Abstract

The realization of optical interconnects between multimode (MM) optical fibers and waveguides based on a self-writing process in photopolymer media represents an efficient approach for fast and easy-to-implement connection of light-guiding elements. When light propagates through photopolymer media, it modulates the material properties of the media and confines the spreading of the light beam to create a waveguide along the beam propagation direction. This self-writing process can be realized with a single photopolymer medium and is also suited to connect optical fibers or waveguides with active elements such as light sources and detectors. Numerical simulations of the underlying light-induced polymerization process is carried out by using a diffusion based material model which takes account both monomer diffusion and its conversion to polymer chains in regions exposed to light fields. In this work experimental results obtained from a one-polymer approach are validated with theoretical predictions from the diffusion model. The study involved the demonstration of temporal dynamics and transmittance from self-written waveguide (SWW) couplers during the self-writing process. The measured attenuation coefficient from experiment αexperiment = (8.43 ± 0.3) × 10−5 dB/µm showed good agreement with the theoretically predicted attenuation coefficient αsimulation = 7.93 × 10−5 dB/µm, thus demonstrating a successful application of the diffusion model to epoxy based acrylate SWWs. For comparison, attenuation measurements between optical fibers with SWWs as interconnects and one without SWW, i.e. with an air gap in between, were performed. The obtained results reveal that the theoretical approach correctly describes the waveguide formation process so that in the next step the studies can be extended towards including further relevant parameters such as temperature.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Self-written waveguides in photopolymer

Ra’ed Malallah, Derek Cassidy, Inbarasan Muniraj, James P. Ryle, John J. Healy, and John T. Sheridan
Appl. Opt. 57(22) E80-E88 (2018)

Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer

Haoyu Li, Yue Qi, Ra’ed Malallah, and John T. Sheridan
J. Opt. Soc. Am. B 32(5) 912-922 (2015)

Controlling the trajectories of self-written waveguides in photopolymer

Ra’ed Malallah, Haoyu Li, Inbarasan Muniraj, Derek Cassidy, Nebras Al-Attar, John J. Healy, and John T. Sheridan
J. Opt. Soc. Am. B 35(8) 2046-2056 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Fabrication and sensing applications of multilayer polymer optical waveguides,” Procedia Technol. 26, 517–523 (2016).
    [Crossref]
  2. W. M. Pätzold, C. Reinhardt, A. Demircan, and U. Morgner, “Cascaded-focus laser writing of low-loss waveguides in polymers,” Opt. Lett. 41(6), 1269–1272 (2016).
    [Crossref]
  3. K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80(3), 621–626 (2005).
    [Crossref]
  4. H. D. Nguyen, U. Hollenbach, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography,” Appl. Opt. 55(8), 1906–1912 (2016).
    [Crossref]
  5. S. Zakariyah, P. Conway, D. Hutt, D. Selviah, K. Wang, J. Rygate, J. Calver, and W. Kandulski, “Fabrication of polymer waveguides by laser ablation using a 355nm wavelength Nd:YAG laser,” J. Lightwave Technol. 29(23), 3566–3576 (2011).
    [Crossref]
  6. S. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18(13), 1035–1037 (1993).
    [Crossref]
  7. A. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21(1), 24–26 (1996).
    [Crossref]
  8. H. Li, Y. Qi, J. P. Ryle, and J. T. Sheridan, “Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material,” Appl. Opt. 53(34), 8086–8094 (2014).
    [Crossref]
  9. T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57(1), 1104–1113 (1998).
    [Crossref]
  10. H. Li, Y. Dong, P. Xu, Y. Qi, C. Guo, and J. Sheridan, “Beam self-cleanup by use of self-written waveguide generated by photopolymerization,” Opt. Lett. 40(13), 2981–2984 (2015).
    [Crossref]
  11. T. Yoshimura, D. Takeda, T. Sato, Y. Kinugasa, and H. Nawata, “Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances,” Opt. Commun. 362, 81–86 (2016).
    [Crossref]
  12. K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27(20), 1782–1784 (2002).
    [Crossref]
  13. A. Sukhorukov, S. Shoji, and Y. S. Kivshar, “Self-written waveguides in photosensitive materials,” J. Nonlinear Opt. Phys. Mater. 11(04), 391–407 (2002).
    [Crossref]
  14. K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for ( 2 + 1 ) D Solitary Wave Guide Formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
    [Crossref]
  15. R. Malallah, D. Cassidy, I. Muniraj, J. P. Ryle, J. J. Healy, and J. T. Sheridan, “Self-written waveguides in photopolymer,” Appl. Opt. 57(22), E80–E88 (2018).
    [Crossref]
  16. R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-Written waveguides formation in photopolymer media,” Polymers (Basel, Switz.) 9(12), 337 (2017).
    [Crossref]
  17. H. Li, Y. Qi, R. Malallah, and J. T. Sheridan, “Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer,” J. Opt. Soc. Am. B 32(5), 912–922 (2015).
    [Crossref]
  18. A. Günther, S. Schneider, M. Rezem, Y. Wang, U. Gleissner, T. Hanemann, L. Overmeyer, E. Reithmeier, M. Rahlves, and B. Roth, “Automated misalignment compensating interconnects based on self-written waveguides,” J. Lightwave Technol. 35(13), 2678–2684 (2017).
    [Crossref]
  19. M. Kagami, T. Yamashita, M. Yonemura, and A. Kawasaki, “Light-Induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
    [Crossref]
  20. J. Missinne, S. Beri, M. Dash, S. Samal, P. Dubruel, J. Watté, and G. Van Steenberge, “Curing kinetics of step-index and graded-index single mode polymer self-written waveguides,” Opt. Mater. Express 4(7), 1324–1335 (2014).
    [Crossref]
  21. A. Günther, A. Petermann, U. Gleissner, T. Hanemann, E. Reithmeier, M. Rahlves, M. Meinhardt-Wollweber, U. Morgner, and B. Roth, “Cladded self-written multimode step-index waveguides using a one-polymer approach,” Opt. Lett. 40(8), 1830–1833 (2015).
    [Crossref]
  22. Lifante Pedrola Ginés, Beam Propagation Method for Design of Optical Waveguide Devices (John Wiley & Sons, 2015).
  23. W. Heller, “Remarks on refractive index mixture rules,” J. Phys. Chem. 69(4), 1123–1129 (1965).
    [Crossref]
  24. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010).
    [Crossref]
  25. M. Suar, M. Rahlves, E. Reithmeier, and B. Roth, “Numerical investigations on polymer-based bent couplers,” J. Opt. Soc. Am. B 35(8), 1896–1904 (2018).
    [Crossref]
  26. S. Gallego, A. Márquez, M. Ortu no, J. Francés, S. Marini, A. Beléndez, and I. Pascual, “Surface relief model for photopolymers without cover plating,” Opt. Express 19(11), 10896–10906 (2011).
    [Crossref]
  27. O. Kashin, E. Tolstik, V. Matusevich, and R. Kowarschik, “Numerical investigation of the (1+1)D self-trapping of laser beams in polymeric films based on polymethylmethacrylate and phenanthrenequinone,” J. Opt. Soc. Am. B 26(11), 2152–2156 (2009).
    [Crossref]
  28. R. Malallah, H. Li, I. Muniraj, D. Cassidy, N. Al-Attar, J. J. Healy, and J. T. Sheridan, “Controlling the trajectories of self-written waveguides in photopolymer,” J. Opt. Soc. Am. B 35(8), 2046–2056 (2018).
    [Crossref]

2018 (3)

2017 (2)

R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-Written waveguides formation in photopolymer media,” Polymers (Basel, Switz.) 9(12), 337 (2017).
[Crossref]

A. Günther, S. Schneider, M. Rezem, Y. Wang, U. Gleissner, T. Hanemann, L. Overmeyer, E. Reithmeier, M. Rahlves, and B. Roth, “Automated misalignment compensating interconnects based on self-written waveguides,” J. Lightwave Technol. 35(13), 2678–2684 (2017).
[Crossref]

2016 (4)

T. Yoshimura, D. Takeda, T. Sato, Y. Kinugasa, and H. Nawata, “Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances,” Opt. Commun. 362, 81–86 (2016).
[Crossref]

M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Fabrication and sensing applications of multilayer polymer optical waveguides,” Procedia Technol. 26, 517–523 (2016).
[Crossref]

W. M. Pätzold, C. Reinhardt, A. Demircan, and U. Morgner, “Cascaded-focus laser writing of low-loss waveguides in polymers,” Opt. Lett. 41(6), 1269–1272 (2016).
[Crossref]

H. D. Nguyen, U. Hollenbach, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography,” Appl. Opt. 55(8), 1906–1912 (2016).
[Crossref]

2015 (3)

2014 (2)

2011 (2)

2010 (1)

2009 (1)

2007 (1)

M. Kagami, T. Yamashita, M. Yonemura, and A. Kawasaki, “Light-Induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

2005 (1)

K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80(3), 621–626 (2005).
[Crossref]

2004 (1)

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for ( 2 + 1 ) D Solitary Wave Guide Formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref]

2002 (2)

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27(20), 1782–1784 (2002).
[Crossref]

A. Sukhorukov, S. Shoji, and Y. S. Kivshar, “Self-written waveguides in photosensitive materials,” J. Nonlinear Opt. Phys. Mater. 11(04), 391–407 (2002).
[Crossref]

1998 (1)

T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57(1), 1104–1113 (1998).
[Crossref]

1996 (1)

1993 (1)

1965 (1)

W. Heller, “Remarks on refractive index mixture rules,” J. Phys. Chem. 69(4), 1123–1129 (1965).
[Crossref]

Al-Attar, N.

Babeva, T.

Beléndez, A.

Beri, S.

Calver, J.

Carre, C.

Cassidy, D.

Conway, P.

Cregut, O.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for ( 2 + 1 ) D Solitary Wave Guide Formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref]

Crégut, O.

Dash, M.

de Sterke, C. M.

T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57(1), 1104–1113 (1998).
[Crossref]

Demircan, A.

Dong, Y.

Dorkenoo, K.

Dorkenoo, K. D.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for ( 2 + 1 ) D Solitary Wave Guide Formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref]

Dubruel, P.

Fort, A.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for ( 2 + 1 ) D Solitary Wave Guide Formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27(20), 1782–1784 (2002).
[Crossref]

Francés, J.

Frisken, S.

Gallego, S.

Gillot, F.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for ( 2 + 1 ) D Solitary Wave Guide Formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27(20), 1782–1784 (2002).
[Crossref]

Ginés, Lifante Pedrola

Lifante Pedrola Ginés, Beam Propagation Method for Design of Optical Waveguide Devices (John Wiley & Sons, 2015).

Gleissner, U.

Günther, A.

Guo, C.

Hanemann, T.

Healy, J. J.

Heller, W.

W. Heller, “Remarks on refractive index mixture rules,” J. Phys. Chem. 69(4), 1123–1129 (1965).
[Crossref]

Hengsbach, S.

Hollenbach, U.

Hutt, D.

Kagami, M.

M. Kagami, T. Yamashita, M. Yonemura, and A. Kawasaki, “Light-Induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

Kandulski, W.

Kashin, O.

Kawasaki, A.

M. Kagami, T. Yamashita, M. Yonemura, and A. Kawasaki, “Light-Induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

Kelly, D. P.

R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-Written waveguides formation in photopolymer media,” Polymers (Basel, Switz.) 9(12), 337 (2017).
[Crossref]

Kewitsch, A.

Kinugasa, Y.

T. Yoshimura, D. Takeda, T. Sato, Y. Kinugasa, and H. Nawata, “Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances,” Opt. Commun. 362, 81–86 (2016).
[Crossref]

Kivshar, Y. S.

A. Sukhorukov, S. Shoji, and Y. S. Kivshar, “Self-written waveguides in photosensitive materials,” J. Nonlinear Opt. Phys. Mater. 11(04), 391–407 (2002).
[Crossref]

Kowarschik, R.

Leblond, H.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for ( 2 + 1 ) D Solitary Wave Guide Formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref]

Li, H.

Mackey, D.

Mager, L.

Malallah, R.

Marini, S.

Márquez, A.

Martin, S.

Matusevich, V.

Meinhardt-Wollweber, M.

Missinne, J.

Mohr, J.

Monro, T. M.

T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57(1), 1104–1113 (1998).
[Crossref]

Morgner, U.

Muniraj, I.

Nawata, H.

T. Yoshimura, D. Takeda, T. Sato, Y. Kinugasa, and H. Nawata, “Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances,” Opt. Commun. 362, 81–86 (2016).
[Crossref]

Naydenova, I.

Nguyen, H. D.

Ortu no, M.

Ostrzinski, U.

Overmeyer, L.

Pascual, I.

Pätzold, W. M.

Petermann, A.

Pfeiffer, K.

Poladian, L.

T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57(1), 1104–1113 (1998).
[Crossref]

Pun, E.

K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80(3), 621–626 (2005).
[Crossref]

Qi, Y.

Rahlves, M.

Reinhardt, C.

Reithmeier, E.

Rezem, M.

Roth, B.

Rygate, J.

Ryle, J. P.

Samal, S.

Sato, T.

T. Yoshimura, D. Takeda, T. Sato, Y. Kinugasa, and H. Nawata, “Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances,” Opt. Commun. 362, 81–86 (2016).
[Crossref]

Schneider, S.

Selviah, D.

Sheridan, J.

Sheridan, J. T.

Shoji, S.

A. Sukhorukov, S. Shoji, and Y. S. Kivshar, “Self-written waveguides in photosensitive materials,” J. Nonlinear Opt. Phys. Mater. 11(04), 391–407 (2002).
[Crossref]

Sonnefraud, Y.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for ( 2 + 1 ) D Solitary Wave Guide Formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref]

Suar, M.

Sukhorukov, A.

A. Sukhorukov, S. Shoji, and Y. S. Kivshar, “Self-written waveguides in photosensitive materials,” J. Nonlinear Opt. Phys. Mater. 11(04), 391–407 (2002).
[Crossref]

Takeda, D.

T. Yoshimura, D. Takeda, T. Sato, Y. Kinugasa, and H. Nawata, “Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances,” Opt. Commun. 362, 81–86 (2016).
[Crossref]

Toal, V.

Tolstik, E.

Tung, K.

K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80(3), 621–626 (2005).
[Crossref]

Van Steenberge, G.

Wang, K.

Wang, Y.

Watté, J.

Wong, W.

K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80(3), 621–626 (2005).
[Crossref]

Xu, P.

Yamashita, T.

M. Kagami, T. Yamashita, M. Yonemura, and A. Kawasaki, “Light-Induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

Yariv, A.

Yonemura, M.

M. Kagami, T. Yamashita, M. Yonemura, and A. Kawasaki, “Light-Induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

Yoshimura, T.

T. Yoshimura, D. Takeda, T. Sato, Y. Kinugasa, and H. Nawata, “Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances,” Opt. Commun. 362, 81–86 (2016).
[Crossref]

Zakariyah, S.

Appl. Opt. (3)

Appl. Phys. (1)

K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80(3), 621–626 (2005).
[Crossref]

IEICE Trans. Electron. (1)

M. Kagami, T. Yamashita, M. Yonemura, and A. Kawasaki, “Light-Induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Nonlinear Opt. Phys. Mater. (1)

A. Sukhorukov, S. Shoji, and Y. S. Kivshar, “Self-written waveguides in photosensitive materials,” J. Nonlinear Opt. Phys. Mater. 11(04), 391–407 (2002).
[Crossref]

J. Opt. Soc. Am. B (5)

J. Phys. Chem. (1)

W. Heller, “Remarks on refractive index mixture rules,” J. Phys. Chem. 69(4), 1123–1129 (1965).
[Crossref]

Opt. Commun. (1)

T. Yoshimura, D. Takeda, T. Sato, Y. Kinugasa, and H. Nawata, “Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances,” Opt. Commun. 362, 81–86 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Opt. Mater. Express (1)

Phys. Rev. E (1)

T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57(1), 1104–1113 (1998).
[Crossref]

Phys. Rev. Lett. (1)

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for ( 2 + 1 ) D Solitary Wave Guide Formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref]

Polymers (Basel, Switz.) (1)

R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-Written waveguides formation in photopolymer media,” Polymers (Basel, Switz.) 9(12), 337 (2017).
[Crossref]

Procedia Technol. (1)

M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Fabrication and sensing applications of multilayer polymer optical waveguides,” Procedia Technol. 26, 517–523 (2016).
[Crossref]

Other (1)

Lifante Pedrola Ginés, Beam Propagation Method for Design of Optical Waveguide Devices (John Wiley & Sons, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The schematic of the experimental set-up for fabrication of SWWs. CCD : Charged Coupled Device, PD : Power Detector.
Fig. 2.
Fig. 2. (a) An SWW with a length 1800 µm is created by a laser beam at 638 nm with 15 mW power from a MM fiber having a 50 µm core diameter, (b) the traced path remained in the sample after removal of excitation. The light propagates from left to right.
Fig. 3.
Fig. 3. (a) A 235 µm SWW created between MM fibers (different diameters) at a wavelength of 406 nm and a power of 800 µW. (b) A beam at 638 nm propagates in the existing channel. The light propagates from left to right.
Fig. 4.
Fig. 4. Evolution of a straight waveguide in experiment. The light propagates from left to right.
Fig. 5.
Fig. 5. Intensity profile I(x,z) as function of time t demonstrating the formation of a straight SWW during an exemplary simulation. (a) Intensity profile at time $t = \Delta t$, (b) at $t = 17\Delta t$, and (c) at $t = 34\Delta t$. $\Delta t = {1}$ s (the time increment step size). For details, see text.
Fig. 6.
Fig. 6. Transmitted power during the writing process. (a) Normalized transmitted power as recorded by the power detector for a 340 µm long SWW in experiment. (b) Normalized output power for a 340 µm long SWW in the simulation.
Fig. 7.
Fig. 7. Loss measurements at 638 nm for polymer SWWs from experiment and simulation.
Fig. 8.
Fig. 8. Loss measurements at 638 nm for the case of an air gap between the fibers in experiment.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 i n 0 k 0 u ( x , z ) z = 2 u ( x , z ) 2 x + k 0 2 ( n ( x , z ) 2 n 0 2 ) u ( x , z ) .
M ( x , z , t ) t = ( D M ( x , z , t ) K r M ( x , z , t ) I ( x , z , t ) ( 1 n ( x , z , t ) n f ) ,
P ( x , z , t ) t = K r M ( x , z , t ) I ( x , z , t ) ( 1 n ( x , z , t ) n f ) .
n 2 1 n 2 + 2 = Φ m n m 2 1 n m 2 + 2 + Φ p n p 2 1 n p 2 + 2 + Φ a n a 2 1 n a 2 + 2 ,
u ( x , z = 0 ) = exp ( x 2 x 0 2 ) .
L d B ( l ) = 10 log ( I 0 / I l ) .

Metrics