Abstract

A novel method assisted by feed-forward artificial neural network model for joint identification of in-phase/quadrature (IQ) time-skews and power-imbalances for coherent optical transmitters is proposed in this paper. This method not only reduces the complexity of hardware design but also significantly improves the accuracy of time-skew/power-imbalance estimation, therefore largely enhances the efficiency of coherent transmitter offline calibration. The proposed method works in the heterodyne detection manner to detect both the time- and power- imperfections. A modified 2 × 2 real-valued channel equalizer for QPSK and 16-QAM signals is applied to extract the channel coefficients, which can fully reconstruct the signals. A key tool using artificial neural networks is used to establish the explicit numerical relationships between the values of IQ time-skew/power-imbalance and the channel coefficients. Both simulation and experimental tests are carried out to verify the capability of the proposed method. Simulation results show that the mean square errors (MSE) of IQ time-skew and power-imbalance estimation can reach below 0.03% of the symbol period and 5.72 × 10−5 at the optical signal-to-noise ratio value of 20 dB. Experiment tests based on 100-Gb/s and 200-Gb/s coherent optical modules show that the mean absolute errors (MAEs) of estimated IQ time-skew and power-imbalance are 0.145 ps and 0.01 for 32-GBaud QPSK signal and 0.162ps and 0.006 for 32-GBaud 16-QAM signal. A demonstrative calibration process is applied to a coherent optical module with pre-set IQ time-skew and power-imbalance by improving the Q2 factor of 32-Gbaud 16-QAM signals from 12.9 dB to 20.3 dB in a coherent optical transmission link at back-to-back case.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modulation-format-transparent IQ imbalance estimation of dual-polarization optical transmitter based on maximum likelihood independent component analysis

Qun Zhang, Yanfu Yang, Changjian Guo, Xian Zhou, Yong Yao, Alan Pak Tao Lau, and Chao Lu
Opt. Express 27(13) 18055-18068 (2019)

Modulation format identification and OSNR monitoring using density distributions in Stokes axes for digital coherent receivers

Anlin Yi, Lianshan Yan, Hengjiang Liu, Lin Jiang, Yan Pan, Bin Luo, and Wei Pan
Opt. Express 27(4) 4471-4479 (2019)

Detection and alignment of dual-polarization optical quadrature amplitude transmitter IQ and XY skews using reconfigurable interference

Yang Yue, Bo Zhang, Qiang Wang, Rob Lofland, Jason O’Neil, and Jon Anderson
Opt. Express 24(6) 6719-6734 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
    [Crossref]
  2. J. X. Cai, H. G. Batshon, H. Zhang, M. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.4 Tb/s transmission over transpacific distance using 200 Gb/s and dual wavelength 400 Gb/s 16QAM at 6.0 b/s/Hz spectral efficiency,” Opt. Express 22(8), 9116–9122 (2014).
    [Crossref]
  3. D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
    [Crossref]
  4. C. Fludger and T. Kupfer, “Transmitter impairment mitigation and monitoring for high baud-rate, high order modulation systems,” in European Conference on Optical Communication, (2016), pp. 1–3.
  5. H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An accurate and robust inphase/quadrature skew measurement for coherent optical transmitter by image spectrum analyzing,” in European Conference on Optical Communication, (2017), pp. 1–3.
  6. “Implementation agreement for integrated polarization multiplexed quadrature modulated transmitters for metro applications,” https://www.oiforum.com/wp-content/uploads/2019/01/OIF-PMQ-MTX-01.0-IA_final.pdf (2015).
  7. Q. Zhang, Y. Yang, C. Guo, X. Zhou, Y. Yao, A. P. T. Lau, and C. Lu, “Algorithms for blind separation and estimation of transmitter and receiver IQ imbalances,” J. Lightwave Technol. 37(10), 2201–2208 (2019).
    [Crossref]
  8. Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of dual-polarization optical quadrature amplitude transmitter IQ and XY skews using reconfigurable interference,” Opt. Express 24(6), 6719–6734 (2016).
    [Crossref]
  9. J. C. M. Diniz, F. D. Ros, E. P. da Silva, R. T. Jones, and D. Zibar, “Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm,” J. Lightwave Technol. 36(12), 2450–2462 (2018).
    [Crossref]
  10. Q. Wang, Y. Yue, and J. Anderson, “Detection and compensation of power imbalance, modulation strength, and bias drift in coherent iq transmitter through digital filter,” Opt. Express 26(18), 23069–23083 (2018).
    [Crossref]
  11. E. P. Silva and D. Zibar, “Widely linear equalization for IQ imbalance and skew compensation in optical coherent receivers,” J. Lightwave Technol. 34(15), 3577–3586 (2016).
    [Crossref]
  12. M. Paskov, D. Lavery, and S. J. Savory, “Blind equalization of receiver In-phase/Quadrature skew in the presence of Nyquist filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
    [Crossref]
  13. R. Rios-Müller, J. Renaudier, and G. Charlet, “Blind receiver skew compensation and estimation for long-haul non-dispersion managed systems using adaptive equalizer,” J. Lightwave Technol. 33(7), 1315–1318 (2015).
    [Crossref]
  14. M. S. Faruk and K. Kikuchi, “Compensation for In-Phase/Quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
    [Crossref]
  15. T.-H. Nguyen, P. Scalart, M. Gay, L. Bramerie, O. Sentieys, J.-C. Simon, C. Peucheret, and M. Joindot, “Blind adaptive transmitter IQ imbalance compensation in M-QAM optical coherent systems,” in IEEE International Conference on Communications, (2016), pp. 1–6.
  16. Q. Zhang, Y. Yang, C. Guo, X. Zhou, Y. Yao, A. P. T. Lau, and C. Lu, “Modulation-format-transparent IQ imbalance estimation of dual-polarization optical transmitter based on maimum likelihood independent component analysis,” Opt. Express 27(13), 18055–18068 (2019).
    [Crossref]
  17. D. Zibar, L. H. H. de Carvalho, M. Piels, A. Doberstein, J. Diniz, B. Nebendahl, C. Franciscangelis, J. Estaran, H. Haisch, and N. G. Gonzalez, “Application of machine learning techniques for amplitude and phase noise characterization,” J. Lightwave Technol. 33(7), 1333–1343 (2015).
    [Crossref]
  18. D. Zibar, M. Piels, R. Jones, and C. G. Schäeffer, “Machine learning techniques in optical communication,” J. Lightwave Technol. 34(6), 1442–1452 (2016).
    [Crossref]
  19. J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightwave Technol. 35(4), 868–875 (2017).
    [Crossref]
  20. J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, “Artificial intelligence (AI) methods in optical networks: A comprehensive survey,” Opt. Switch. Netw. 28, 43–57 (2018).
    [Crossref]
  21. V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.
  22. X. Dai, M. Luo, and X. Li, “Machine learning aided In-phase/Quadrature skew and imbalance calibration for coherent optical transmitters,” in Optical Fiber Communication Conference, (Optical Society of America, San Diego, 2019), paper W2A.44.
  23. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  24. T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express 21(5), 5833–5841 (2013).
    [Crossref]

2019 (2)

2018 (3)

2017 (1)

2016 (4)

2015 (2)

2014 (1)

2013 (4)

D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
[Crossref]

M. Paskov, D. Lavery, and S. J. Savory, “Blind equalization of receiver In-phase/Quadrature skew in the presence of Nyquist filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
[Crossref]

M. S. Faruk and K. Kikuchi, “Compensation for In-Phase/Quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express 21(5), 5833–5841 (2013).
[Crossref]

2009 (1)

Agrell, E.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Anderson, J.

Batshon, H. G.

Bergano, N. S.

Bowers, J. E.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Bramerie, L.

T.-H. Nguyen, P. Scalart, M. Gay, L. Bramerie, O. Sentieys, J.-C. Simon, C. Peucheret, and M. Joindot, “Blind adaptive transmitter IQ imbalance compensation in M-QAM optical coherent systems,” in IEEE International Conference on Communications, (2016), pp. 1–6.

Brandt-Pearce, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Cai, J. X.

Chamania, M.

J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, “Artificial intelligence (AI) methods in optical networks: A comprehensive survey,” Opt. Switch. Netw. 28, 43–57 (2018).
[Crossref]

Charlet, G.

Chen, H.

H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An accurate and robust inphase/quadrature skew measurement for coherent optical transmitter by image spectrum analyzing,” in European Conference on Optical Communication, (2017), pp. 1–3.

Chraplyvy, A. R.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

da Silva, E. P.

Dai, X.

X. Dai, M. Luo, and X. Li, “Machine learning aided In-phase/Quadrature skew and imbalance calibration for coherent optical transmitters,” in Optical Fiber Communication Conference, (Optical Society of America, San Diego, 2019), paper W2A.44.

de Carvalho, L. H. H.

de Miguel, I.

J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, “Artificial intelligence (AI) methods in optical networks: A comprehensive survey,” Opt. Switch. Netw. 28, 43–57 (2018).
[Crossref]

Diniz, J.

Diniz, J. C. M.

Djordjevic, I. B.

Doberstein, A.

Duran, R. J.

J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, “Artificial intelligence (AI) methods in optical networks: A comprehensive survey,” Opt. Switch. Netw. 28, 43–57 (2018).
[Crossref]

Eggleton, B. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Estaran, J.

Faruk, M. S.

M. S. Faruk and K. Kikuchi, “Compensation for In-Phase/Quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

Fischer, J. K.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Fludger, C.

C. Fludger and T. Kupfer, “Transmitter impairment mitigation and monitoring for high baud-rate, high order modulation systems,” in European Conference on Optical Communication, (2016), pp. 1–3.

Foursa, D. G.

Franciscangelis, C.

Gay, M.

T.-H. Nguyen, P. Scalart, M. Gay, L. Bramerie, O. Sentieys, J.-C. Simon, C. Peucheret, and M. Joindot, “Blind adaptive transmitter IQ imbalance compensation in M-QAM optical coherent systems,” in IEEE International Conference on Communications, (2016), pp. 1–6.

Gisin, N.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Gonzalez, N. G.

Gui, T.

Guo, C.

Haisch, H.

Hoffmann, S.

Hoshida, T.

H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An accurate and robust inphase/quadrature skew measurement for coherent optical transmitter by image spectrum analyzing,” in European Conference on Optical Communication, (2017), pp. 1–3.

Huang, M.-F.

Huang, Y.-K.

Inada, Y.

V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.

Inoue, T.

V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.

Jin, C.

Joindot, M.

T.-H. Nguyen, P. Scalart, M. Gay, L. Bramerie, O. Sentieys, J.-C. Simon, C. Peucheret, and M. Joindot, “Blind adaptive transmitter IQ imbalance compensation in M-QAM optical coherent systems,” in IEEE International Conference on Communications, (2016), pp. 1–6.

Jones, R.

Jones, R. T.

Jovanovski, L.

V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.

Jukan, A.

J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, “Artificial intelligence (AI) methods in optical networks: A comprehensive survey,” Opt. Switch. Netw. 28, 43–57 (2018).
[Crossref]

Kamalov, V.

V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.

Karlsson, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kato, K.

H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An accurate and robust inphase/quadrature skew measurement for coherent optical transmitter by image spectrum analyzing,” in European Conference on Optical Communication, (2017), pp. 1–3.

Kikuchi, K.

M. S. Faruk and K. Kikuchi, “Compensation for In-Phase/Quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

Krummrich, P. M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kschischang, F. R.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kupfer, T.

C. Fludger and T. Kupfer, “Transmitter impairment mitigation and monitoring for high baud-rate, high order modulation systems,” in European Conference on Optical Communication, (2016), pp. 1–3.

Lau, A. P. T.

Lavery, D.

M. Paskov, D. Lavery, and S. J. Savory, “Blind equalization of receiver In-phase/Quadrature skew in the presence of Nyquist filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
[Crossref]

Li, C.

Li, X.

X. Dai, M. Luo, and X. Li, “Machine learning aided In-phase/Quadrature skew and imbalance calibration for coherent optical transmitters,” in Optical Fiber Communication Conference, (Optical Society of America, San Diego, 2019), paper W2A.44.

Li, Z.

Lofland, R.

Lord, A.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Lu, C.

Luo, M.

X. Dai, M. Luo, and X. Li, “Machine learning aided In-phase/Quadrature skew and imbalance calibration for coherent optical transmitters,” in Optical Fiber Communication Conference, (Optical Society of America, San Diego, 2019), paper W2A.44.

Mata, J.

J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, “Artificial intelligence (AI) methods in optical networks: A comprehensive survey,” Opt. Switch. Netw. 28, 43–57 (2018).
[Crossref]

Mateo, E.

D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
[Crossref]

V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.

Mazurczyk, M.

Meng, L.

Merayo, N.

J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, “Artificial intelligence (AI) methods in optical networks: A comprehensive survey,” Opt. Switch. Netw. 28, 43–57 (2018).
[Crossref]

Mohs, G.

Nakamura, K.

V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.

Nakashima, H.

H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An accurate and robust inphase/quadrature skew measurement for coherent optical transmitter by image spectrum analyzing,” in European Conference on Optical Communication, (2017), pp. 1–3.

Nebendahl, B.

Nguyen, T.-H.

T.-H. Nguyen, P. Scalart, M. Gay, L. Bramerie, O. Sentieys, J.-C. Simon, C. Peucheret, and M. Joindot, “Blind adaptive transmitter IQ imbalance compensation in M-QAM optical coherent systems,” in IEEE International Conference on Communications, (2016), pp. 1–6.

Noe, R.

O’Neil, J.

Oyama, T.

H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An accurate and robust inphase/quadrature skew measurement for coherent optical transmitter by image spectrum analyzing,” in European Conference on Optical Communication, (2017), pp. 1–3.

Paskov, M.

M. Paskov, D. Lavery, and S. J. Savory, “Blind equalization of receiver In-phase/Quadrature skew in the presence of Nyquist filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
[Crossref]

Peucheret, C.

T.-H. Nguyen, P. Scalart, M. Gay, L. Bramerie, O. Sentieys, J.-C. Simon, C. Peucheret, and M. Joindot, “Blind adaptive transmitter IQ imbalance compensation in M-QAM optical coherent systems,” in IEEE International Conference on Communications, (2016), pp. 1–6.

Pfau, T.

Piels, M.

Pilipetskii, A.

Prat, J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Qian, D.

Renaudier, J.

Richardson, D. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Rios-Müller, R.

Roberts, K.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Ros, F. D.

Savory, S. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

M. Paskov, D. Lavery, and S. J. Savory, “Blind equalization of receiver In-phase/Quadrature skew in the presence of Nyquist filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
[Crossref]

Scalart, P.

T.-H. Nguyen, P. Scalart, M. Gay, L. Bramerie, O. Sentieys, J.-C. Simon, C. Peucheret, and M. Joindot, “Blind adaptive transmitter IQ imbalance compensation in M-QAM optical coherent systems,” in IEEE International Conference on Communications, (2016), pp. 1–6.

Schäeffer, C. G.

Secondini, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Sentieys, O.

T.-H. Nguyen, P. Scalart, M. Gay, L. Bramerie, O. Sentieys, J.-C. Simon, C. Peucheret, and M. Joindot, “Blind adaptive transmitter IQ imbalance compensation in M-QAM optical coherent systems,” in IEEE International Conference on Communications, (2016), pp. 1–6.

Silva, E. P.

Simon, J.-C.

T.-H. Nguyen, P. Scalart, M. Gay, L. Bramerie, O. Sentieys, J.-C. Simon, C. Peucheret, and M. Joindot, “Blind adaptive transmitter IQ imbalance compensation in M-QAM optical coherent systems,” in IEEE International Conference on Communications, (2016), pp. 1–6.

Singh, S. K.

J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, “Artificial intelligence (AI) methods in optical networks: A comprehensive survey,” Opt. Switch. Netw. 28, 43–57 (2018).
[Crossref]

Sinkin, O.

Srinivasan, S.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Su, X.

H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An accurate and robust inphase/quadrature skew measurement for coherent optical transmitter by image spectrum analyzing,” in European Conference on Optical Communication, (2017), pp. 1–3.

Tao, Z.

H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An accurate and robust inphase/quadrature skew measurement for coherent optical transmitter by image spectrum analyzing,” in European Conference on Optical Communication, (2017), pp. 1–3.

Thrane, J.

Tomkos, I.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Vusirikala, V.

V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.

Wang, Q.

Wass, J.

Winzer, P.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Xiao, X.

Yaman, F.

D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
[Crossref]

V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.

Yang, Q.

Yang, Y.

Yao, Y.

Yi, X.

Yue, Y.

Zhang, B.

Zhang, H.

Zhang, Q.

Zhang, S.

D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
[Crossref]

V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.

Zhang, Y.

Zhou, X.

Zibar, D.

IEEE Photonics J. (1)

M. S. Faruk and K. Kikuchi, “Compensation for In-Phase/Quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Paskov, D. Lavery, and S. J. Savory, “Blind equalization of receiver In-phase/Quadrature skew in the presence of Nyquist filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
[Crossref]

J. Lightwave Technol. (8)

E. P. Silva and D. Zibar, “Widely linear equalization for IQ imbalance and skew compensation in optical coherent receivers,” J. Lightwave Technol. 34(15), 3577–3586 (2016).
[Crossref]

J. C. M. Diniz, F. D. Ros, E. P. da Silva, R. T. Jones, and D. Zibar, “Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm,” J. Lightwave Technol. 36(12), 2450–2462 (2018).
[Crossref]

D. Zibar, L. H. H. de Carvalho, M. Piels, A. Doberstein, J. Diniz, B. Nebendahl, C. Franciscangelis, J. Estaran, H. Haisch, and N. G. Gonzalez, “Application of machine learning techniques for amplitude and phase noise characterization,” J. Lightwave Technol. 33(7), 1333–1343 (2015).
[Crossref]

D. Zibar, M. Piels, R. Jones, and C. G. Schäeffer, “Machine learning techniques in optical communication,” J. Lightwave Technol. 34(6), 1442–1452 (2016).
[Crossref]

Q. Zhang, Y. Yang, C. Guo, X. Zhou, Y. Yao, A. P. T. Lau, and C. Lu, “Algorithms for blind separation and estimation of transmitter and receiver IQ imbalances,” J. Lightwave Technol. 37(10), 2201–2208 (2019).
[Crossref]

J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightwave Technol. 35(4), 868–875 (2017).
[Crossref]

T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
[Crossref]

R. Rios-Müller, J. Renaudier, and G. Charlet, “Blind receiver skew compensation and estimation for long-haul non-dispersion managed systems using adaptive equalizer,” J. Lightwave Technol. 33(7), 1315–1318 (2015).
[Crossref]

J. Opt. (1)

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Opt. Express (6)

Q. Wang, Y. Yue, and J. Anderson, “Detection and compensation of power imbalance, modulation strength, and bias drift in coherent iq transmitter through digital filter,” Opt. Express 26(18), 23069–23083 (2018).
[Crossref]

Q. Zhang, Y. Yang, C. Guo, X. Zhou, Y. Yao, A. P. T. Lau, and C. Lu, “Modulation-format-transparent IQ imbalance estimation of dual-polarization optical transmitter based on maimum likelihood independent component analysis,” Opt. Express 27(13), 18055–18068 (2019).
[Crossref]

T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express 21(5), 5833–5841 (2013).
[Crossref]

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of dual-polarization optical quadrature amplitude transmitter IQ and XY skews using reconfigurable interference,” Opt. Express 24(6), 6719–6734 (2016).
[Crossref]

D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
[Crossref]

J. X. Cai, H. G. Batshon, H. Zhang, M. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.4 Tb/s transmission over transpacific distance using 200 Gb/s and dual wavelength 400 Gb/s 16QAM at 6.0 b/s/Hz spectral efficiency,” Opt. Express 22(8), 9116–9122 (2014).
[Crossref]

Opt. Switch. Netw. (1)

J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, “Artificial intelligence (AI) methods in optical networks: A comprehensive survey,” Opt. Switch. Netw. 28, 43–57 (2018).
[Crossref]

Other (6)

V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, and Y. Inada, “Evolution from 8-QAM live traffic to PS 64-QAM with neural-network-based nonlinearity compensation on 11000 km open subsea cable,” in Optical Fiber Communication Conference, (San Diego, 2018), paper Th4D.5.

X. Dai, M. Luo, and X. Li, “Machine learning aided In-phase/Quadrature skew and imbalance calibration for coherent optical transmitters,” in Optical Fiber Communication Conference, (Optical Society of America, San Diego, 2019), paper W2A.44.

T.-H. Nguyen, P. Scalart, M. Gay, L. Bramerie, O. Sentieys, J.-C. Simon, C. Peucheret, and M. Joindot, “Blind adaptive transmitter IQ imbalance compensation in M-QAM optical coherent systems,” in IEEE International Conference on Communications, (2016), pp. 1–6.

C. Fludger and T. Kupfer, “Transmitter impairment mitigation and monitoring for high baud-rate, high order modulation systems,” in European Conference on Optical Communication, (2016), pp. 1–3.

H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An accurate and robust inphase/quadrature skew measurement for coherent optical transmitter by image spectrum analyzing,” in European Conference on Optical Communication, (2017), pp. 1–3.

“Implementation agreement for integrated polarization multiplexed quadrature modulated transmitters for metro applications,” https://www.oiforum.com/wp-content/uploads/2019/01/OIF-PMQ-MTX-01.0-IA_final.pdf (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. OSNR penalty for 32-GBaud coherent optical 100-Gb/s QPSK and 200-Gb/s 16-QAM signals with different values of (a) IQ time-skew and (b) IQ power-imbalance.
Fig. 2.
Fig. 2. Principle of the proposed method for detection and calibration of IQ time-skew and power-imbalance.
Fig. 3.
Fig. 3. Recovered constellation points (a) based on modified real-valued channel equalization and (b) based on conventional real-valued channel equalization.
Fig. 4.
Fig. 4. Artificial neural network for modeling the projections between channel coefficients and IQ power-imbalance and time-skew.
Fig. 5.
Fig. 5. Featured coefficients for simulation data with (a) varying power-imbalance and perfect time-skew; (b) varying time-skew and perfect power-imbalance; and (c) increasing power-imbalance and time-skew. Time-skew is in the unit of percentage, and power-imbalance is in the unit of unity.
Fig. 6.
Fig. 6. Feature vectors as inputs to MLP for simulation data with (a) varying power-imbalance and perfect time-skew; (b) varying time-skew and perfect power-imbalance; and (c) increasing power-imbalance and time-skew.
Fig. 7.
Fig. 7. (a) Training and testing results of time-skew for simulation data; (b) Training and testing results of power-imbalance for simulation data.
Fig. 8.
Fig. 8. Experimental setup for the identification of IQ time-skew and power-imbalance at the transmitter side based on heterodyne coherent optical detection with only one single PD.
Fig. 9.
Fig. 9. Feature vectors as inputs to MLP for QPSK signal with (a) varying power-imbalance and perfect time-skew; (b) varying time-skew and perfect power-imbalance; and (c) increasing power-imbalance and time-skew.
Fig. 10.
Fig. 10. Random selection of training sets and testing sets for QPSK experimental data.
Fig. 11.
Fig. 11. (a) Training and testing results of time-skew for QPSK signal; (b) training and testing results of power-imbalance for QPSK signal.
Fig. 12.
Fig. 12. Feature vectors as inputs to MLP for 16-QAM signal with (a) varying power-imbalance and perfect time-skew; (b) varying time-skew and perfect power-imbalance; and (c) increasing power-imbalance and time-skew.
Fig. 13.
Fig. 13. Random selection of training sets and testing sets for 16-QAM experimental data.
Fig. 14.
Fig. 14. (a) Training and testing results of time-skew for 16-QAM signal; (b) E Training and testing results of power-imbalance for 16-QAM signal.
Fig. 15.
Fig. 15. Recovered constellations before (a) and after calibration (b) from condition of IQ time-skew of 5ps and power-imbalance of 1.05 times.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H i i H i i + μ E I R e ( X o u t ) R e ( X i n )
H q i H q i + μ E I R e ( X o u t ) I m ( X i n )
H i q H i q + μ E Q I m ( X o u t ) R e ( X i n )
H q q H q q + μ E Q I m ( X o u t ) I m ( X i n )
X o u t = R e ( X o u t ) + j I m ( X o u t )
R e ( X o u t ) = H i i R e ( X i n ) + H q i I m ( X i n )
I m ( X o u t ) = H i q R e ( X i n ) + H q q I m ( X i n )

Metrics