Abstract

A grooved quartz tuning fork (QTF) with a prong spacing of 800 µm for QEPAS application is reported. The prongs spacing is large enough to facilitate optical alignments when a degraded laser beam is used for QEPAS-based trace gas sensors. The grooved QTF has a resonance frequency of 15.2 kHz at atmospheric pressure and is characterized by four rectangular grooves carved on the QTF prong surfaces. With a grooved-prong, the electrical resistance R of the QTF is reduced resulting in an enhanced piezoelectric signal, while the Q factor is not affected, remaining as high as 15000 at atmospheric pressure. The geometric parameters of the acoustic micro resonators (AmRs) for on-beam QEPAS were optimized to match the grooved QTF, and a signal-to-noise gain factor of ∼ 30 was obtained with an optimum configuration. The performance of the QEPAS-based sensor was demonstrated exploiting an interband cascade laser (ICL) for CH4 detection and a 1σ normalized noise equivalent absorption (NNEA) coefficient of 4.1×10−9 cm−1 W/√Hz was obtained at atmospheric pressure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy

Pietro Patimisco, Angelo Sampaolo, Marilena Giglio, Stefano dello Russo, Verena Mackowiak, Hubert Rossmadl, Alex Cable, Frank K. Tittel, and Vincenzo Spagnolo
Opt. Express 27(2) 1401-1415 (2019)

Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone

Marilena Giglio, Arianna Elefante, Pietro Patimisco, Angelo Sampaolo, Fabrizio Sgobba, Hubert Rossmadl, Verena Mackowiak, Hongpeng Wu, Frank K. Tittel, Lei Dong, and Vincenzo Spagnolo
Opt. Express 27(4) 4271-4280 (2019)

Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection

Yufei Ma, Ying He, Yao Tong, Xin Yu, and Frank K. Tittel
Opt. Express 26(24) 32103-32110 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
    [Crossref]
  2. G. Wysocki, Y. A. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
    [Crossref]
  3. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
    [Crossref]
  4. L. Dong, W. Yin, W. Ma, L. Zhang, and S. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators, B 127(2), 350–357 (2007).
    [Crossref]
  5. Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
    [Crossref]
  6. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  7. P. Daukantas, “Air-quality monitoring in the mid-infrared,” Opt. Photonics News 26(11), 26–33 (2015).
    [Crossref]
  8. A. A. Kosterev, Y. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
    [Crossref]
  9. A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
    [Crossref]
  10. P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
    [Crossref]
  11. M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B: Lasers Opt. 119(1), 111–118 (2015).
    [Crossref]
  12. L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
    [Crossref]
  13. H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, and W. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
    [Crossref]
  14. W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
    [Crossref]
  15. Y. Ma, Y. Tong, Y. He, X. Jin, and F. K. Tittel, “Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection,” Opt. Express 27(6), 9302–9312 (2019).
    [Crossref]
  16. L. Hu, C. Zheng, J. Zheng, Y. Wang, and F. K. Tittel, “Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 44(10), 2562–2565 (2019).
    [Crossref]
  17. S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
    [Crossref]
  18. A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
    [Crossref]
  19. H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
    [Crossref]
  20. H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
    [Crossref]
  21. H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
    [Crossref]
  22. H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
    [Crossref]
  23. F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
    [Crossref]
  24. L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
    [Crossref]
  25. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B: Lasers Opt. 112(1), 25–33 (2013).
    [Crossref]
  26. Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
    [Crossref]
  27. V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
    [Crossref]
  28. A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
    [Crossref]
  29. S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
    [Crossref]
  30. A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
    [Crossref]
  31. X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
    [Crossref]
  32. P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
    [Crossref]
  33. S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and F. K. Tittel, “Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork,” Anal. Chem. 91(9), 5834–5840 (2019).
    [Crossref]
  34. M. Giglio, A. Elefante, P. Patimisco, A. Sampaolo, F. Sgobba, H. Rossmadl, V. Mackowiak, H. Wu, F. K. Tittel, L. Dong, and V. Spagnolo, “Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone,” Opt. Express 27(4), 4271–4280 (2019).
    [Crossref]
  35. S. Lee, J.-Y. Lee, and T.-S. Park, “Fabrication of SMD 32.768 kHz tuning fork-type crystals: Photolithography and selective etching of an array of quartz tuning fork resonators,” Mater. Corros. 52(9), 712–715 (2001).
    [Crossref]
  36. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors 14(4), 6165–6206 (2014).
    [Crossref]
  37. K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
    [Crossref]
  38. P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators, B 227, 539–546 (2016).
    [Crossref]
  39. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
    [Crossref]
  40. T. L. Cottrell and J.C. McCoubrey, Molecular Energy Transfer in Gases (Butterworths, 1961).

2019 (5)

2018 (1)

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

2017 (1)

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

2016 (6)

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators, B 227, 539–546 (2016).
[Crossref]

2015 (7)

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B: Lasers Opt. 119(1), 111–118 (2015).
[Crossref]

H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, and W. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

P. Daukantas, “Air-quality monitoring in the mid-infrared,” Opt. Photonics News 26(11), 26–33 (2015).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref]

2014 (5)

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors 14(4), 6165–6206 (2014).
[Crossref]

2013 (4)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B: Lasers Opt. 112(1), 25–33 (2013).
[Crossref]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

2011 (1)

2010 (2)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

2009 (1)

2008 (1)

A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
[Crossref]

2007 (2)

G. Wysocki, Y. A. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref]

L. Dong, W. Yin, W. Ma, L. Zhang, and S. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators, B 127(2), 350–357 (2007).
[Crossref]

2005 (1)

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

2002 (1)

2001 (1)

S. Lee, J.-Y. Lee, and T.-S. Park, “Fabrication of SMD 32.768 kHz tuning fork-type crystals: Photolithography and selective etching of an array of quartz tuning fork resonators,” Mater. Corros. 52(9), 712–715 (2001).
[Crossref]

Akikusa, N.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Bakhirkin, Y.

A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
[Crossref]

A. A. Kosterev, Y. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref]

Bakhirkin, Y. A.

Beere, H.

A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
[Crossref]

Beere, H. E.

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Bernacki, B. E.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B: Lasers Opt. 112(1), 25–33 (2013).
[Crossref]

Borri, S.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B: Lasers Opt. 112(1), 25–33 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Cable, A.

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Chen, W.

H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, and W. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[Crossref]

Chieco, L.

Cottrell, T. L.

T. L. Cottrell and J.C. McCoubrey, Molecular Energy Transfer in Gases (Butterworths, 1961).

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
[Crossref]

A. A. Kosterev, Y. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref]

Daukantas, P.

P. Daukantas, “Air-quality monitoring in the mid-infrared,” Opt. Photonics News 26(11), 26–33 (2015).
[Crossref]

De Natale, P.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Dello Russo, S.

Dong, L.

M. Giglio, A. Elefante, P. Patimisco, A. Sampaolo, F. Sgobba, H. Rossmadl, V. Mackowiak, H. Wu, F. K. Tittel, L. Dong, and V. Spagnolo, “Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone,” Opt. Express 27(4), 4271–4280 (2019).
[Crossref]

S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and F. K. Tittel, “Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators, B 227, 539–546 (2016).
[Crossref]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref]

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
[Crossref]

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

L. Dong, W. Yin, W. Ma, L. Zhang, and S. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators, B 127(2), 350–357 (2007).
[Crossref]

Elefante, A.

Fertein, E.

H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, and W. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

Fraser, M.

A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
[Crossref]

Fraser, M. P.

Fu, X.

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

Galli, I.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Gao, X.

H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, and W. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[Crossref]

Geras, A.

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

Giglio, M.

Giusfredi, G.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Griffin, R. J.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

Guo, X.

He, Y.

Hill, C. J.

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Hu, L.

Hughes, L. C.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

Jia, S.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
[Crossref]

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

L. Dong, W. Yin, W. Ma, L. Zhang, and S. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators, B 127(2), 350–357 (2007).
[Crossref]

Jiang, W.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

Jin, X.

Köhring, M.

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B: Lasers Opt. 119(1), 111–118 (2015).
[Crossref]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
[Crossref]

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

A. A. Kosterev, Y. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref]

Kriesel, J.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B: Lasers Opt. 112(1), 25–33 (2013).
[Crossref]

Lee, J.-Y.

S. Lee, J.-Y. Lee, and T.-S. Park, “Fabrication of SMD 32.768 kHz tuning fork-type crystals: Photolithography and selective etching of an array of quartz tuning fork resonators,” Mater. Corros. 52(9), 712–715 (2001).
[Crossref]

Lee, S.

S. Lee, J.-Y. Lee, and T.-S. Park, “Fabrication of SMD 32.768 kHz tuning fork-type crystals: Photolithography and selective etching of an array of quartz tuning fork resonators,” Mater. Corros. 52(9), 712–715 (2001).
[Crossref]

Lewicki, R.

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
[Crossref]

Li, S.

S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and F. K. Tittel, “Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

Li, Z.

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

Liu, K.

Liu, X.

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

Liu, Y.

Ma, W.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
[Crossref]

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

L. Dong, W. Yin, W. Ma, L. Zhang, and S. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators, B 127(2), 350–357 (2007).
[Crossref]

Ma, Y.

Maamary, R.

H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, and W. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

Mackowiak, V.

Malinovsky, A. L.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Mazzotti, D.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

McCoubrey, J.C.

T. L. Cottrell and J.C. McCoubrey, Molecular Energy Transfer in Gases (Butterworths, 1961).

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Mordmüller, M.

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B: Lasers Opt. 119(1), 111–118 (2015).
[Crossref]

Morozov, I. V.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Park, T.-S.

S. Lee, J.-Y. Lee, and T.-S. Park, “Fabrication of SMD 32.768 kHz tuning fork-type crystals: Photolithography and selective etching of an array of quartz tuning fork resonators,” Mater. Corros. 52(9), 712–715 (2001).
[Crossref]

Patimisco, P.

S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and F. K. Tittel, “Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

M. Giglio, A. Elefante, P. Patimisco, A. Sampaolo, F. Sgobba, H. Rossmadl, V. Mackowiak, H. Wu, F. K. Tittel, L. Dong, and V. Spagnolo, “Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone,” Opt. Express 27(4), 4271–4280 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators, B 227, 539–546 (2016).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors 14(4), 6165–6206 (2014).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B: Lasers Opt. 112(1), 25–33 (2013).
[Crossref]

Pennetta, R.

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Razeghi, M.

Ren, W.

H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
[Crossref]

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

Ritchie, D.

A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
[Crossref]

Ritchie, D. A.

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Rossmadl, H.

Sampaolo, A.

M. Giglio, A. Elefante, P. Patimisco, A. Sampaolo, F. Sgobba, H. Rossmadl, V. Mackowiak, H. Wu, F. K. Tittel, L. Dong, and V. Spagnolo, “Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone,” Opt. Express 27(4), 4271–4280 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and F. K. Tittel, “Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators, B 227, 539–546 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Sanchez, N. P.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

Scamarcio, G.

A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators, B 227, 539–546 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors 14(4), 6165–6206 (2014).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B: Lasers Opt. 112(1), 25–33 (2013).
[Crossref]

Schade, W.

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B: Lasers Opt. 119(1), 111–118 (2015).
[Crossref]

Serebryakov, D. V.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Sgobba, F.

Sigrist, M. W.

H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, and W. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

So, S.

A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
[Crossref]

G. Wysocki, Y. A. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref]

Spagnolo, V.

S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and F. K. Tittel, “Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

M. Giglio, A. Elefante, P. Patimisco, A. Sampaolo, F. Sgobba, H. Rossmadl, V. Mackowiak, H. Wu, F. K. Tittel, L. Dong, and V. Spagnolo, “Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone,” Opt. Express 27(4), 4271–4280 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators, B 227, 539–546 (2016).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors 14(4), 6165–6206 (2014).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B: Lasers Opt. 112(1), 25–33 (2013).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref]

Starecki, T.

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

Tan, W.

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Thomazy, D.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

Tittel, F. K.

S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and F. K. Tittel, “Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

Y. Ma, Y. Tong, Y. He, X. Jin, and F. K. Tittel, “Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection,” Opt. Express 27(6), 9302–9312 (2019).
[Crossref]

M. Giglio, A. Elefante, P. Patimisco, A. Sampaolo, F. Sgobba, H. Rossmadl, V. Mackowiak, H. Wu, F. K. Tittel, L. Dong, and V. Spagnolo, “Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone,” Opt. Express 27(4), 4271–4280 (2019).
[Crossref]

L. Hu, C. Zheng, J. Zheng, Y. Wang, and F. K. Tittel, “Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 44(10), 2562–2565 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators, B 227, 539–546 (2016).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
[Crossref]

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors 14(4), 6165–6206 (2014).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
[Crossref]

G. Wysocki, Y. A. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref]

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

A. A. Kosterev, Y. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref]

Tong, Y.

Vitiello, M.

A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
[Crossref]

Vitiello, M. S.

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Wang, Y.

Willer, U.

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B: Lasers Opt. 119(1), 111–118 (2015).
[Crossref]

Wu, H.

M. Giglio, A. Elefante, P. Patimisco, A. Sampaolo, F. Sgobba, H. Rossmadl, V. Mackowiak, H. Wu, F. K. Tittel, L. Dong, and V. Spagnolo, “Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone,” Opt. Express 27(4), 4271–4280 (2019).
[Crossref]

S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and F. K. Tittel, “Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
[Crossref]

G. Wysocki, Y. A. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref]

Xiao, L.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

Xie, F.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

Yamanishi, M.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Yang, R. Q.

Yang, Y.

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

Yi, H.

H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, and W. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[Crossref]

Yin, W.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
[Crossref]

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

L. Dong, W. Yin, W. Ma, L. Zhang, and S. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators, B 127(2), 350–357 (2007).
[Crossref]

Yin, X.

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

Yu, Y.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

Zah, C.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

Zhang, L.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
[Crossref]

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

L. Dong, W. Yin, W. Ma, L. Zhang, and S. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators, B 127(2), 350–357 (2007).
[Crossref]

Zhang, W.

Zhao, G.

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

Zhao, L.

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

Zheng, C.

Zheng, H.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref]

Zheng, J.

Anal. Chem. (1)

S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and F. K. Tittel, “Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (4)

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B: Lasers Opt. 90(2), 165–176 (2008).
[Crossref]

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B: Lasers Opt. 119(1), 111–118 (2015).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B: Lasers Opt. 112(1), 25–33 (2013).
[Crossref]

Appl. Phys. Lett. (5)

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, and W. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, M. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Appl. Phys. Rev. (1)

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Mater. Corros. (1)

S. Lee, J.-Y. Lee, and T.-S. Park, “Fabrication of SMD 32.768 kHz tuning fork-type crystals: Photolithography and selective etching of an array of quartz tuning fork resonators,” Mater. Corros. 52(9), 712–715 (2001).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Nat. Commun. (1)

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

Opt. Express (9)

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref]

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

H. Zheng, L. Dong, Y. Ma, H. Wu, X. Liu, X. Yin, L. Zhang, W. Ma, W. Yin, L. Xiao, and S. Jia, “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system,” Opt. Express 24(10), A752–A761 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref]

Y. Ma, Y. Tong, Y. He, X. Jin, and F. K. Tittel, “Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection,” Opt. Express 27(6), 9302–9312 (2019).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref]

M. Giglio, A. Elefante, P. Patimisco, A. Sampaolo, F. Sgobba, H. Rossmadl, V. Mackowiak, H. Wu, F. K. Tittel, L. Dong, and V. Spagnolo, “Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone,” Opt. Express 27(4), 4271–4280 (2019).
[Crossref]

Opt. Lett. (4)

Opt. Photonics News (1)

P. Daukantas, “Air-quality monitoring in the mid-infrared,” Opt. Photonics News 26(11), 26–33 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Sens. Actuators, B (5)

H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators, B 206, 364–370 (2015).
[Crossref]

L. Dong, W. Yin, W. Ma, L. Zhang, and S. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators, B 127(2), 350–357 (2007).
[Crossref]

Z. Li, L. Zhao, W. Tan, W. Ma, G. Zhao, X. Fu, L. Dong, L. Zhang, W. Yin, and S. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators, B 196, 23–30 (2014).
[Crossref]

H. Zheng, L. Dong, X. Yin, X. Liu, H. Wu, L. Zhang, W. Ma, W. Yin, and S. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators, B 208, 173–179 (2015).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators, B 227, 539–546 (2016).
[Crossref]

Sensors (3)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors 14(4), 6165–6206 (2014).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser,” Sensors 16(2), 162 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, M. Vitiello, H. Beere, D. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy,” Sensors 16(4), 439 (2016).
[Crossref]

Other (1)

T. L. Cottrell and J.C. McCoubrey, Molecular Energy Transfer in Gases (Butterworths, 1961).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic of on-beam spectrophone based on a grooved QTF, The tubes were centered between the QTF prongs; (b), (c) geometric parameters of the on-beam spectrophone, where L is the prong length, W is the width, T is the thickness, s is the prong spacing, y is the distance from QTF top surface to the tube center, l is the AmR length, and g is the QTF-tube distance.
Fig. 2.
Fig. 2. Schematic diagram of the QEPAS-based sensor system. M1, M2: CaF2 windows; PM: power meter; PA: pre-amplifier and CEU: control electronics unit.
Fig. 3.
Fig. 3. The normalized QEPAS signal amplitude as a function of the position y along the vertical axis of the QTF.
Fig. 4.
Fig. 4. The SNR as a function of the pressure inside the ADM with different acoustic resonators. Data are obtained by detecting a concentration of 30-ppm C2H2 in N2 from 25 Torr to 700 Torr. l: tube length; ID: inner diameter of the tube.
Fig. 5.
Fig. 5. The SNR as a function of gas pressure for bare QTF and spectrophones employing AmRs with an ID = 1.3 mm, 1.5 mm, 1.65 mm, 1.85 mm but the same length.
Fig. 6.
Fig. 6. The SNR as a function of the distance between the tubes and the grooved QTF measured from 20 µm to 1200 µm.
Fig. 7.
Fig. 7. The second-harmonic QEPAS spectra of C2H2 absorption line with the optimum AmRs (l = 9 mm, ID = 1.65 mm) and bare grooved QTF at atmospheric pressure (700 Torr). In the inset, an amplified view of the bare QTF signal is shown.
Fig. 8.
Fig. 8. The QEPAS signals at different CH4 concentration levels. The red line represents the linearity of the sensor system response.
Fig. 9.
Fig. 9. Allan-Werle deviation plot for different averaging time measured with pure N2 for the QEPAS based sensor system.
Fig. 10.
Fig. 10. Experimental measured 2f-QEPAS spectra near ambient CH4 gas at atmospheric pressure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f 0 = 1.194 2 π W 8 12 L 2 E ρ
Q = 3.78 × 10 5 W T L

Metrics