Abstract

Coherent anti-Stokes Raman scattering (CARS) microscopy is becoming a more common tool in biomedical research. High-speed CARS microscopy has important applications in live cell imaging and in label-free pathology. However, only a few realizations exist of CARS imaging applied in the few terahertz spectral range (<300 cm−1), in which much is unknown to date. Although single-beam CARS microscopy proved to be robust in this low-frequency region, pixel-dwell time using presently available schemes is still relatively long, in the millisecond scale. Single-beam notch-shaped chirped-CARS (C-CARS) microscopy in the fingerprint region can be performed without using lock-in detection, yet it necessitates double-notch shaping, resulting in a relatively complex system. Here, we demonstrate that C-CARS in the low-frequency regime can be achieved using a sharp-edge, which is created by an ultra-steep long-pass filter (ULPF). Furthermore, we demonstrate that this variant of C-CARS spectroscopy can be performed without post-processing analyses. This is used to image collagen in a biological sample with a pixel dwell time of 200 microseconds. This sharp-edge C-CARS method may find important application in rapid low-frequency CARS imaging of live cells or for imaging of fast flowing objects such as in microfluidic channels.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Six-wave mixing coherent anti-Stokes Raman scattering microscopy

Vitor B. Pelegati, Bernardo B. C. Kyotoku, Lazaro A. Padilha, and Carlos L. Cesar
Biomed. Opt. Express 9(5) 2407-2417 (2018)

Simplified approach to low-frequency coherent anti-Stokes Raman spectroscopy using a sharp spectral edge filter

Liqing Ren, Maor Asher, Omer Yaffe, Yaron Silberberg, and Dan Oron
Opt. Lett. 44(15) 3637-3640 (2019)

Coherently-enhanced lock-in-free chirped-CARS microscopy by notch filtering

Liqing Ren, Hadas Frostig, Sunil Kumar, Ilan Hurwitz, and Yaron Silberberg
Opt. Express 25(23) 28201-28209 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  2. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [Crossref]
  3. J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
    [Crossref]
  4. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  5. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102(46), 16807–16812 (2005).
    [Crossref]
  6. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
    [Crossref]
  7. M. Hofer, N. K. Balla, and S. Brasselet, “High-speed polarization-resolved coherent Raman scattering imaging,” Optica 4(7), 795–801 (2017).
    [Crossref]
  8. K.-C. Chou, “Low-frequency Motions in Protein Molecules,” Biophys. J. 48(2), 289–297 (1985).
    [Crossref]
  9. B. Brooks and M. Karplus, “Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme,” Proc. Natl. Acad. Sci. U. S. A. 82(15), 4995–4999 (1985).
    [Crossref]
  10. G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, “Optical measurements of long-range protein vibrations,” Nat. Commun. 5(1), 3076 (2014).
    [Crossref]
  11. D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, “Terahertz underdamped vibrational motion governs protein-ligand binding in solution,” Nat. Commun. 5(1), 3999 (2014).
    [Crossref]
  12. S. Domingue, D. Winters, and R. Bartels, “Time-resolved coherent Raman spectroscopy by high-speed pump-probe delay scanning,” Opt. Lett. 39(14), 4124–4127 (2014).
    [Crossref]
  13. D. Raanan, X. Audier, S. Shivkumar, M. Asher, M. Menahem, O. Yaffe, N. Forget, H. Rigneault, and D. Oron, “Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation,” Opt. Lett. 44(21), 5153–5156 (2019).
    [Crossref]
  14. L. Ren, I. Hurwitz, D. Raanan, P. Oulevey, D. Oron, and Y. Silberberg, “Terahertz coherent anti-Stokes Raman scattering microscopy,” Optica 6(1), 52–55 (2019).
    [Crossref]
  15. D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
    [Crossref]
  16. O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express 18(22), 22693–22701 (2010).
    [Crossref]
  17. Y. Shen, D. V. Voronine, A. V. Sokolov, and M. O. Scully, “Low wavenumber efficient single-beam coherent anti-Stokes Raman scattering using a spectral hole,” Opt. Lett. 40(7), 1223–1226 (2015).
    [Crossref]
  18. L. Ren, M. Asher, O. Yaffe, Y. Silberberg, and D. Oron, “Simplified approach to low-frequency coherent anti-Stokes Raman spectroscopy using a sharp spectral edge filter,” Opt. Lett. 44(15), 3637–3640 (2019).
    [Crossref]
  19. S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
    [Crossref]
  20. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [Crossref]
  21. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
    [Crossref]
  22. C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light: Sci. Appl. 4(3), e265 (2015).
    [Crossref]
  23. C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3(12), 1377–1380 (2016).
    [Crossref]
  24. R. He, Y. Xu, L. Zhang, S. Ma, X. Wang, D. Ye, and M. Ji, “Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging,” Optica 4(1), 44–47 (2017).
    [Crossref]
  25. K. Chen, T. Wu, T. Chen, H. Wei, H. Yang, T. Zhou, and Y. Li, “Spectral focusing dual-comb coherent anti-Stokes Raman spectroscopic imaging,” Opt. Lett. 42(18), 3634–3637 (2017).
    [Crossref]
  26. L. Ren, H. Frostig, S. Kumar, I. Hurwitz, and Y. Silberberg, “Coherently-enhanced lock-in-free chirped-CARS microscopy by notch filtering,” Opt. Express 25(23), 28201–28209 (2017).
    [Crossref]
  27. E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
    [Crossref]
  28. J. Räsänen, F. Stenman, and E. Penttinen, “Raman scattering from molecular crystals—II. Anthracene,” Spectrochim. Acta, Part A 29(2), 395–403 (1973).
    [Crossref]
  29. R. Ouillon, P. Ranson, and S. Califano, “Temperature dependence of the bandwidths and frequencies of some anthracene phonons. High-resolution Raman measurements,” Chem. Phys. 91(1), 119–131 (1984).
    [Crossref]
  30. B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
    [Crossref]
  31. R. A. Laudise, Ch. Kloc, P. G. Simpkins, and T. Siegrist, “Physical vapor growth of organic semiconductors,” J. Cryst. Growth 187(3-4), 449–454 (1998).
    [Crossref]
  32. E. G. Canty and K. E. Kadler, “Procollagen trafficking, processing and fiberlogenesis,” J. Cell Sci. 118(7), 1341–1353 (2005).
    [Crossref]
  33. T. J. Wess, “Collagen fibril form and function,” Adv. Protein Chem. 70, 341–374 (2005).
    [Crossref]

2019 (3)

2017 (4)

2016 (1)

2015 (5)

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
[Crossref]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light: Sci. Appl. 4(3), e265 (2015).
[Crossref]

Y. Shen, D. V. Voronine, A. V. Sokolov, and M. O. Scully, “Low wavenumber efficient single-beam coherent anti-Stokes Raman scattering using a spectral hole,” Opt. Lett. 40(7), 1223–1226 (2015).
[Crossref]

2014 (4)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref]

G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, “Optical measurements of long-range protein vibrations,” Nat. Commun. 5(1), 3076 (2014).
[Crossref]

D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, “Terahertz underdamped vibrational motion governs protein-ligand binding in solution,” Nat. Commun. 5(1), 3999 (2014).
[Crossref]

S. Domingue, D. Winters, and R. Bartels, “Time-resolved coherent Raman spectroscopy by high-speed pump-probe delay scanning,” Opt. Lett. 39(14), 4124–4127 (2014).
[Crossref]

2011 (1)

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref]

2010 (1)

2009 (1)

2006 (1)

B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
[Crossref]

2005 (2)

E. G. Canty and K. E. Kadler, “Procollagen trafficking, processing and fiberlogenesis,” J. Cell Sci. 118(7), 1341–1353 (2005).
[Crossref]

T. J. Wess, “Collagen fibril form and function,” Adv. Protein Chem. 70, 341–374 (2005).
[Crossref]

2004 (1)

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

2002 (2)

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1998 (1)

R. A. Laudise, Ch. Kloc, P. G. Simpkins, and T. Siegrist, “Physical vapor growth of organic semiconductors,” J. Cryst. Growth 187(3-4), 449–454 (1998).
[Crossref]

1985 (2)

K.-C. Chou, “Low-frequency Motions in Protein Molecules,” Biophys. J. 48(2), 289–297 (1985).
[Crossref]

B. Brooks and M. Karplus, “Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme,” Proc. Natl. Acad. Sci. U. S. A. 82(15), 4995–4999 (1985).
[Crossref]

1984 (1)

R. Ouillon, P. Ranson, and S. Califano, “Temperature dependence of the bandwidths and frequencies of some anthracene phonons. High-resolution Raman measurements,” Chem. Phys. 91(1), 119–131 (1984).
[Crossref]

1973 (1)

J. Räsänen, F. Stenman, and E. Penttinen, “Raman scattering from molecular crystals—II. Anthracene,” Spectrochim. Acta, Part A 29(2), 395–403 (1973).
[Crossref]

Acbas, G.

G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, “Optical measurements of long-range protein vibrations,” Nat. Commun. 5(1), 3076 (2014).
[Crossref]

Asher, M.

Audier, X.

Balla, N. K.

Bartels, R.

Blake, J. A.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref]

Brasselet, S.

Brooks, B.

B. Brooks and M. Karplus, “Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme,” Proc. Natl. Acad. Sci. U. S. A. 82(15), 4995–4999 (1985).
[Crossref]

Califano, S.

R. Ouillon, P. Ranson, and S. Califano, “Temperature dependence of the bandwidths and frequencies of some anthracene phonons. High-resolution Raman measurements,” Chem. Phys. 91(1), 119–131 (1984).
[Crossref]

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Canty, E. G.

E. G. Canty and K. E. Kadler, “Procollagen trafficking, processing and fiberlogenesis,” J. Cell Sci. 118(7), 1341–1353 (2005).
[Crossref]

Chen, A. J.

Chen, K.

Chen, T.

Cheng, J.-X.

C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3(12), 1377–1380 (2016).
[Crossref]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light: Sci. Appl. 4(3), e265 (2015).
[Crossref]

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

Chou, K.-C.

K.-C. Chou, “Low-frequency Motions in Protein Molecules,” Biophys. J. 48(2), 289–297 (1985).
[Crossref]

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Cote, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102(46), 16807–16812 (2005).
[Crossref]

Danielson, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref]

Domingue, S.

Drexler, W.

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

Eakins, G.

Ellis, E. M.

D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, “Terahertz underdamped vibrational motion governs protein-ligand binding in solution,” Nat. Commun. 5(1), 3999 (2014).
[Crossref]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102(46), 16807–16812 (2005).
[Crossref]

Forget, N.

Frostig, H.

Grinvald, E.

Harwood, T.

D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, “Terahertz underdamped vibrational motion governs protein-ligand binding in solution,” Nat. Commun. 5(1), 3999 (2014).
[Crossref]

He, R.

Hermann, B.

Hinsberg, W. D.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

Hofer, M.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Hong, W.

Huang, K.-C.

Hurwitz, I.

Ji, M.

Jia, Y.

Jones, D.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

Kadler, K. E.

E. G. Canty and K. E. Kadler, “Procollagen trafficking, processing and fiberlogenesis,” J. Cell Sci. 118(7), 1341–1353 (2005).
[Crossref]

Kamali, T.

Karanja, C.

Karplus, M.

B. Brooks and M. Karplus, “Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme,” Proc. Natl. Acad. Sci. U. S. A. 82(15), 4995–4999 (1985).
[Crossref]

Katz, O.

Kennedy, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref]

Kloc, Ch.

R. A. Laudise, Ch. Kloc, P. G. Simpkins, and T. Siegrist, “Physical vapor growth of organic semiconductors,” J. Cryst. Growth 187(3-4), 449–454 (1998).
[Crossref]

Kumar, S.

Lapthorn, A. J.

D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, “Terahertz underdamped vibrational motion governs protein-ligand binding in solution,” Nat. Commun. 5(1), 3999 (2014).
[Crossref]

Laudise, R. A.

R. A. Laudise, Ch. Kloc, P. G. Simpkins, and T. Siegrist, “Physical vapor growth of organic semiconductors,” J. Cryst. Growth 187(3-4), 449–454 (1998).
[Crossref]

Lee, S.-Y.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light: Sci. Appl. 4(3), e265 (2015).
[Crossref]

Leone, S. R.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

Levitt, J. M.

Levitte, J. M.

Li, J.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light: Sci. Appl. 4(3), e265 (2015).
[Crossref]

Li, Y.

Liao, C.-S.

C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3(12), 1377–1380 (2016).
[Crossref]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light: Sci. Appl. 4(3), e265 (2015).
[Crossref]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102(46), 16807–16812 (2005).
[Crossref]

Lyn, R. K.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref]

Ma, S.

Markelz, A. G.

G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, “Optical measurements of long-range protein vibrations,” Nat. Commun. 5(1), 3076 (2014).
[Crossref]

Menahem, M.

Moffatt, D. J.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref]

Motzkus, M.

B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
[Crossref]

Muntean, L.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

Niessen, K. A.

G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, “Optical measurements of long-range protein vibrations,” Nat. Commun. 5(1), 3076 (2014).
[Crossref]

Oglesbee, R. A.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light: Sci. Appl. 4(3), e265 (2015).
[Crossref]

Oron, D.

Ouillon, R.

R. Ouillon, P. Ranson, and S. Califano, “Temperature dependence of the bandwidths and frequencies of some anthracene phonons. High-resolution Raman measurements,” Chem. Phys. 91(1), 119–131 (1984).
[Crossref]

Oulevey, P.

Pegoraro, A. F.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref]

Penttinen, E.

J. Räsänen, F. Stenman, and E. Penttinen, “Raman scattering from molecular crystals—II. Anthracene,” Spectrochim. Acta, Part A 29(2), 395–403 (1973).
[Crossref]

Pezacki, J. P.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref]

Potma, E. O.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102(46), 16807–16812 (2005).
[Crossref]

Považay, B.

Preusser, J.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102(46), 16807–16812 (2005).
[Crossref]

Raanan, D.

Ranson, P.

R. Ouillon, P. Ranson, and S. Califano, “Temperature dependence of the bandwidths and frequencies of some anthracene phonons. High-resolution Raman measurements,” Chem. Phys. 91(1), 119–131 (1984).
[Crossref]

Räsänen, J.

J. Räsänen, F. Stenman, and E. Penttinen, “Raman scattering from molecular crystals—II. Anthracene,” Spectrochim. Acta, Part A 29(2), 395–403 (1973).
[Crossref]

Ren, L.

Ridsdale, A.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref]

Rigneault, H.

Schade, W.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

Scully, M. O.

Senn, H. M.

D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, “Terahertz underdamped vibrational motion governs protein-ligand binding in solution,” Nat. Commun. 5(1), 3999 (2014).
[Crossref]

Shen, Y.

Shivkumar, S.

Siegrist, T.

R. A. Laudise, Ch. Kloc, P. G. Simpkins, and T. Siegrist, “Physical vapor growth of organic semiconductors,” J. Cryst. Growth 187(3-4), 449–454 (1998).
[Crossref]

Silberberg, Y.

Simpkins, P. G.

R. A. Laudise, Ch. Kloc, P. G. Simpkins, and T. Siegrist, “Physical vapor growth of organic semiconductors,” J. Cryst. Growth 187(3-4), 449–454 (1998).
[Crossref]

Singaravelu, R.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref]

Slepkov, A. D.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref]

Slipchenko, M. N.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light: Sci. Appl. 4(3), e265 (2015).
[Crossref]

Snell, E. H.

G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, “Optical measurements of long-range protein vibrations,” Nat. Commun. 5(1), 3076 (2014).
[Crossref]

Sokolov, A. V.

Stenman, F.

J. Räsänen, F. Stenman, and E. Penttinen, “Raman scattering from molecular crystals—II. Anthracene,” Spectrochim. Acta, Part A 29(2), 395–403 (1973).
[Crossref]

Stolow, A.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref]

Turton, D. A.

D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, “Terahertz underdamped vibrational motion governs protein-ligand binding in solution,” Nat. Commun. 5(1), 3999 (2014).
[Crossref]

Unterhuber, A.

von Vacano, B.

B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
[Crossref]

Voronine, D. V.

Wang, P.

C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3(12), 1377–1380 (2016).
[Crossref]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light: Sci. Appl. 4(3), e265 (2015).
[Crossref]

Wang, X.

Wei, H.

Werkmeister, R.

Wess, T. J.

T. J. Wess, “Collagen fibril form and function,” Adv. Protein Chem. 70, 341–374 (2005).
[Crossref]

Winters, D.

Wohlleben, W.

B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
[Crossref]

Wu, T.

Wynne, K.

D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, “Terahertz underdamped vibrational motion governs protein-ligand binding in solution,” Nat. Commun. 5(1), 3999 (2014).
[Crossref]

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102(46), 16807–16812 (2005).
[Crossref]

Xu, Y.

Yaffe, O.

Yang, H.

Ye, D.

Ye, J.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

Zhang, L.

Zhou, T.

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Adv. Protein Chem. (1)

T. J. Wess, “Collagen fibril form and function,” Adv. Protein Chem. 70, 341–374 (2005).
[Crossref]

Biophys. J. (1)

K.-C. Chou, “Low-frequency Motions in Protein Molecules,” Biophys. J. 48(2), 289–297 (1985).
[Crossref]

Chem. Phys. (1)

R. Ouillon, P. Ranson, and S. Califano, “Temperature dependence of the bandwidths and frequencies of some anthracene phonons. High-resolution Raman measurements,” Chem. Phys. 91(1), 119–131 (1984).
[Crossref]

J. Biophotonics (1)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref]

J. Cell Sci. (1)

E. G. Canty and K. E. Kadler, “Procollagen trafficking, processing and fiberlogenesis,” J. Cell Sci. 118(7), 1341–1353 (2005).
[Crossref]

J. Cryst. Growth (1)

R. A. Laudise, Ch. Kloc, P. G. Simpkins, and T. Siegrist, “Physical vapor growth of organic semiconductors,” J. Cryst. Growth 187(3-4), 449–454 (1998).
[Crossref]

J. Phys. Chem. B (1)

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[Crossref]

J. Raman Spectrosc. (1)

B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
[Crossref]

Light: Sci. Appl. (1)

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light: Sci. Appl. 4(3), e265 (2015).
[Crossref]

Nat. Chem. Biol. (1)

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref]

Nat. Commun. (2)

G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, “Optical measurements of long-range protein vibrations,” Nat. Commun. 5(1), 3076 (2014).
[Crossref]

D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, “Terahertz underdamped vibrational motion governs protein-ligand binding in solution,” Nat. Commun. 5(1), 3999 (2014).
[Crossref]

Nat. Photonics (1)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Optica (4)

Phys. Rev. Lett. (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

B. Brooks and M. Karplus, “Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme,” Proc. Natl. Acad. Sci. U. S. A. 82(15), 4995–4999 (1985).
[Crossref]

Science (1)

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

Spectrochim. Acta, Part A (1)

J. Räsänen, F. Stenman, and E. Penttinen, “Raman scattering from molecular crystals—II. Anthracene,” Spectrochim. Acta, Part A 29(2), 395–403 (1973).
[Crossref]

Other (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102(46), 16807–16812 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of sharp-edge C-CARS versus sharp-edge TL-CARS using a single broadband femtosecond laser. (a) Time-frequency plot of sharp-edge TL-CARS. Shown are the spectrum of the excitation pulse (sharply truncated ellipse with a sharp edge, SE), the long probe pulse (green ellipse) created by the ULPF, and the band of the low-frequency vibrational modes (blue) that can be excited. (b) Sharp-edge TL-CARS signal versus the wavelength. The wavelength of the sharp edge is shown in dashed line. (c) Time-frequency plot of sharp-edge C-CARS. The excitation pulse is chirped, inducing a broad temporal bandwidth. Although the Raman span that can be excited is less compared with the sharp-edge TL-CARS case, it results in a higher contrast, since the four-wave-mixing background is significantly reduced. (d) Sharp-edge C-CARS signal versus the wavelength. Clearly, shown are the resonant CARS signals which are much stronger than the non-resonant background.
Fig. 2.
Fig. 2. Calculated sharp-edge C-CARS and sharp-edge TL-CARS of anthracene single crystal at 120 cm−1. (a) The excitation pulse after an ULPF. (b) Comparison between sharp-edge C-CARS (α = 8) and sharp-edge TL-CARS (α = 0) using Eqs. (2) and (3). (c) Calculated contrast of C-CARS versus the chirp parameter α.
Fig. 3.
Fig. 3. Experimental setup. G: grating, CM: curved mirror, ULPF: ultra-steep long-pass filter, OBJ: objective, USPF: ultra-steep short-pass filter, DM: dichroic mirror, BPF: band-pass filter, PMT: photomultiplier tube, NF: notch filter.
Fig. 4.
Fig. 4. Measured sharp-edge C-CARS and sharp-edge TL-CARS. (a) Anthracene single crystal. (b) Bromoform (CHBr3) liquid. Spontaneous Raman spectra are also shown.
Fig. 5.
Fig. 5. Low-frequency sharp-edge C-CARS imaging of collagen. (a) Sharp-edge C-CARS (red) and sharp-edge TL-CARS (black) of collagen. (b) Sharp-edge C-CARS imaging of collagen at 113cm−1. (c) Sharp-edge C-CARS imaging of collagen at 201cm−1 for reference. (d) Second-harmonic generation (SHG) imaging of collagen at 400nm. Scale bar: 15 µm. Spatial resolution: 1µm. Pixel-dwell time:200 µs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( ω , α ) = E ( ω 0 , α = 0 ) exp [ 2 ( ω ω 0 ) 2 ln 2 / Δ 2 i ϕ ( ω , α ) ] ,
P R ( 3 ) ( ω , α ) = k 0 d Ω 0 d ω E ( ω , α ) E ( ω Ω , α ) E ( ω + Ω , α ) ( Ω R Ω ) + i Γ R ,
P N R ( 3 ) ( ω , α ) = χ N R ( 3 ) 0 d Ω 0 d ω E ( ω , α ) E ( ω Ω , α ) E ( ω + Ω , α ) .

Metrics