Abstract

Orbital angular momentum (OAM) of light has been extensively studied during the past two decades. Till now, it is a formidable challenge to dynamically manipulate OAM in fast switching speed, good beam quality and low power consumption. Here, an alternative strategy is proposed through the combination of the uniformly-aligned ferroelectric liquid crystal (FLC) and the space-variant photo-patterned nematic liquid crystal. Owing to the excellent electro-optical properties of the adopted FLC, the high-performance electrical switching of OAM, especially, its helicity and the superposed state (i.e., the cylindrical vector beam), can be realized in good quality and high efficiency. The symmetric switching time is down to 120 µs even at a very low driving voltage of 1.7 V/µm. This supplies a practical and universal method towards high-frequency manipulation of OAM and other structured beams.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fork gratings based on ferroelectric liquid crystals

Y. Ma, B. Y. Wei, L.Y. Shi, A. K. Srivastava, V. G. Chigrinov, H-S. Kwok, W. Hu, and Y. Q. Lu
Opt. Express 24(6) 5822-5828 (2016)

Fast beam steering with a ferroelectric-liquid-crystal optical phased array

David Engström, Michael J. O'Callaghan, Chris Walker, and Mark A. Handschy
Appl. Opt. 48(9) 1721-1726 (2009)

Optically switchable grating based on dye-doped ferroelectric liquid crystal with high efficiency

Jiyoon Kim, Jeng-Hun Suh, Bo-Yeon Lee, Se-Um Kim, and Sin-Doo Lee
Opt. Express 23(10) 12619-12627 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentun of light and the laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  2. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  3. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
    [Crossref]
  4. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  5. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  6. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
    [Crossref]
  7. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref]
  8. J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
    [Crossref]
  9. J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
    [Crossref]
  10. A. Aleksanyan, N. Kravets, and E. Brasselet, “Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve,” Phys. Rev. Lett. 118(20), 203902 (2017).
    [Crossref]
  11. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  12. G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
    [Crossref]
  13. P. Chen, S. J. Ge, W. Duan, B. Y. Wei, G. X. Cui, W. Hu, and Y. Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
    [Crossref]
  14. R. Barboza, U. Bortolozzo, M. Clerc, S. Residori, and E. Vidal-Henriquez, “Optical vortex induction via light–matter interaction in liquid-crystal media,” Adv. Opt. Photonics 7(3), 635–683 (2015).
    [Crossref]
  15. P. Chen, B. Y. Wei, W. Hu, and Y. Q. Lu, “Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics,” Adv. Mater. 31, 1903665 (2019).
    [Crossref]
  16. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref]
  17. P. Yu, J. Li, X. Li, G. Schütz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
    [Crossref]
  18. S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal Dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
    [Crossref]
  19. Y. Liu, H. Liang, C. W. Chen, X. Xie, W. Hu, P. Chen, J. Wen, J. Zhou, T. H. Lin, and I. C. Khoo, “Ultrafast switching of optical singularity eigenstates with compact integrable liquid crystal structures,” Opt. Express 26(22), 28818–28826 (2018).
    [Crossref]
  20. A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
    [Crossref]
  21. E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).
  22. A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
    [Crossref]
  23. A. K. Srivastava, X. Q. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
    [Crossref]
  24. Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
    [Crossref]
  25. Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
    [Crossref]
  26. F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
    [Crossref]
  27. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref]
  28. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51(10), C1–C6 (2012).
    [Crossref]
  29. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).
  30. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).
  31. V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
    [Crossref]
  32. P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
    [Crossref]
  33. V. Denisenko, V. Shvedov, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, A. Volyar, M. Soskin, and Y. S. Kivshar, “Determination of topological charges of polychromatic optical vortices,” Opt. Express 17(26), 23374–23379 (2009).
    [Crossref]

2019 (4)

P. Chen, B. Y. Wei, W. Hu, and Y. Q. Lu, “Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics,” Adv. Mater. 31, 1903665 (2019).
[Crossref]

P. Yu, J. Li, X. Li, G. Schütz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

2018 (1)

2017 (4)

F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
[Crossref]

P. Chen, S. J. Ge, W. Duan, B. Y. Wei, G. X. Cui, W. Hu, and Y. Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

A. Aleksanyan, N. Kravets, and E. Brasselet, “Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve,” Phys. Rev. Lett. 118(20), 203902 (2017).
[Crossref]

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

2016 (2)

2015 (4)

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

A. K. Srivastava, X. Q. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

R. Barboza, U. Bortolozzo, M. Clerc, S. Residori, and E. Vidal-Henriquez, “Optical vortex induction via light–matter interaction in liquid-crystal media,” Adv. Opt. Photonics 7(3), 635–683 (2015).
[Crossref]

2014 (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

2013 (2)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

2012 (3)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51(10), C1–C6 (2012).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

2011 (3)

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

2009 (2)

2006 (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[Crossref]

2004 (1)

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentun of light and the laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Aleksanyan, A.

A. Aleksanyan, N. Kravets, and E. Brasselet, “Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve,” Phys. Rev. Lett. 118(20), 203902 (2017).
[Crossref]

Alfano, R.

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentun of light and the laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Ashrafi, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ashrafi, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Barboza, R.

R. Barboza, U. Bortolozzo, M. Clerc, S. Residori, and E. Vidal-Henriquez, “Optical vortex induction via light–matter interaction in liquid-crystal media,” Adv. Opt. Photonics 7(3), 635–683 (2015).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentun of light and the laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Bisoyi, H. K.

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Bortolozzo, U.

R. Barboza, U. Bortolozzo, M. Clerc, S. Residori, and E. Vidal-Henriquez, “Optical vortex induction via light–matter interaction in liquid-crystal media,” Adv. Opt. Photonics 7(3), 635–683 (2015).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Brasselet, E.

A. Aleksanyan, N. Kravets, and E. Brasselet, “Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve,” Phys. Rev. Lett. 118(20), 203902 (2017).
[Crossref]

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Cardano, F.

Chen, C. W.

Chen, P.

P. Chen, B. Y. Wei, W. Hu, and Y. Q. Lu, “Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics,” Adv. Mater. 31, 1903665 (2019).
[Crossref]

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Y. Liu, H. Liang, C. W. Chen, X. Xie, W. Hu, P. Chen, J. Wen, J. Zhou, T. H. Lin, and I. C. Khoo, “Ultrafast switching of optical singularity eigenstates with compact integrable liquid crystal structures,” Opt. Express 26(22), 28818–28826 (2018).
[Crossref]

P. Chen, S. J. Ge, W. Duan, B. Y. Wei, G. X. Cui, W. Hu, and Y. Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal Dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
[Crossref]

Chigrinov, V.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
[Crossref]

Chigrinov, V. G.

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
[Crossref]

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref]

A. K. Srivastava, X. Q. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref]

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).

Chu, J.

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Clerc, M.

R. Barboza, U. Bortolozzo, M. Clerc, S. Residori, and E. Vidal-Henriquez, “Optical vortex induction via light–matter interaction in liquid-crystal media,” Adv. Opt. Photonics 7(3), 635–683 (2015).
[Crossref]

Cui, G. X.

P. Chen, S. J. Ge, W. Duan, B. Y. Wei, G. X. Cui, W. Hu, and Y. Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

de Lisio, C.

Denisenko, V.

Denz, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Desyatnikov, A. S.

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Duan, W.

P. Chen, S. J. Ge, W. Duan, B. Y. Wei, G. X. Cui, W. Hu, and Y. Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Fan, F.

F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Foo, G.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[Crossref]

Ge, S. J.

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

P. Chen, S. J. Ge, W. Duan, B. Y. Wei, G. X. Cui, W. Hu, and Y. Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal Dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
[Crossref]

Gong, S. Q.

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).

Guo, Q.

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

Hirscher, M.

P. Yu, J. Li, X. Li, G. Schütz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Ho, J.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
[Crossref]

Hu, W.

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

P. Chen, B. Y. Wei, W. Hu, and Y. Q. Lu, “Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics,” Adv. Mater. 31, 1903665 (2019).
[Crossref]

Y. Liu, H. Liang, C. W. Chen, X. Xie, W. Hu, P. Chen, J. Wen, J. Zhou, T. H. Lin, and I. C. Khoo, “Ultrafast switching of optical singularity eigenstates with compact integrable liquid crystal structures,” Opt. Express 26(22), 28818–28826 (2018).
[Crossref]

P. Chen, S. J. Ge, W. Duan, B. Y. Wei, G. X. Cui, W. Hu, and Y. Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal Dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
[Crossref]

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Hu, Y.

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Huang, D. D.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
[Crossref]

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Johnson, E. G.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[Crossref]

Karimi, E.

Khazimullin, M.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
[Crossref]

Khoo, I. C.

Kiselev, A. D.

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Kivshar, Y. S.

Kozenkov, V.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
[Crossref]

Kozenkov, V. M.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).

Kravets, N.

A. Aleksanyan, N. Kravets, and E. Brasselet, “Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve,” Phys. Rev. Lett. 118(20), 203902 (2017).
[Crossref]

Krivoshey, A.

E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).

Krolikowski, W.

Kwok, H.

E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).

Kwok, H. S.

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
[Crossref]

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref]

A. K. Srivastava, X. Q. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref]

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
[Crossref]

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).

Lao, Z.

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Lavery, M. P. J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Lee, J. H.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[Crossref]

Li, J.

P. Yu, J. Li, X. Li, G. Schütz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Li, L.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Li, Q.

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Li, X.

P. Yu, J. Li, X. Li, G. Schütz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Liang, H.

Lin, T. H.

Liu, H.

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

Liu, N.

P. Yu, J. Li, X. Li, G. Schütz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Liu, Y.

Liu, Z.

Lu, Y. Q.

P. Chen, B. Y. Wei, W. Hu, and Y. Q. Lu, “Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics,” Adv. Mater. 31, 1903665 (2019).
[Crossref]

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

P. Chen, S. J. Ge, W. Duan, B. Y. Wei, G. X. Cui, W. Hu, and Y. Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal Dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
[Crossref]

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref]

A. K. Srivastava, X. Q. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Ma, L. L.

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal Dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
[Crossref]

Ma, Y.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Marrucci, L.

F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51(10), C1–C6 (2012).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Milione, G.

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Minchenko, M.

E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).

Miyamoto, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Molisch, A. F.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Molkin, V.

E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).

Morita, R.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Neshev, D. N.

Ni, J.

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Nolan, D.

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Omatsu, T.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Pikin, S.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
[Crossref]

Pozhidaev, E.

E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Residori, S.

R. Barboza, U. Bortolozzo, M. Clerc, S. Residori, and E. Vidal-Henriquez, “Optical vortex induction via light–matter interaction in liquid-crystal media,” Adv. Opt. Photonics 7(3), 635–683 (2015).
[Crossref]

Santamato, E.

Schütz, G.

P. Yu, J. Li, X. Li, G. Schütz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Shen, D.

Shen, Z. X.

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Shi, L.

F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
[Crossref]

Shi, L. Y.

Shvedov, V.

Slussarenko, S.

Soskin, M.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentun of light and the laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Srivastava, A.

E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).

Srivastava, A. K.

F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
[Crossref]

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref]

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

A. K. Srivastava, X. Q. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Sun, J.

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

Swartzlander, G. A.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[Crossref]

Sztul, H.

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Torgova, S.

E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Tur, M.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Vashchenko, V.

E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).

Verevochnikov, A.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
[Crossref]

Vidal-Henriquez, E.

R. Barboza, U. Bortolozzo, M. Clerc, S. Residori, and E. Vidal-Henriquez, “Optical vortex induction via light–matter interaction in liquid-crystal media,” Adv. Opt. Photonics 7(3), 635–683 (2015).
[Crossref]

Volyar, A.

Wang, C.

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Wang, J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, X.

F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
[Crossref]

Wang, X. Q.

Wei, B. Y.

P. Chen, B. Y. Wei, W. Hu, and Y. Q. Lu, “Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics,” Adv. Mater. 31, 1903665 (2019).
[Crossref]

P. Chen, S. J. Ge, W. Duan, B. Y. Wei, G. X. Cui, W. Hu, and Y. Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref]

Wen, J.

Wen, S. C.

F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
[Crossref]

Willner, A. E.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentun of light and the laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Wu, D.

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Wu, S. B.

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Xie, G.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Xie, X.

Xu, B.

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Xu, L.

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

Yan, K.

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

Yan, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, L.

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Yang, X.

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yao, L.

F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
[Crossref]

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Yu, P.

P. Yu, J. Li, X. Li, G. Schütz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Zhang, C.

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Zhang, S.

P. Yu, J. Li, X. Li, G. Schütz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Zhao, H.

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

Zhao, Z.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Zheng, Z. G.

Zhou, J.

ACS Nano (1)

P. Yu, J. Li, X. Li, G. Schütz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

ACS Photonics (1)

P. Chen, S. J. Ge, W. Duan, B. Y. Wei, G. X. Cui, W. Hu, and Y. Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Adv. Mater. (1)

P. Chen, B. Y. Wei, W. Hu, and Y. Q. Lu, “Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics,” Adv. Mater. 31, 1903665 (2019).
[Crossref]

Adv. Opt. Photonics (4)

R. Barboza, U. Bortolozzo, M. Clerc, S. Residori, and E. Vidal-Henriquez, “Optical vortex induction via light–matter interaction in liquid-crystal media,” Adv. Opt. Photonics 7(3), 635–683 (2015).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Crystals (1)

F. Fan, L. Yao, X. Wang, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and S. C. Wen, “Ferroelectric liquid crystal dammann grating by patterned photoalignment,” Crystals 7(3), 79 (2017).
[Crossref]

J. Soc. Inf. Disp. (1)

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Laser Photonics Rev. (1)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Light: Sci. Appl. (1)

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Sci. Appl. 6(7), e17011 (2017).
[Crossref]

Liq. Cryst. (1)

Q. Guo, L. Xu, J. Sun, X. Yang, H. Liu, K. Yan, H. Zhao, V. G. Chigrinov, and H. S. Kwok, “Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating,” Liq. Cryst. 46(9), 1383–1388 (2019).
[Crossref]

Nat. Commun. (1)

P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Nat. Photonics (2)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentun of light and the laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Phys. Rev. E (1)

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69(6), 061713 (2004).
[Crossref]

Phys. Rev. Lett. (5)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[Crossref]

A. Aleksanyan, N. Kravets, and E. Brasselet, “Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve,” Phys. Rev. Lett. 118(20), 203902 (2017).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Other (3)

E. Pozhidaev, V. G. Chigrinov, V. Vashchenko, M. Minchenko, A. Srivastava, V. Molkin, A. Krivoshey, S. Torgova, and H. Kwok, “High frequency low voltage shock-free ferroelectric liquid crystal: a new electro- optical mode with electrically suppressed helix,” in Proceedings of the 31th International Display Research Conference EuroDisplay (2011).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) The schematic illustration of the FLC molecule orientation (yellow ellipse) under opposite electric field polarities, and respective micrographs recorded by a polarized optical microscope. θ is the tilt angle, i.e., half of the cone angle of the FLC helical structure. The black dashed line indicates the alignment direction of FLC helix. Yellow double-ended arrow indicates the direction of polarizer (P), while white indicates analyzer (A). (b) The theoretical phase pattern, director distribution and experimental micrograph of a nematic LC q-plate with q = 0.5. All scale bars are 100 µm. (c) The optical setup to realize the fast switchable OAM. FLC-WP represents ferroelectric liquid crystal wave-plate, and QWP represents quarter-wave plate.
Fig. 2.
Fig. 2. Diffraction patterns at 632.8 nm with the applied voltage of FLC-HWP: (a) +2.5 V and (e) −2.5 V. Yellow circles represent the resultant incident polarization states (RCP and LCP) before illuminating the q-plate, and white circles indicate the generated OVs (LCP, m = −1, and RCP, m = +1). Corresponding OAM detection results based on the astigmatic transformation method are shown in (b) and (f), and the polarization measurements are shown in (c), (d) and (g), (h), respectively. White double-ended arrows represent the polarization direction of the second polarizer (i.e., analyzer). The color bar indicates the relative optical intensity. (i) The waveform of the applied square wave to drive the FLC-WP: 5 Vpp, 500 Hz (solid line) and 10 Vpp, 1 kHz (dashed line). (j) The response curve of the OAM switching, where the polarization direction of the analyzer is set to be perpendicular to that of the polarizer. Solid and dashed lines correspond to the condition of 5 Vpp and 10 Vpp, respectively.
Fig. 3.
Fig. 3. Diffraction patterns at 632.8 nm without two QWPs under the applied voltage of FLC-HWP: (a) +2.5 V and (c) −2.5 V. The resultant incident polarization states (horizontal and vertical) of the q-plate are represented by the yellow arrows, and white arrows indicate the generated CVBs with P = 1 (radial and azimuthal). Corresponding polarization detections after transmission through a rotating analyzer labeled by white double-ended arrows are shown in (b) and (d), respectively.
Fig. 4.
Fig. 4. Diffraction patterns at 520 nm without two QWPs under the applied voltage of FLC-QWP: (a) +2.5 V and (e) −2.5 V. The resultant incident polarization states (horizontal and RCP) of the q-plate with q = 0.5 are represented by the yellow arrows, and white arrows indicate the generated CVB with P = 1 radial polarization and OV with LCP m = −1. Corresponding polarization detections after transmission through the analyzer labeled by white double-ended arrows are shown in (b) and (f), respectively. For the q-plate with q = 1.5, experimental results are shown in (c), (d), and (g), (h), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E out = J q J QWP J FLC - HWP E in = [ cos ( 2 α ) sin ( 2 α ) sin ( 2 α ) cos ( 2 α ) ] [ 1 i i 1 ] [ cos ( 2 β ) sin ( 2 β ) sin ( 2 β ) cos ( 2 β ) ] [ 1 0 ] E 0 = [ cos 2 ( α β ) i sin 2 ( α + β ) sin 2 ( α β ) + i cos 2 ( α + β ) ] E 0 ,
E out  =  { E 0 e i 2 q φ [ 1 + i ] , β = 0 i E 0 e i 2 q φ [ 1 i ] , β = 45 .

Metrics