Abstract

We demonstrate a combination of optical and electronic feedback that significantly narrows the linewidth of distributed Bragg reflector lasers (DBRs). We use optical feedback from a long external fiber path to reduce the high-frequency noise of the laser. An electro-optic modulator placed inside the optical feedback path allows us to apply electronic feedback to the laser frequency with very large bandwidth, enabling robust and stable locking to a reference cavity that suppresses low-frequency components of laser noise. The combination of optical and electronic feedback allows us to significantly lower the frequency noise power spectral density of the laser across all frequencies and narrow its linewidth from a free-running value of 1.1 MHz to a stabilized value of 1.9 kHz, limited by the detection system resolution. This approach enables the construction of robust lasers with sub-kHz linewidth based on DBRs across a broad range of wavelengths.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback

Polnop Samutpraphoot, Sophie Weber, Qian Lin, Dorian Gangloff, Alexei Bylinskii, Boris Braverman, Akio Kawasaki, Christoph Raab, Wilhelm Kaenders, and Vladan Vuletić
Opt. Express 22(10) 11592-11599 (2014)

Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity

Fang Wei, Fei Yang, Xi Zhang, Dan Xu, Meng Ding, Li Zhang, Dijun Chen, Haiwen Cai, Zujie Fang, and Gu Xijia
Opt. Express 24(15) 17406-17415 (2016)

External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55μm and methods for linewidth measurement

Shayne Bennetts, Gordon D. McDonald, Kyle S. Hardman, John E. Debs, Carlos C. N. Kuhn, John D. Close, and Nicholas P Robins
Opt. Express 22(9) 10642-10654 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Metcalf and P. Van der Straten, Laser cooling and trapping. Graduate texts in contemporary physics (Springer, 1999).
  2. J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
    [Crossref]
  3. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002).
    [Crossref]
  4. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9(9), 366–368 (1962).
    [Crossref]
  5. S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE J. Quantum Electron. 10(4), 413–427 (1974).
    [Crossref]
  6. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
    [Crossref]
  7. K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
    [Crossref]
  8. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
    [Crossref]
  9. Q. Lin, M. A. Van Camp, H. Zhang, B. Jelenković, and V. Vuletić, “Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth,” Opt. Lett. 37(11), 1989–1991 (2012).
    [Crossref]
  10. P. Samutpraphoot, S. Weber, Q. Lin, D. Gangloff, A. Bylinskii, B. Braverman, A. Kawasaki, C. Raab, W. Kaenders, and V. Vuletić, “Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback,” Opt. Express 22(10), 11592–11599 (2014).
    [Crossref]
  11. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
    [Crossref]
  12. A. Schremer and C. L. Tang, “Single-frequency tunable external-cavity semiconductor laser using an electro-optic birefringent modulator,” Appl. Phys. Lett. 55(1), 19–21 (1989).
    [Crossref]
  13. B. Wacogne, J.-P. Goedgebuer, and H. Porte, “Single lithium niobate crystal for mode selection and phase modulation in a tunable extended-cavity laser diode,” Opt. Lett. 19(17), 1334–1336 (1994).
    [Crossref]
  14. J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
    [Crossref]
  15. D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
    [Crossref]
  16. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
    [Crossref]
  17. W. Lewoczko-Adamczyk, C. Pyrlik, J. Häger, S. Schwertfeger, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity,” Opt. Express 23(8), 9705–9709 (2015).
    [Crossref]
  18. W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6(1), 7371 (2015).
    [Crossref]
  19. F. Wei, F. Yang, X. Zhang, D. Xu, M. Ding, L. Zhang, D. Chen, H. Cai, Z. Fang, and G. Xijia, “Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity,” Opt. Express 24(15), 17406–17415 (2016).
    [Crossref]
  20. A. Heinz, “Frequency stabilization of lasers in an optical clock experiment,” Master’s thesis, Friedrich-Alexander University Erlangen-Nuremberg (2015).
  21. T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56(2), R1095–R1098 (1997).
    [Crossref]
  22. D. Lenstra, B. Verbeek, and A. D. Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
    [Crossref]
  23. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  24. K. Aoyama, N. Yokota, and H. Yasaka, “Strategy of optical negative feedback for narrow linewidth semiconductor lasers,” Opt. Express 26(16), 21159–21169 (2018).
    [Crossref]
  25. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
    [Crossref]
  26. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37(15), 3295–3298 (1998).
    [Crossref]

2018 (1)

2016 (1)

2015 (2)

W. Lewoczko-Adamczyk, C. Pyrlik, J. Häger, S. Schwertfeger, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity,” Opt. Express 23(8), 9705–9709 (2015).
[Crossref]

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6(1), 7371 (2015).
[Crossref]

2014 (2)

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

P. Samutpraphoot, S. Weber, Q. Lin, D. Gangloff, A. Bylinskii, B. Braverman, A. Kawasaki, C. Raab, W. Kaenders, and V. Vuletić, “Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback,” Opt. Express 22(10), 11592–11599 (2014).
[Crossref]

2012 (1)

2010 (2)

2009 (1)

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

2008 (1)

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref]

2005 (1)

2002 (1)

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

1998 (1)

1997 (1)

T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56(2), R1095–R1098 (1997).
[Crossref]

1995 (1)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

1994 (1)

1991 (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[Crossref]

1989 (1)

A. Schremer and C. L. Tang, “Single-frequency tunable external-cavity semiconductor laser using an electro-optic birefringent modulator,” Appl. Phys. Lett. 55(1), 19–21 (1989).
[Crossref]

1985 (1)

D. Lenstra, B. Verbeek, and A. D. Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

1974 (1)

S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE J. Quantum Electron. 10(4), 413–427 (1974).
[Crossref]

1962 (1)

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9(9), 366–368 (1962).
[Crossref]

Aoyama, K.

K. Aoyama, N. Yokota, and H. Yasaka, “Strategy of optical negative feedback for narrow linewidth semiconductor lasers,” Opt. Express 26(16), 21159–21169 (2018).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Boef, A. D.

D. Lenstra, B. Verbeek, and A. D. Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

Bourassin-Bouchet, C.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

Braverman, B.

Bylinskii, A.

Cai, H.

Carlson, R. O.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9(9), 366–368 (1962).
[Crossref]

Chen, D.

Corwin, K. L.

Cundiff, S. T.

Di Domenico, G.

Ding, M.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Eliyahu, D.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6(1), 7371 (2015).
[Crossref]

Epstein, R. J.

Erbert, G.

Fang, Z.

Fenner, G. E.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9(9), 366–368 (1962).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Gangloff, D.

Goedgebuer, J.-P.

Häger, J.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Hall, R. N.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9(9), 366–368 (1962).
[Crossref]

Hand, C. F.

Heinz, A.

A. Heinz, “Frequency stabilization of lasers in an optical clock experiment,” Master’s thesis, Friedrich-Alexander University Erlangen-Nuremberg (2015).

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[Crossref]

Holman, K. W.

Hong, F.-L.

Hosaka, K.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Hudson, D. D.

Ilchenko, V. S.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6(1), 7371 (2015).
[Crossref]

Inaba, H.

Jelenkovic, B.

Jones, D. J.

Jones, R. J.

Kaenders, W.

Katori, H.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref]

Katsuyama, T.

Kawasaki, A.

Kawato, S.

Kim, J.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

Kimble, H. J.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref]

Kingsley, J. D.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9(9), 366–368 (1962).
[Crossref]

Kobayashi, T.

Kobayashi, W.

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

Kohno, T.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Landragin, A.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

Le Gouët, J.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

Lenstra, D.

D. Lenstra, B. Verbeek, and A. D. Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

Lewoczko-Adamczyk, W.

Liang, W.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6(1), 7371 (2015).
[Crossref]

Lin, Q.

Lours, M.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

Lu, Z.-T.

Maleki, L.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6(1), 7371 (2015).
[Crossref]

Matsko, A. B.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6(1), 7371 (2015).
[Crossref]

Metcalf, H. J.

H. J. Metcalf and P. Van der Straten, Laser cooling and trapping. Graduate texts in contemporary physics (Springer, 1999).

Minoshima, K.

Monroe, C.

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Nakajima, Y.

O’Hara, K. M.

T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56(2), R1095–R1098 (1997).
[Crossref]

Onae, A.

Pereira Dos Santos, F.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

Peters, A.

Porte, H.

Pyrlik, C.

Raab, C.

Samutpraphoot, P.

Savard, T. A.

T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56(2), R1095–R1098 (1997).
[Crossref]

Savchenkov, A. A.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6(1), 7371 (2015).
[Crossref]

Schilt, S.

Schremer, A.

A. Schremer and C. L. Tang, “Single-frequency tunable external-cavity semiconductor laser using an electro-optic birefringent modulator,” Appl. Phys. Lett. 55(1), 19–21 (1989).
[Crossref]

Schwertfeger, S.

Seidel, D.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6(1), 7371 (2015).
[Crossref]

Soltys, T. J.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9(9), 366–368 (1962).
[Crossref]

Tang, C. L.

A. Schremer and C. L. Tang, “Single-frequency tunable external-cavity semiconductor laser using an electro-optic birefringent modulator,” Appl. Phys. Lett. 55(1), 19–21 (1989).
[Crossref]

Thomann, P.

Thomas, J. E.

T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56(2), R1095–R1098 (1997).
[Crossref]

Tränkle, G.

Van Camp, M. A.

Van der Straten, P.

H. J. Metcalf and P. Van der Straten, Laser cooling and trapping. Graduate texts in contemporary physics (Springer, 1999).

Verbeek, B.

D. Lenstra, B. Verbeek, and A. D. Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

Vuletic, V.

Wacogne, B.

Wang, S.

S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE J. Quantum Electron. 10(4), 413–427 (1974).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Weber, S.

Wei, F.

Wicht, A.

Wieman, C. E.

Xijia, G.

Xu, D.

Yang, F.

Yasaka, H.

K. Aoyama, N. Yokota, and H. Yasaka, “Strategy of optical negative feedback for narrow linewidth semiconductor lasers,” Opt. Express 26(16), 21159–21169 (2018).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

Yasuda, M.

Ye, J.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref]

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref]

Yokota, N.

K. Aoyama, N. Yokota, and H. Yasaka, “Strategy of optical negative feedback for narrow linewidth semiconductor lasers,” Opt. Express 26(16), 21159–21169 (2018).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

Yoshioka, R.

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

Zhang, H.

Zhang, L.

Zhang, X.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Appl. Phys. Express (1)

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

Appl. Phys. Lett. (1)

A. Schremer and C. L. Tang, “Single-frequency tunable external-cavity semiconductor laser using an electro-optic birefringent modulator,” Appl. Phys. Lett. 55(1), 19–21 (1989).
[Crossref]

IEEE J. Quantum Electron. (2)

D. Lenstra, B. Verbeek, and A. D. Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE J. Quantum Electron. 10(4), 413–427 (1974).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

Nat. Commun. (1)

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6(1), 7371 (2015).
[Crossref]

Nature (1)

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002).
[Crossref]

Opt. Commun. (1)

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (1)

T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56(2), R1095–R1098 (1997).
[Crossref]

Phys. Rev. Lett. (1)

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9(9), 366–368 (1962).
[Crossref]

Rev. Sci. Instrum. (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[Crossref]

Science (1)

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref]

Other (2)

H. J. Metcalf and P. Van der Straten, Laser cooling and trapping. Graduate texts in contemporary physics (Springer, 1999).

A. Heinz, “Frequency stabilization of lasers in an optical clock experiment,” Master’s thesis, Friedrich-Alexander University Erlangen-Nuremberg (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Schematic of complete laser system with optical feedback, PDH locking, and noise characterization. The major sub-components of the setup are the laser with optical feedback through an EOM, PDH locking to the ultra-stable cavity, and the primary laser output, used to probe a test cavity and characterize the laser noise. Red solid lines represent the free-space laser beams, blue solid lines are polarization maintaining (PM) fibers, and black lines are electrical signals (dashed lines indicate RF signals). Abbreviations are: (A)PD for (avalanche) photodiode, ND for neutral density, LO for local oscillator, HWP and QWP for half- and quarter- waveplate respectively, PBS for polarizing beamsplitter. (b) A qualitative comparison of the laser noise between the free-running and fully locked configurations obtained by scanning the laser line across the $1.31 \mathrm {\:{MHz}}$ linewidth test cavity at a rate of $3.3 \mathrm {\:{GHz/s}}$.
Fig. 2.
Fig. 2. Laser frequency noise spectra in different operation conditions. “Optical Feedback” indicates configuration with optical feedback to the laser but without locking to the reference cavity. “PI Gain Only” refers to locking with only the servo-electronic signal while “Fully Locked” setup enables the “direct feedback” path shown in Fig. 1(a).
Fig. 3.
Fig. 3. Laser lineshapes derived from noise power spectra shown in Fig. 2. Note the servo bumps on the “PI Gain Only” and “Fully Locked” data. Numbers indicate the full width at half maximum (FWHM) of the laser line in each configuration.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ E ( τ ) = E 0 2 e i 2 π ν 0 τ exp ( 2 0 S δ ν ( f ) sin 2 ( π f τ ) f 2 d f ) .
S E ( ν ) = 2 e i 2 π ν 0 τ Γ E ( τ ) d τ .

Metrics