu, and X. G. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
[Crossref]

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Lyu, Y.

Y. F. Zhang, Y. Lyu, H. G. Wang, X. M. Zhang, and X. F. Jin, “Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency,” IEEE Antennas Wirel. Propag. Lett. 17(1), 172–175 (2018).
[Crossref]

Ma, L. N.

L. N. Ma, C. Chen, L. Y. Zhou, S. Jiang, and H. L. Zhang, “Single-layer transmissive metasurface for generation OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity,” Appl. Phys. Lett. 114(8), 081603 (2019).
[Crossref]

Ma, X. L.

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Maffei, B.

manzo, C.

L. Marrucci, C. manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Marrucci, L.

L. Marrucci, C. manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Meng, X. S.

Meng, Y. F.

Morimoto, S.

Nie, Z. P.

X. Qi, Z. Y. Zhang, X. Z. Zong, X. F. Que, Z. P. Nie, and J. Hu, “Generating dual-mode dual-polarization OAM based on transmissive metasurface,” Sci. Rep. 9(1), 97 (2019).
[Crossref]

Niu, L. T.

C. M. Liu, J. S. Liu, L. T. Niu, X. L. Wei, K. J. Wang, and Z. G. Yang, “Terahertz circular airy vortex beams,” Sci. Rep. 7(1), 3891 (2017).
[Crossref]

Padgett, M. J.

M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
[Crossref]

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Palmer, K.

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Pan, W. B.

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Paparo, D.

L. Marrucci, C. manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Phillips, D. V.

Piasno, G.

Pu, M. B.

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Qi, X.

X. Qi, Z. Y. Zhang, X. Z. Zong, X. F. Que, Z. P. Nie, and J. Hu, “Generating dual-mode dual-polarization OAM based on transmissive metasurface,” Sci. Rep. 9(1), 97 (2019).
[Crossref]

Qin, F.

F. Qin, S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, “A high-gain transmitarray for generating dual-mode OAM beams,” IEEE Access 6(1), 61006–61013 (2018).
[Crossref]

F. Qin, L. L. Wan, L. H. Li, H. L. Zhang, G. Wei, and S. Gao, “A transmission metasurface for generating OAM beams,” IEEE Antennas Wirel. Propag. Lett. 17(10), 1793–1796 (2018).
[Crossref]

Qiu, C.-W.

Qu, T.

Que, X. F.

X. Qi, Z. Y. Zhang, X. Z. Zong, X. F. Que, Z. P. Nie, and J. Hu, “Generating dual-mode dual-polarization OAM based on transmissive metasurface,” Sci. Rep. 9(1), 97 (2019).
[Crossref]

Ratni, B.

K. Zhang, Y. Y. Yuan, X. M. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “High-efficiency metalenses with switchable functionalities in microwave region,” ACS Appl. Mater. Interfaces 11(31), 28423–28430 (2019).
[Crossref]

K. Zhang, Y. Y. Yuan, D. W. Zhang, X. M. Ding, B. Ratni, S. N. Burokur, M. J. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Rubin, N. A.

Schemmel, P.

Schulz, S. A.

F. Bouchard, I. D. Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Scully, M. O.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Sha, W. E. I.

M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Quasi-continuous metasurfaces for orbital angular momentum generation,” IEEE Antennas Wirel. Propag. Lett. 18(3), 477–481 (2019).
[Crossref]

M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
[Crossref]

Shi, G. M.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

Shi, Y.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Shi, Z. J.

Sjöholm, J.

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Song, J. K.

Song, M. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Sun, Y. M.

H.-X. Xu, H. W. Liu, X. H. Ling, Y. M. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

Tan, S. W.

Tanaka, K.

Tang, K.

Thidé, B.

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Upham, J.

F. Bouchard, I. D. Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Wan, L. L.

F. Qin, L. L. Wan, L. H. Li, H. L. Zhang, G. Wei, and S. Gao, “A transmission metasurface for generating OAM beams,” IEEE Antennas Wirel. Propag. Lett. 17(10), 1793–1796 (2018).
[Crossref]

Wang, C. T.

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Wang, H. G.

Y. F. Zhang, Y. Lyu, H. G. Wang, X. M. Zhang, and X. F. Jin, “Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency,” IEEE Antennas Wirel. Propag. Lett. 17(1), 172–175 (2018).
[Crossref]

Wang, K. J.

C. M. Liu, J. S. Liu, L. T. Niu, X. L. Wei, K. J. Wang, and Z. G. Yang, “Terahertz circular airy vortex beams,” Sci. Rep. 7(1), 3891 (2017).
[Crossref]

Wang, X. Y.

Wang, Y. Q.

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Wei, G.

F. Qin, S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, “A high-gain transmitarray for generating dual-mode OAM beams,” IEEE Access 6(1), 61006–61013 (2018).
[Crossref]

F. Qin, L. L. Wan, L. H. Li, H. L. Zhang, G. Wei, and S. Gao, “A transmission metasurface for generating OAM beams,” IEEE Antennas Wirel. Propag. Lett. 17(10), 1793–1796 (2018).
[Crossref]

Wei, X. L.

C. M. Liu, J. S. Liu, L. T. Niu, X. L. Wei, K. J. Wang, and Z. G. Yang, “Terahertz circular airy vortex beams,” Sci. Rep. 7(1), 3891 (2017).
[Crossref]

Werner, D. H.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Wu, J. J.

Wu, Q.

K. Zhang, Y. Y. Yuan, X. M. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “High-efficiency metalenses with switchable functionalities in microwave region,” ACS Appl. Mater. Interfaces 11(31), 28423–28430 (2019).
[Crossref]

K. Zhang, Y. Y. Yuan, D. W. Zhang, X. M. Ding, B. Ratni, S. N. Burokur, M. J. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Wu, X. Y.

Wu, Z.

X. S. Meng, J. J. Wu, Z. S. Wu, L. Yang, L. Huang, X. Li, T. Qu, and Z. Wu, “Generation of multiple beams carrying different orbital angular momentum modes based on anisotropic holographic metasurfaces in the radio-frequency domain,” Appl. Phys. Lett. 114(9), 093504 (2019).
[Crossref]

Wu, Z. S.

Xiao, Y.

Xu, C.

X. N. Hui, S. L. Zheng, Y. P. Hu, C. Xu, X. F. Jin, H. Chi, and X. M. Zhang, “Ultralow reflectivity spiral phase plate for generation millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Xu, H.-X.

H.-X. Xu, H. W. Liu, X. H. Ling, Y. M. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

Xu, Y. S.

Y. S. Xu, Z. G. Guo, and G. M. Yang, “Honeycombed metasurface plate for generation of X-band orbital angular momentum beam,” Microw. Opt. Technol. Lett. 61(10), 2392–2398 (2019).
[Crossref]

Yan, S. Q.

H. L. Zhou, J. J. Dong, S. Q. Yan, Y. F. Zhou, and X. L. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Yan, X.

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

Yang, G. M.

Y. S. Xu, Z. G. Guo, and G. M. Yang, “Honeycombed metasurface plate for generation of X-band orbital angular momentum beam,” Microw. Opt. Technol. Lett. 61(10), 2392–2398 (2019).
[Crossref]

Yang, G.-M.

Z.-G. Guo and G.-M. Yang, “Radial uniform circular antenna array for dual-mode OAM communication,” IEEE Antennas Wireless. Propag. Lett. 16, 404–407 (2017).
[Crossref]

Yang, H. H.

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

Yang, J.-M.

L. Gong, Q. Zhao, H. Zhang, X.-Y. Hu, K. Huang, J.-M. Yang, and Y.-M. Li, “Optical orbital-angular-momentum-multiplexed data transmission under high scatting,” Light: Sci. Appl. 8(1), 27 (2019).
[Crossref]

Yang, L.

Yang, Y.

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

Yang, Z. G.

C. M. Liu, J. S. Liu, L. T. Niu, X. L. Wei, K. J. Wang, and Z. G. Yang, “Terahertz circular airy vortex beams,” Sci. Rep. 7(1), 3891 (2017).
[Crossref]

Yao, J. Q.

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

Yi, J. J.

Yu, N. F.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Yu, S. X.

S. X. Yu, L. Li, and N. Kou, “Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces,” Opt. Mater. Express 7(9), 3312–3321 (2017).
[Crossref]

S. X. Yu, L. Li, G. M. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

Yu, S. Y.

Yuan, F.

H.-X. Xu, H. W. Liu, X. H. Ling, Y. M. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

Yuan, Y. Y.

K. Zhang, Y. Y. Yuan, X. M. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “High-efficiency metalenses with switchable functionalities in microwave region,” ACS Appl. Mater. Interfaces 11(31), 28423–28430 (2019).
[Crossref]

K. Zhang, Y. Y. Yuan, D. W. Zhang, X. M. Ding, B. Ratni, S. N. Burokur, M. J. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Zelenchuk, D.

D. Zelenchuk and V. Fusco, “Split-ring FSS spiral phase plate,” IEEE Antennas Wirel. Propag. Lett. 12, 284–287 (2013).
[Crossref]

Zhang, C.-W.

Zhang, D.

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

Zhang, D. W.

Zhang, H.

L. Gong, Q. Zhao, H. Zhang, X.-Y. Hu, K. Huang, J.-M. Yang, and Y.-M. Li, “Optical orbital-angular-momentum-multiplexed data transmission under high scatting,” Light: Sci. Appl. 8(1), 27 (2019).
[Crossref]

Zhang, H. L.

L. N. Ma, C. Chen, L. Y. Zhou, S. Jiang, and H. L. Zhang, “Single-layer transmissive metasurface for generation OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity,” Appl. Phys. Lett. 114(8), 081603 (2019).
[Crossref]

F. Qin, L. L. Wan, L. H. Li, H. L. Zhang, G. Wei, and S. Gao, “A transmission metasurface for generating OAM beams,” IEEE Antennas Wirel. Propag. Lett. 17(10), 1793–1796 (2018).
[Crossref]

Y. F. Meng, J. J. Yi, S. N. Burokur, L. Kang, H. L. Zhang, and D. H. Werner, “Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum,” Opt. Express 26(17), 22019–22028 (2018).
[Crossref]

S. Jiang, C. Chen, H. L. Zhang, and W. D. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
[Crossref]

Zhang, H.-L.

F. Qin, S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, “A high-gain transmitarray for generating dual-mode OAM beams,” IEEE Access 6(1), 61006–61013 (2018).
[Crossref]

Zhang, K.

K. Zhang, Y. Y. Yuan, X. M. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “High-efficiency metalenses with switchable functionalities in microwave region,” ACS Appl. Mater. Interfaces 11(31), 28423–28430 (2019).
[Crossref]

K. Zhang, Y. Y. Yuan, D. W. Zhang, X. M. Ding, B. Ratni, S. N. Burokur, M. J. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Zhang, Q.

Zhang, X. L.

H. L. Zhou, J. J. Dong, S. Q. Yan, Y. F. Zhou, and X. L. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Zhang, X. M.

Y. F. Zhang, Y. Lyu, H. G. Wang, X. M. Zhang, and X. F. Jin, “Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency,” IEEE Antennas Wirel. Propag. Lett. 17(1), 172–175 (2018).
[Crossref]

Y. L. Chen, S. L. Zheng, Y. Li, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. N. Hui, S. L. Zheng, Y. P. Hu, C. Xu, X. F. Jin, H. Chi, and X. M. Zhang, “Ultralow reflectivity spiral phase plate for generation millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Zhang, Y. F.

Y. F. Zhang, Y. Lyu, H. G. Wang, X. M. Zhang, and X. F. Jin, “Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency,” IEEE Antennas Wirel. Propag. Lett. 17(1), 172–175 (2018).
[Crossref]

Zhang, Y. T.

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

Zhang, Z.

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

Zhang, Z. Y.

X. Qi, Z. Y. Zhang, X. Z. Zong, X. F. Que, Z. P. Nie, and J. Hu, “Generating dual-mode dual-polarization OAM based on transmissive metasurface,” Sci. Rep. 9(1), 97 (2019).
[Crossref]

Zhao, B.

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Zhao, Q.

L. Gong, Q. Zhao, H. Zhang, X.-Y. Hu, K. Huang, J.-M. Yang, and Y.-M. Li, “Optical orbital-angular-momentum-multiplexed data transmission under high scatting,” Light: Sci. Appl. 8(1), 27 (2019).
[Crossref]

Zhao, Z. Y.

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Zheng, S. L.

Y. L. Chen, S. L. Zheng, Y. Li, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. N. Hui, S. L. Zheng, Y. P. Hu, C. Xu, X. F. Jin, H. Chi, and X. M. Zhang, “Ultralow reflectivity spiral phase plate for generation millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Zhou, H. L.

H. L. Zhou, J. J. Dong, S. Q. Yan, Y. F. Zhou, and X. L. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Zhou, L. Y.

L. N. Ma, C. Chen, L. Y. Zhou, S. Jiang, and H. L. Zhang, “Single-layer transmissive metasurface for generation OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity,” Appl. Phys. Lett. 114(8), 081603 (2019).
[Crossref]

Zhou, X. Q.

Zhou, Y. F.

H. L. Zhou, J. J. Dong, S. Q. Yan, Y. F. Zhou, and X. L. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Zhu, C.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Zhu, J. B.

Zong, X. Z.

X. Qi, Z. Y. Zhang, X. Z. Zong, X. F. Que, Z. P. Nie, and J. Hu, “Generating dual-mode dual-polarization OAM based on transmissive metasurface,” Sci. Rep. 9(1), 97 (2019).
[Crossref]

ACS Appl. Mater. Interfaces (1)

K. Zhang, Y. Y. Yuan, X. M. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “High-efficiency metalenses with switchable functionalities in microwave region,” ACS Appl. Mater. Interfaces 11(31), 28423–28430 (2019).
[Crossref]

Appl. Phys. Express (1)

S. X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

Appl. Phys. Lett. (5)

L. N. Ma, C. Chen, L. Y. Zhou, S. Jiang, and H. L. Zhang, “Single-layer transmissive metasurface for generation OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity,” Appl. Phys. Lett. 114(8), 081603 (2019).
[Crossref]

F. Bouchard, I. D. Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

X. S. Meng, J. J. Wu, Z. S. Wu, L. Yang, L. Huang, X. Li, T. Qu, and Z. Wu, “Generation of multiple beams carrying different orbital angular momentum modes based on anisotropic holographic metasurfaces in the radio-frequency domain,” Appl. Phys. Lett. 114(9), 093504 (2019).
[Crossref]

S. X. Yu, L. Li, G. M. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

IEEE Access (2)

F. Qin, S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, “A high-gain transmitarray for generating dual-mode OAM beams,” IEEE Access 6(1), 61006–61013 (2018).
[Crossref]

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (8)

M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Quasi-continuous metasurfaces for orbital angular momentum generation,” IEEE Antennas Wirel. Propag. Lett. 18(3), 477–481 (2019).
[Crossref]

H.-F. Huang and S.-N. Li, “High-efficiency planar reflectarray with small-size for OAM generation at microwave range,” IEEE Antennas Wirel. Propag. Lett. 18(3), 432–436 (2019).
[Crossref]

B. Y. Liu, Y. H. Cui, and R. L. Li, “A broadband udal-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
[Crossref]

D. Zelenchuk and V. Fusco, “Split-ring FSS spiral phase plate,” IEEE Antennas Wirel. Propag. Lett. 12, 284–287 (2013).
[Crossref]

F. Qin, L. L. Wan, L. H. Li, H. L. Zhang, G. Wei, and S. Gao, “A transmission metasurface for generating OAM beams,” IEEE Antennas Wirel. Propag. Lett. 17(10), 1793–1796 (2018).
[Crossref]

Y. L. Chen, S. L. Zheng, Y. Li, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. N. Hui, S. L. Zheng, Y. P. Hu, C. Xu, X. F. Jin, H. Chi, and X. M. Zhang, “Ultralow reflectivity spiral phase plate for generation millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Y. F. Zhang, Y. Lyu, H. G. Wang, X. M. Zhang, and X. F. Jin, “Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency,” IEEE Antennas Wirel. Propag. Lett. 17(1), 172–175 (2018).
[Crossref]

IEEE Antennas Wireless. Propag. Lett. (1)

Z.-G. Guo and G.-M. Yang, “Radial uniform circular antenna array for dual-mode OAM communication,” IEEE Antennas Wireless. Propag. Lett. 16, 404–407 (2017).
[Crossref]

IEEE Photonics J. (1)

H. L. Zhou, J. J. Dong, S. Q. Yan, Y. F. Zhou, and X. L. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

IEEE Trans. Antennas Propag. (3)

M. L. N. L. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
[Crossref]

M. Euler and V. F. Fusco, “Frequency selective surface using nested split ring slot elements as a lens with mechanically reconfigurable beam steering capability,” IEEE Trans. Antennas Propag. 58(10), 3417–3421 (2010).
[Crossref]

H.-X. Xu, H. W. Liu, X. H. Ling, Y. M. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

Light: Sci. Appl. (1)

L. Gong, Q. Zhao, H. Zhang, X.-Y. Hu, K. Huang, J.-M. Yang, and Y.-M. Li, “Optical orbital-angular-momentum-multiplexed data transmission under high scatting,” Light: Sci. Appl. 8(1), 27 (2019).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Y. S. Xu, Z. G. Guo, and G. M. Yang, “Honeycombed metasurface plate for generation of X-band orbital angular momentum beam,” Microw. Opt. Technol. Lett. 61(10), 2392–2398 (2019).
[Crossref]

Nanoscale (1)

J. Li, Y. T. Zhang, J. N. Li, X. Yan, L. J. Liang, Z. Zhang, J. Huang, J. H. Li, Y. Yang, and J. Q. Yao, “Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurface,” Nanoscale 11(12), 5746–5753 (2019).
[Crossref]

New J. Phys. (1)

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Opt. Express (10)

P. Schemmel, G. Piasno, and B. Maffei, “Modular spiral phase plate design for orbital angular momentum generation at millimeter wave lengths,” Opt. Express 22(12), 14712–14726 (2014).
[Crossref]

M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
[Crossref]

T. Arikawa, S. Morimoto, and K. Tanaka, “Focusing light with orbital angular momentum by circular array antenna,” Opt. Express 25(12), 13728–13735 (2017).
[Crossref]

K. Zhang, Y. Y. Yuan, D. W. Zhang, X. M. Ding, B. Ratni, S. N. Burokur, M. J. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

S. Jiang, C. Chen, H. L. Zhang, and W. D. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
[Crossref]

Y. F. Meng, J. J. Yi, S. N. Burokur, L. Kang, H. L. Zhang, and D. H. Werner, “Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum,” Opt. Express 26(17), 22019–22028 (2018).
[Crossref]

X. S. Meng, J. J. Wu, Z. S. Wu, T. Qu, and L. Yang, “Dual-polarized reflectarray for generating dual beams with two different orbital angular momentum modes based on independent feeds in C- and X-bands,” Opt. Express 26(18), 23185–23195 (2018).
[Crossref]

C. Ji, J. K. Song, C. Huang, X. Y. Wu, and X. G. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
[Crossref]

S. W. Tan, T. Cai, J.-G. Liang, Y. Xiao, C.-W. Zhang, Q. Zhang, Z. Y. Hu, and T. Jiang, “High-efficiency transparent vortex beam generator based on ultrathin Pancharatnam-Berry metasurfaces,” Opt. Express 27(3), 1816–1824 (2019).
[Crossref]

Y.-W. Huang, N. A. Rubin, A. Ambrosio, Z. J. Shi, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Versatile total angular momentum generation using cascaded J-plates,” Opt. Express 27(5), 7469–7484 (2019).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Phys. Rev. Lett. (2)

L. Marrucci, C. manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

B. Thidé, H. Chen, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Sci. Rep. (5)

C. M. Liu, J. S. Liu, L. T. Niu, X. L. Wei, K. J. Wang, and Z. G. Yang, “Terahertz circular airy vortex beams,” Sci. Rep. 7(1), 3891 (2017).
[Crossref]

X. L. Ma, M. B. Pu, X. Li, C. Huang, Y. Q. Wang, W. B. Pan, B. Zhao, J. H. Cui, C. T. Wang, Z. Y. Zhao, and X. G. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

X. Qi, Z. Y. Zhang, X. Z. Zong, X. F. Que, Z. P. Nie, and J. Hu, “Generating dual-mode dual-polarization OAM based on transmissive metasurface,” Sci. Rep. 9(1), 97 (2019).
[Crossref]

L. Cheng, W. Hong, and Z.-C. Hao, “Generation of electromagnetic waves with orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref]

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Other (1)

http://www.hdmicrowave.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Schematic model of the transmissive vortex meta-FSS array and (b) geometry of the proposed meta-FSS unit cell.
Fig. 2.
Fig. 2. Numerical results of S-parameters. (a) Reflection coefficients. (b) Transmission coefficients.
Fig. 3.
Fig. 3. Numerical results of transmission coefficients under obliquely incident waves. (a) TE polarization. (b) TM polarization.
Fig. 4.
Fig. 4. Numerical results of (a) reflection coefficient and (b) transmission coefficient for different rotation angles. The superscripts, LL and LR, represent LHCP-LHCP and LHCP-RHCP, respectively.
Fig. 5.
Fig. 5. Calculated phase compensation at 10 GHz for (a) +1 mode and (b) −2 mode.
Fig. 6.
Fig. 6. Snapshots of fabricated prototypes. (a) The top layer of + 1 mode. (b) The middle layer of + 1 mode. (c) The top layer of −2 mode. (d) The middle layer of −2 mode. The bottom metallic layer of the meta-FSS is exactly as same as the top layer.
Fig. 7.
Fig. 7. Schematic model of the designed helical antenna and experimental results. (a) Side view of the helical antenna. The structural parameters are helix spacing (HS) = 6.6 mm, wire diameter (WD) = 2 mm, helix diameter (HD) = 9.5 mm, ground plane width (GPW) = 80 mm, and the number of turns is 1.4. (b) Experimentally measured radiation patterns at 10 GHz. (c) Experimentally realized gain and axial ratio versus frequency.
Fig. 8.
Fig. 8. Experimental setup for the measurement of magnitude and phase distribution in the near field.
Fig. 9.
Fig. 9. Simulated and experimental results of magnitude and phase distributions obtained by the near-field planar scanning technique at different frequencies. Simulated results of magnitude and phase distributions for (a-b) +1 mode and (c-d) −2. Experimental results of magnitude and phase distributions for (e-f) +1 mode and (g-h) −2 mode.
Fig. 10.
Fig. 10. Simulated and experimental results of OAM purity at 9.0 GHz, 10.0 GHz and 11.0 GHz. (a-c) +1 mode. (d-f) −2 mode.
Fig. 11.
Fig. 11. Simulated and experimental results of far field radiation patterns at xoz plane. (a-c) +1 mode. (d-f) −2 mode.

Tables (2)

Tables Icon

Table 1. Geometrical parameters of the proposed unit cell (unit: mm)

Tables Icon

Table 2. Comparison between the proposed and other reported transmissive OAM generators

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T L R = 1 2 ( x j y ) ( T x e j φ x j T y e j φ y ) e j k z e j 2 ψ ,
T L L = 1 2 ( x + j y ) ( T x e j φ x + j T y e j φ y ) e j k z ,
φ ( m , n ) = 1 2 ( ( m p ) 2 + ( n p ) 2 + F 2 F ) + l arctan ( n m ) ,
A l = 1 2 0 2 π ψ ( φ ) e j l φ d φ ,
ψ ( φ ) = + A l e j l φ ,
η = P c r o s s p o l P i n c i d e n c e = | E c r o s s p o l | 2 d s | E i n c i d e n c e | 2 d s

Metrics