Abstract

We investigate circularly polarized photoluminescence (PL) in the MoS2/MoO3 heterostructure, which was fabricated by transferring MoS2 monolayer to cover the MoO3 few layers on the SiO2/Si substrate. It is shown that the PL with the same helicity as the excitation light is dominant due to the inherent chiral optical selectivity, which allows exciting one of the valleys in MoS2 monolayer. The degree of polarization (DP), which characterizes the intensity difference of two chiral components of PL, is unequal for the right-handed and left-handed circularly polarized excitations in the MoS2/MoO3 heterostructure. This effect is different from the one in pristine MoS2. Our Raman spectra results together with ab initio calculations indicate the p-doped features of the MoS2 when it covers the MoO3 layers. Thus the possible explanation of the unequal DP is that the p-doping process generates a built-in voltage and therefore brings the difference of electron-hole overlaps between K and K′ valleys. Namely the asymmetric valley polarization may be obtained in the MoS2/MoO3 heterostructure. Consequently, the circularly polarized PL caused by the electron-hole recombination at K and K′ valleys manifests unequal DP for the right-handed and left-handed helix excitations. This asymmetric effect is further enhanced by decreasing the temperature in the MoS2/MoO3 heterostructure. Our investigation provides a unique platform for developing novel two-dimensional valleytronic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

13 January 2020: Typographical corrections were made to the figure captions of Figs. 3–5 and the funding section.


OSA Recommended Articles
Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [Invited]

Chitraleema Chakraborty, Arunabh Mukherjee, Liangyu Qiu, and A. Nick Vamivakas
Opt. Mater. Express 9(3) 1479-1487 (2019)

Valley selective optical control of excitons in 2D semiconductors using a chiral metasurface [Invited]

S. Guddala, R. Bushati, M. Li, A. B. Khanikaev, and V. M. Menon
Opt. Mater. Express 9(2) 536-543 (2019)

Absorption and emission modulation in a MoS2–GaN (0001) heterostructure by interface phonon–exciton coupling

Yuba Poudel, Jagoda Sławińska, Priya Gopal, Sairaman Seetharaman, Zachariah Hennighausen, Swastik Kar, Francis D’souza, Marco Buongiorno Nardelli, and Arup Neogi
Photon. Res. 7(12) 1511-1520 (2019)

References

  • View by:
  • |
  • |
  • |

  1. O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. De Poortere, and M. Shayegan, “Valley Susceptibility of an Interacting Two-Dimensional Electron System,” Phys. Rev. Lett. 97(18), 186404 (2006).
    [Crossref]
  2. A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
    [Crossref]
  3. D. Xiao, W. Yao, and Q. Niu, “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport,” Phys. Rev. Lett. 99(23), 236809 (2007).
    [Crossref]
  4. F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald, “Spontaneous Quantum Hall States in Chirally Stacked Few-Layer Graphene Systems,” Phys. Rev. Lett. 106(15), 156801 (2011).
    [Crossref]
  5. X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
    [Crossref]
  6. G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101(22), 221907 (2012).
    [Crossref]
  7. G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
    [Crossref]
  8. D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, and A. Kormányos, “Breaking of Valley Degeneracy by Magnetic Field in Monolayer MoSe2,” Phys. Rev. Lett. 114(3), 037401 (2015).
    [Crossref]
  9. F. Gao, Y. Gong, M. Titze, R. Almeida, P. M. Ajayan, and H. Li, “Valley trion dynamics in monolayer MoSe2,” Phys. Rev. B 94(24), 245413 (2016).
    [Crossref]
  10. Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
    [Crossref]
  11. J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
    [Crossref]
  12. L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, “Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides,” Nat. Phys. 15(3), 228–232 (2019).
    [Crossref]
  13. D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
    [Crossref]
  14. K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
    [Crossref]
  15. K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
    [Crossref]
  16. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
    [Crossref]
  17. W. B. Shi, L. Zhang, D. Wang, R. L. Zhang, Y. Y. Zhu, L. H. Zhang, R. W. Peng, W. Z. Bao, R. H. Fan, and M. Wang, “Hybrid coupling enhances photoluminescence of monolayer MoS2 on plasmonic nanostructures,” Opt. Lett. 43(17), 4128 (2018).
    [Crossref]
  18. S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
    [Crossref]
  19. Y. Zhou, X. Hu, W. Gao, H. Song, S. Chu, H. Yang, and Q. Gong, “Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures,” Opt. Laser Technol. 102, 268–273 (2018).
    [Crossref]
  20. L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
    [Crossref]
  21. Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
    [Crossref]
  22. J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
    [Crossref]
  23. K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
    [Crossref]
  24. Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
    [Crossref]
  25. O. L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, and A. Kis, “Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction,” Nano Lett. 16(9), 5792–5797 (2016).
    [Crossref]
  26. Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, and Y. Iwasa, “Electrically Switchable Chiral Light-Emitting Transistor,” Science 344(6185), 725–728 (2014).
    [Crossref]
  27. W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
    [Crossref]
  28. D. Wang, J.-N. Li, Y. Zhou, D.-H. Xu, X. Xiong, R.-W. Peng, and M. Wang, “Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness,” Appl. Phys. Lett. 108(5), 053107 (2016).
    [Crossref]
  29. H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, “Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy,” ACS Nano 10(5), 5230–5236 (2016).
    [Crossref]
  30. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
    [Crossref]
  31. X. Zhang, H. Nan, S. Xiao, X. Wan, Z. Ni, X. Gu, and K. Ostrikov, “Shape-uniform, high-quality monolayer MoS2 crystals for gate-tunable photoluminescence,” ACS Appl. Mater. Interfaces 9(48), 42121–42130 (2017).
    [Crossref]
  32. W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
    [Crossref]
  33. A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, and K. I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49–52 (2013).
    [Crossref]
  34. A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
    [Crossref]
  35. P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
    [Crossref]
  36. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558–561 (1993).
    [Crossref]
  37. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
    [Crossref]
  38. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
    [Crossref]
  39. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864–B871 (1964).
    [Crossref]
  40. W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
    [Crossref]
  41. H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integration,” Phys. Rev. B 13(12), 5188–5192 (1976).
    [Crossref]
  42. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref]
  43. The core-valence interactions are treated by the projector augmented wave (PAW) method [38], where the plane wave expansion is truncated with a cutoff energy 520 eV. We employ the exchange-correlation functional as the local density approximation (LDA) [39,40]. The convergence tolerance for the self-consistent-field iteration was set to 10−4 eV, and the two dimensional 3×2 Monkhorst-Pack grid in momentum space is applied [41]. To minimize the lattice mismatching effect, a$\mbox{p}\left( {2\sqrt 3 \times 5} \right)$p(23×5)MoS2 supercell and p(3×4) MoO3 supercell were constructed into the MoS2/MoO3 heterostructure. To confirm this result, we also constructed a larger supercell of MoS2/MoO3 heterostructure with p(6×6) MoS2 supercell and p(4×5) MoO3 supercell. In this group of test, we employed the generalized gradient approximation (GGA) [42] as the exchange-correlation function where the two dimensional 22 Monkhorst-Pack grid in momentum space is applied [41].
  44. L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
    [Crossref]
  45. S. Mouri, Y. Miyauchi, and K. Matsuda, “Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping,” Nano Lett. 13(12), 5944–5948 (2013).
    [Crossref]
  46. Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref]
  47. A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal’ko, “Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(4), 045416 (2013).
    [Crossref]
  48. Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene Quantum Dots Doping of MoS2 Monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
    [Crossref]
  49. D. Wang, W.-B. Shi, H. Jing, R.-L. Zhang, Y. Zhu, J. Su, L.-H. Zhang, R. Peng, W. Bao, R.-H. Fan, and M. Wang, “Photon-induced carrier recombination in the non-layered-structured hybrid organic-inorganic perovskite nano-sheets,” Opt. Express 26(21), 27504 (2018).
    [Crossref]

2019 (2)

L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, “Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides,” Nat. Phys. 15(3), 228–232 (2019).
[Crossref]

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

2018 (4)

Y. Zhou, X. Hu, W. Gao, H. Song, S. Chu, H. Yang, and Q. Gong, “Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures,” Opt. Laser Technol. 102, 268–273 (2018).
[Crossref]

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

W. B. Shi, L. Zhang, D. Wang, R. L. Zhang, Y. Y. Zhu, L. H. Zhang, R. W. Peng, W. Z. Bao, R. H. Fan, and M. Wang, “Hybrid coupling enhances photoluminescence of monolayer MoS2 on plasmonic nanostructures,” Opt. Lett. 43(17), 4128 (2018).
[Crossref]

D. Wang, W.-B. Shi, H. Jing, R.-L. Zhang, Y. Zhu, J. Su, L.-H. Zhang, R. Peng, W. Bao, R.-H. Fan, and M. Wang, “Photon-induced carrier recombination in the non-layered-structured hybrid organic-inorganic perovskite nano-sheets,” Opt. Express 26(21), 27504 (2018).
[Crossref]

2017 (3)

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

X. Zhang, H. Nan, S. Xiao, X. Wan, Z. Ni, X. Gu, and K. Ostrikov, “Shape-uniform, high-quality monolayer MoS2 crystals for gate-tunable photoluminescence,” ACS Appl. Mater. Interfaces 9(48), 42121–42130 (2017).
[Crossref]

2016 (9)

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

O. L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, and A. Kis, “Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction,” Nano Lett. 16(9), 5792–5797 (2016).
[Crossref]

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

D. Wang, J.-N. Li, Y. Zhou, D.-H. Xu, X. Xiong, R.-W. Peng, and M. Wang, “Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness,” Appl. Phys. Lett. 108(5), 053107 (2016).
[Crossref]

H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, “Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy,” ACS Nano 10(5), 5230–5236 (2016).
[Crossref]

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

F. Gao, Y. Gong, M. Titze, R. Almeida, P. M. Ajayan, and H. Li, “Valley trion dynamics in monolayer MoSe2,” Phys. Rev. B 94(24), 245413 (2016).
[Crossref]

2015 (3)

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, and A. Kormányos, “Breaking of Valley Degeneracy by Magnetic Field in Monolayer MoSe2,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref]

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene Quantum Dots Doping of MoS2 Monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref]

2014 (6)

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
[Crossref]

Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, and Y. Iwasa, “Electrically Switchable Chiral Light-Emitting Transistor,” Science 344(6185), 725–728 (2014).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref]

2013 (3)

A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, and K. I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49–52 (2013).
[Crossref]

S. Mouri, Y. Miyauchi, and K. Matsuda, “Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping,” Nano Lett. 13(12), 5944–5948 (2013).
[Crossref]

A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal’ko, “Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(4), 045416 (2013).
[Crossref]

2012 (6)

Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref]

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref]

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101(22), 221907 (2012).
[Crossref]

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

2011 (1)

F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald, “Spontaneous Quantum Hall States in Chirally Stacked Few-Layer Graphene Systems,” Phys. Rev. Lett. 106(15), 156801 (2011).
[Crossref]

2007 (2)

A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
[Crossref]

D. Xiao, W. Yao, and Q. Niu, “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport,” Phys. Rev. Lett. 99(23), 236809 (2007).
[Crossref]

2006 (1)

O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. De Poortere, and M. Shayegan, “Valley Susceptibility of an Interacting Two-Dimensional Electron System,” Phys. Rev. Lett. 97(18), 186404 (2006).
[Crossref]

1999 (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

1996 (2)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

1993 (1)

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558–561 (1993).
[Crossref]

1985 (1)

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
[Crossref]

1976 (1)

H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integration,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

1965 (1)

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

1964 (1)

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

Aballe, L.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Agraït, N.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Ahn, S.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Ajayan, P. M.

F. Gao, Y. Gong, M. Titze, R. Almeida, P. M. Ajayan, and H. Li, “Valley trion dynamics in monolayer MoSe2,” Phys. Rev. B 94(24), 245413 (2016).
[Crossref]

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Allain, A.

O. L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, and A. Kis, “Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction,” Nano Lett. 16(9), 5792–5797 (2016).
[Crossref]

Almeida, R.

F. Gao, Y. Gong, M. Titze, R. Almeida, P. M. Ajayan, and H. Li, “Valley trion dynamics in monolayer MoSe2,” Phys. Rev. B 94(24), 245413 (2016).
[Crossref]

Aloni, S.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Alù, A.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Amand, T.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Anderson, Z.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, and A. Kormányos, “Breaking of Valley Degeneracy by Magnetic Field in Monolayer MoSe2,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref]

Arefe, G.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Ashby, P. D.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Bae, J. J.

H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, “Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy,” ACS Nano 10(5), 5230–5236 (2016).
[Crossref]

Bao, W.

D. Wang, W.-B. Shi, H. Jing, R.-L. Zhang, Y. Zhu, J. Su, L.-H. Zhang, R. Peng, W. Bao, R.-H. Fan, and M. Wang, “Photon-induced carrier recombination in the non-layered-structured hybrid organic-inorganic perovskite nano-sheets,” Opt. Express 26(21), 27504 (2018).
[Crossref]

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Bao, W. Z.

Beenakker, C. W. J.

A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
[Crossref]

Bolotin, K. I.

A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, and K. I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49–52 (2013).
[Crossref]

Borys, N. J.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Bouet, L.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Bruno, F. Y.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Burkard, G.

A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal’ko, “Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(4), 045416 (2013).
[Crossref]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Buyanin, A.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Cabrini, S.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Cao, B.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Cao, T.

L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, “Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides,” Nat. Phys. 15(3), 228–232 (2019).
[Crossref]

Castellanos-Gomez, A.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Caudel, D.

A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, and K. I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49–52 (2013).
[Crossref]

Chakraborty, B.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Chang, C.-Y. S.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
[Crossref]

Chemla, D. S.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
[Crossref]

Chen, Y.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Cheong, H.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Chernikov, A.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Chiu, M.-H.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
[Crossref]

Choi, J.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Chu, S.

Y. Zhou, X. Hu, W. Gao, H. Song, S. Chu, H. Yang, and Q. Gong, “Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures,” Opt. Laser Technol. 102, 268–273 (2018).
[Crossref]

Cohen, S. K.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Cong, C.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Considine, C. R.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Cui, X.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref]

Currie, M.

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101(22), 221907 (2012).
[Crossref]

Dai, J.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref]

De Poortere, E. P.

O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. De Poortere, and M. Shayegan, “Valley Susceptibility of an Interacting Two-Dimensional Electron System,” Phys. Rev. Lett. 97(18), 186404 (2006).
[Crossref]

Dollar, M.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Drummond, N. D.

A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal’ko, “Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(4), 045416 (2013).
[Crossref]

Du, Y.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Fal’ko, V. I.

A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal’ko, “Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(4), 045416 (2013).
[Crossref]

Fan, R. H.

Fan, R.-H.

Fan, W.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Fang, Z.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene Quantum Dots Doping of MoS2 Monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref]

Feng, R.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene Quantum Dots Doping of MoS2 Monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref]

Feng, W.

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref]

Fernández-Rossier, J.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Fiete, G. A.

F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald, “Spontaneous Quantum Hall States in Chirally Stacked Few-Layer Graphene Systems,” Phys. Rev. Lett. 106(15), 156801 (2011).
[Crossref]

Fleming, G. R.

L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, “Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides,” Nat. Phys. 15(3), 228–232 (2019).
[Crossref]

Foerster, M.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Friedman, A. L.

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101(22), 221907 (2012).
[Crossref]

Fu, K.-M. C.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

Gao, F.

F. Gao, Y. Gong, M. Titze, R. Almeida, P. M. Ajayan, and H. Li, “Valley trion dynamics in monolayer MoSe2,” Phys. Rev. B 94(24), 245413 (2016).
[Crossref]

Gao, W.

Y. Zhou, X. Hu, W. Gao, H. Song, S. Chu, H. Yang, and Q. Gong, “Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures,” Opt. Laser Technol. 102, 268–273 (2018).
[Crossref]

Ghaemi, P.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Ghazaryan, A.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Gokmen, T.

O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. De Poortere, and M. Shayegan, “Valley Susceptibility of an Interacting Two-Dimensional Electron System,” Phys. Rev. Lett. 97(18), 186404 (2006).
[Crossref]

Gomez-Diaz, J. S.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Gong, Q.

Y. Zhou, X. Hu, W. Gao, H. Song, S. Chu, H. Yang, and Q. Gong, “Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures,” Opt. Laser Technol. 102, 268–273 (2018).
[Crossref]

Gong, Y.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

F. Gao, Y. Gong, M. Titze, R. Almeida, P. M. Ajayan, and H. Li, “Valley trion dynamics in monolayer MoSe2,” Phys. Rev. B 94(24), 245413 (2016).
[Crossref]

Gu, J.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Gu, X.

X. Zhang, H. Nan, S. Xiao, X. Wan, Z. Ni, X. Gu, and K. Ostrikov, “Shape-uniform, high-quality monolayer MoS2 crystals for gate-tunable photoluminescence,” ACS Appl. Mater. Interfaces 9(48), 42121–42130 (2017).
[Crossref]

Gunawan, O.

O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. De Poortere, and M. Shayegan, “Valley Susceptibility of an Interacting Two-Dimensional Electron System,” Phys. Rev. Lett. 97(18), 186404 (2006).
[Crossref]

Gunlycke, D.

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101(22), 221907 (2012).
[Crossref]

Guo, L.

L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, “Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides,” Nat. Phys. 15(3), 228–232 (2019).
[Crossref]

Gwo, S.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Hafner, J.

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558–561 (1993).
[Crossref]

Haglund, R. F.

A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, and K. I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49–52 (2013).
[Crossref]

Han, G. H.

H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, “Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy,” ACS Nano 10(5), 5230–5236 (2016).
[Crossref]

Han, W. P.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Hanbicki, A. T.

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101(22), 221907 (2012).
[Crossref]

Hatzistergos, M.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

He, K.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref]

Heikes, C.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, and A. Kormányos, “Breaking of Valley Degeneracy by Magnetic Field in Monolayer MoSe2,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref]

Heinz, T. F.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref]

Hill, H. M.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Hobbs, C.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Hohenberg, P.

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

Hone, J.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Hong, X.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
[Crossref]

Horbatenko, Y.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Hu, X.

Y. Zhou, X. Hu, W. Gao, H. Song, S. Chu, H. Yang, and Q. Gong, “Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures,” Opt. Laser Technol. 102, 268–273 (2018).
[Crossref]

Huang, B.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

Huang, W.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Hung, P. Y.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Island, J. O.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Iwasa, Y.

Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, and Y. Iwasa, “Electrically Switchable Chiral Light-Emitting Transistor,” Science 344(6185), 725–728 (2014).
[Crossref]

Jang, A.-R.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Jeong, M. S.

H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, “Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy,” ACS Nano 10(5), 5230–5236 (2016).
[Crossref]

Jin, C.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
[Crossref]

Jing, H.

Jonker, B. T.

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101(22), 221907 (2012).
[Crossref]

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

Jung, J.

F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald, “Spontaneous Quantum Hall States in Chirally Stacked Few-Layer Graphene Systems,” Phys. Rev. Lett. 106(15), 156801 (2011).
[Crossref]

Kang, Y.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene Quantum Dots Doping of MoS2 Monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref]

Kim, D.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Kim, G.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Kim, H.

H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, “Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy,” ACS Nano 10(5), 5230–5236 (2016).
[Crossref]

Kim, J.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
[Crossref]

Kim, S. H.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Kim, Y. D.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Kioseoglou, G.

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101(22), 221907 (2012).
[Crossref]

Kis, A.

O. L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, and A. Kis, “Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction,” Nano Lett. 16(9), 5792–5797 (2016).
[Crossref]

Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Ko, C.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Kohn, W.

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

Kormányos, A.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, and A. Kormányos, “Breaking of Valley Degeneracy by Magnetic Field in Monolayer MoSe2,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref]

A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal’ko, “Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(4), 045416 (2013).
[Crossref]

Krasnok, A.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558–561 (1993).
[Crossref]

Lado, J. L.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Lee, J.-U.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Lee, Y. H.

H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, “Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy,” ACS Nano 10(5), 5230–5236 (2016).
[Crossref]

Lee, Y.-H.

L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, “Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides,” Nat. Phys. 15(3), 228–232 (2019).
[Crossref]

Li, B.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Li, H.

F. Gao, Y. Gong, M. Titze, R. Almeida, P. M. Ajayan, and H. Li, “Valley trion dynamics in monolayer MoSe2,” Phys. Rev. B 94(24), 245413 (2016).
[Crossref]

Li, J.-N.

D. Wang, J.-N. Li, Y. Zhou, D.-H. Xu, X. Xiong, R.-W. Peng, and M. Wang, “Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness,” Appl. Phys. Lett. 108(5), 053107 (2016).
[Crossref]

Li, L.-J.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
[Crossref]

Li, X. Q.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Li, Y.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Li, Z.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene Quantum Dots Doping of MoS2 Monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref]

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Lim, H.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Linpeng, X.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

Liu, B. L.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Liu, G.-B.

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref]

Liu, H.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Liu, X.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

López-Moreno, A.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Louie, S. G.

L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, “Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides,” Nat. Phys. 15(3), 228–232 (2019).
[Crossref]

Low, T.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Lu, Y.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Ludwig, J.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Ma, K. Y.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

MacDonald, A. H.

F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald, “Spontaneous Quantum Hall States in Chirally Stacked Few-Layer Graphene Systems,” Phys. Rev. Lett. 106(15), 156801 (2011).
[Crossref]

MacNeill, D.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, and A. Kormányos, “Breaking of Valley Degeneracy by Magnetic Field in Monolayer MoSe2,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref]

Majumdar, K.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Mak, K. F.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, and A. Kormányos, “Breaking of Valley Degeneracy by Magnetic Field in Monolayer MoSe2,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref]

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref]

Mandrus, D. G.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

Marie, X.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Matsuda, K.

S. Mouri, Y. Miyauchi, and K. Matsuda, “Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping,” Nano Lett. 13(12), 5944–5948 (2013).
[Crossref]

McEuen, P. L.

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref]

McGill, K. L.

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref]

McGuire, M. A.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

Menon, V. M.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Miller, D. A. B.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
[Crossref]

Misra, S.

O. L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, and A. Kis, “Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction,” Nano Lett. 16(9), 5792–5797 (2016).
[Crossref]

Miyauchi, Y.

S. Mouri, Y. Miyauchi, and K. Matsuda, “Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping,” Nano Lett. 13(12), 5944–5948 (2013).
[Crossref]

Molina-Mendoza, A. J.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Monahan, D. M.

L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, “Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides,” Nat. Phys. 15(3), 228–232 (2019).
[Crossref]

Monkhorst, H. J.

H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integration,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Mouri, S.

S. Mouri, Y. Miyauchi, and K. Matsuda, “Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping,” Nano Lett. 13(12), 5944–5948 (2013).
[Crossref]

Nan, H.

X. Zhang, H. Nan, S. Xiao, X. Wan, Z. Ni, X. Gu, and K. Ostrikov, “Shape-uniform, high-quality monolayer MoS2 crystals for gate-tunable photoluminescence,” ACS Appl. Mater. Interfaces 9(48), 42121–42130 (2017).
[Crossref]

Nayak, P. K.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Newaz, A. K. M.

A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, and K. I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49–52 (2013).
[Crossref]

Ni, Z.

X. Zhang, H. Nan, S. Xiao, X. Wan, Z. Ni, X. Gu, and K. Ostrikov, “Shape-uniform, high-quality monolayer MoS2 crystals for gate-tunable photoluminescence,” ACS Appl. Mater. Interfaces 9(48), 42121–42130 (2017).
[Crossref]

Niño, M. A.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Niu, Q.

F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald, “Spontaneous Quantum Hall States in Chirally Stacked Few-Layer Graphene Systems,” Phys. Rev. Lett. 106(15), 156801 (2011).
[Crossref]

D. Xiao, W. Yao, and Q. Niu, “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport,” Phys. Rev. Lett. 99(23), 236809 (2007).
[Crossref]

Ogletree, D. F.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Oh, H. M.

H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, “Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy,” ACS Nano 10(5), 5230–5236 (2016).
[Crossref]

Oka, T.

Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, and Y. Iwasa, “Electrically Switchable Chiral Light-Emitting Transistor,” Science 344(6185), 725–728 (2014).
[Crossref]

Ostrikov, K.

X. Zhang, H. Nan, S. Xiao, X. Wan, Z. Ni, X. Gu, and K. Ostrikov, “Shape-uniform, high-quality monolayer MoS2 crystals for gate-tunable photoluminescence,” ACS Appl. Mater. Interfaces 9(48), 42121–42130 (2017).
[Crossref]

Ovchinnikov, D.

O. L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, and A. Kis, “Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction,” Nano Lett. 16(9), 5792–5797 (2016).
[Crossref]

Pack, J. D.

H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integration,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Park, J.

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref]

Park, N.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Peimyoo, N.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Peng, R.

Peng, R. W.

Peng, R.-W.

D. Wang, J.-N. Li, Y. Zhou, D.-H. Xu, X. Xiong, R.-W. Peng, and M. Wang, “Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness,” Appl. Phys. Lett. 108(5), 053107 (2016).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Pérez, E. M.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Prasai, D.

A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, and K. I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49–52 (2013).
[Crossref]

Rakyta, P.

A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal’ko, “Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(4), 045416 (2013).
[Crossref]

Rigosi, A.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Rivera, P.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

Robinson, S.

A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, and K. I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49–52 (2013).
[Crossref]

Rubio-Bollinger, G.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Rycerz, A.

A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
[Crossref]

Ryu, S.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Sallen, G.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Salmeron, M. B.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Sanchez, O. L.

O. L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, and A. Kis, “Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction,” Nano Lett. 16(9), 5792–5797 (2016).
[Crossref]

Schaibley, J. R.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

Schmitt-Rink, S.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
[Crossref]

Schuck, P. J.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Seyler, K. L.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

Sham, L. J.

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Shan, J.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref]

Shang, J.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Shayegan, M.

O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. De Poortere, and M. Shayegan, “Valley Susceptibility of an Interacting Two-Dimensional Electron System,” Phys. Rev. Lett. 97(18), 186404 (2006).
[Crossref]

Shen, X.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Shi, J.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Shi, S.-F.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
[Crossref]

Shi, W. B.

Shi, W.-B.

Shih, C.-K.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Shin, H. S.

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Shkolnikov, Y. P.

O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. De Poortere, and M. Shayegan, “Valley Susceptibility of an Interacting Two-Dimensional Electron System,” Phys. Rev. Lett. 97(18), 186404 (2006).
[Crossref]

Shotan, Z.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Smirnov, D.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

Song, H.

Y. Zhou, X. Hu, W. Gao, H. Song, S. Chu, H. Yang, and Q. Gong, “Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures,” Opt. Laser Technol. 102, 268–273 (2018).
[Crossref]

Strano, M. S.

Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Su, J.

Suh, J.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Sun, L. Y.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Sun, Z.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Suzuki, R.

Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, and Y. Iwasa, “Electrically Switchable Chiral Light-Emitting Transistor,” Science 344(6185), 725–728 (2014).
[Crossref]

Tan, P. H.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Taniguchi, T.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

Thron, A.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Tiechelmann, R.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Titze, M.

F. Gao, Y. Gong, M. Titze, R. Almeida, P. M. Ajayan, and H. Li, “Valley trion dynamics in monolayer MoSe2,” Phys. Rev. B 94(24), 245413 (2016).
[Crossref]

Tongay, S.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Tour, J. M.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene Quantum Dots Doping of MoS2 Monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref]

Tsai, W.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Tworzydlo, J.

A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
[Crossref]

Urbaszek, B.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Vakili, K.

O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. De Poortere, and M. Shayegan, “Valley Susceptibility of an Interacting Two-Dimensional Electron System,” Phys. Rev. Lett. 97(18), 186404 (2006).
[Crossref]

van der Zande, A. M.

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

van der Zant, H. S. J.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Vaquero-Garzon, L.

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Wan, X.

X. Zhang, H. Nan, S. Xiao, X. Wan, Z. Ni, X. Gu, and K. Ostrikov, “Shape-uniform, high-quality monolayer MoS2 crystals for gate-tunable photoluminescence,” ACS Appl. Mater. Interfaces 9(48), 42121–42130 (2017).
[Crossref]

Wang, C.-Y.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Wang, D.

Wang, F.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
[Crossref]

Wang, G.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Wang, H.

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

Wang, J.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Wang, M.

Wang, Q. H.

Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Wang, Y.

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Watanabe, K.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

Weber-Bargioni, A.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Wilson, N. P.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

Wu, H.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Wu, J.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Wu, M.

L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, “Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides,” Nat. Phys. 15(3), 228–232 (2019).
[Crossref]

Xiao, D.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref]

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref]

D. Xiao, W. Yao, and Q. Niu, “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport,” Phys. Rev. Lett. 99(23), 236809 (2007).
[Crossref]

Xiao, J.

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

Xiao, S.

X. Zhang, H. Nan, S. Xiao, X. Wan, Z. Ni, X. Gu, and K. Ostrikov, “Shape-uniform, high-quality monolayer MoS2 crystals for gate-tunable photoluminescence,” ACS Appl. Mater. Interfaces 9(48), 42121–42130 (2017).
[Crossref]

Xiong, X.

D. Wang, J.-N. Li, Y. Zhou, D.-H. Xu, X. Xiong, R.-W. Peng, and M. Wang, “Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness,” Appl. Phys. Lett. 108(5), 053107 (2016).
[Crossref]

Xu, D.-H.

D. Wang, J.-N. Li, Y. Zhou, D.-H. Xu, X. Xiong, R.-W. Peng, and M. Wang, “Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness,” Appl. Phys. Lett. 108(5), 053107 (2016).
[Crossref]

Xu, X.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref]

Yan, J.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

Yang, H.

Y. Zhou, X. Hu, W. Gao, H. Song, S. Chu, H. Yang, and Q. Gong, “Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures,” Opt. Laser Technol. 102, 268–273 (2018).
[Crossref]

Yang, L.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Yang, W.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Yao, W.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref]

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref]

D. Xiao, W. Yao, and Q. Niu, “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport,” Phys. Rev. Lett. 99(23), 236809 (2007).
[Crossref]

Ye, J. T.

Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, and Y. Iwasa, “Electrically Switchable Chiral Light-Emitting Transistor,” Science 344(6185), 725–728 (2014).
[Crossref]

Ye, P. D.

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

Ye, R.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene Quantum Dots Doping of MoS2 Monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref]

Ye, Y.

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

Ye, Z.

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

Yin, X.

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

Yu, H.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

Yu, T.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Zadeh, K. K.

Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Zeng, H.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref]

Zepeda, A.

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Zhang, F.

F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald, “Spontaneous Quantum Hall States in Chirally Stacked Few-Layer Graphene Systems,” Phys. Rev. Lett. 106(15), 156801 (2011).
[Crossref]

Zhang, J.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Zhang, L.

Zhang, L. H.

Zhang, L.-H.

Zhang, R. L.

Zhang, R.-L.

Zhang, X.

X. Zhang, H. Nan, S. Xiao, X. Wan, Z. Ni, X. Gu, and K. Ostrikov, “Shape-uniform, high-quality monolayer MoS2 crystals for gate-tunable photoluminescence,” ACS Appl. Mater. Interfaces 9(48), 42121–42130 (2017).
[Crossref]

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

Zhang, Y.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

Zhang, Y. J.

Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, and Y. Iwasa, “Electrically Switchable Chiral Light-Emitting Transistor,” Science 344(6185), 725–728 (2014).
[Crossref]

Zhao, J.

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

Zhao, M.

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

Zhong, D.

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

Zhou, Y.

Y. Zhou, X. Hu, W. Gao, H. Song, S. Chu, H. Yang, and Q. Gong, “Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures,” Opt. Laser Technol. 102, 268–273 (2018).
[Crossref]

D. Wang, J.-N. Li, Y. Zhou, D.-H. Xu, X. Xiong, R.-W. Peng, and M. Wang, “Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness,” Appl. Phys. Lett. 108(5), 053107 (2016).
[Crossref]

Zhu, C. R.

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Zhu, H.

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

Zhu, X.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene Quantum Dots Doping of MoS2 Monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref]

Zhu, Y.

Zhu, Y. Y.

Ziegler, J. I.

A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, and K. I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49–52 (2013).
[Crossref]

Zólyomi, V.

A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal’ko, “Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(4), 045416 (2013).
[Crossref]

Zou, C.

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

Zu, S.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. Zhang, H. Nan, S. Xiao, X. Wan, Z. Ni, X. Gu, and K. Ostrikov, “Shape-uniform, high-quality monolayer MoS2 crystals for gate-tunable photoluminescence,” ACS Appl. Mater. Interfaces 9(48), 42121–42130 (2017).
[Crossref]

ACS Nano (2)

H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, “Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy,” ACS Nano 10(5), 5230–5236 (2016).
[Crossref]

P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, “Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures,” ACS Nano 11(4), 4041–4050 (2017).
[Crossref]

Adv. Mater. (1)

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene Quantum Dots Doping of MoS2 Monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref]

Adv. Opt. Mater. (1)

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Appl. Phys. Lett. (2)

D. Wang, J.-N. Li, Y. Zhou, D.-H. Xu, X. Xiong, R.-W. Peng, and M. Wang, “Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness,” Appl. Phys. Lett. 108(5), 053107 (2016).
[Crossref]

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101(22), 221907 (2012).
[Crossref]

Chem. Mater. (1)

A. J. Molina-Mendoza, J. L. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agraït, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy,” Chem. Mater. 28(11), 4042–4051 (2016).
[Crossref]

Nano Lett. (5)

L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tiechelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2.”,” Nano Lett. 14(11), 6275–6280 (2014).
[Crossref]

S. Mouri, Y. Miyauchi, and K. Matsuda, “Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping,” Nano Lett. 13(12), 5944–5948 (2013).
[Crossref]

W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, and T. Yu, “Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2,” Nano Lett. 16(3), 1560–1567 (2016).
[Crossref]

K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-M. C. Fu, and X. Xu, “Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2 /CrI3 Heterostructures,” Nano Lett. 18(6), 3823–3828 (2018).
[Crossref]

O. L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, and A. Kis, “Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction,” Nano Lett. 16(9), 5792–5797 (2016).
[Crossref]

Nat. Commun. (2)

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, “Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide,” Nat. Commun. 6(1), 7993 (2015).
[Crossref]

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7(1), 13747 (2016).
[Crossref]

Nat. Nanotechnol. (4)

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref]

Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nat. Nanotechnol. 11, 597–602 (2016).
[Crossref]

Nat. Photonics (2)

L. Y. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alù, and X. Q. Li, “Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array,” Nat. Photonics 13(3), 180–184 (2019).
[Crossref]

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. K. Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11(8), 491–496 (2017).
[Crossref]

Nat. Phys. (3)

L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, “Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides,” Nat. Phys. 15(3), 228–232 (2019).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

Y. Zhou, X. Hu, W. Gao, H. Song, S. Chu, H. Yang, and Q. Gong, “Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures,” Opt. Laser Technol. 102, 268–273 (2018).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (2)

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Phys. Rev. B (7)

H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integration,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558–561 (1993).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

F. Gao, Y. Gong, M. Titze, R. Almeida, P. M. Ajayan, and H. Li, “Valley trion dynamics in monolayer MoSe2,” Phys. Rev. B 94(24), 245413 (2016).
[Crossref]

G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, “Robust optical emission polarization in MoS2 monolayers through selective valley excitation,” Phys. Rev. B 86(8), 081301 (2012).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal’ko, “Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(4), 045416 (2013).
[Crossref]

Phys. Rev. Lett. (7)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

D. Xiao, W. Yao, and Q. Niu, “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport,” Phys. Rev. Lett. 99(23), 236809 (2007).
[Crossref]

F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald, “Spontaneous Quantum Hall States in Chirally Stacked Few-Layer Graphene Systems,” Phys. Rev. Lett. 106(15), 156801 (2011).
[Crossref]

O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. De Poortere, and M. Shayegan, “Valley Susceptibility of an Interacting Two-Dimensional Electron System,” Phys. Rev. Lett. 97(18), 186404 (2006).
[Crossref]

Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2,” Phys. Rev. Lett. 113(26), 266804 (2014).
[Crossref]

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, and A. Kormányos, “Breaking of Valley Degeneracy by Magnetic Field in Monolayer MoSe2,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref]

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref]

Science (3)

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref]

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers,” Science 346(6214), 1205–1208 (2014).
[Crossref]

Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, and Y. Iwasa, “Electrically Switchable Chiral Light-Emitting Transistor,” Science 344(6185), 725–728 (2014).
[Crossref]

Solid State Commun. (1)

A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, and K. I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49–52 (2013).
[Crossref]

Other (1)

The core-valence interactions are treated by the projector augmented wave (PAW) method [38], where the plane wave expansion is truncated with a cutoff energy 520 eV. We employ the exchange-correlation functional as the local density approximation (LDA) [39,40]. The convergence tolerance for the self-consistent-field iteration was set to 10−4 eV, and the two dimensional 3×2 Monkhorst-Pack grid in momentum space is applied [41]. To minimize the lattice mismatching effect, a$\mbox{p}\left( {2\sqrt 3 \times 5} \right)$p(23×5)MoS2 supercell and p(3×4) MoO3 supercell were constructed into the MoS2/MoO3 heterostructure. To confirm this result, we also constructed a larger supercell of MoS2/MoO3 heterostructure with p(6×6) MoS2 supercell and p(4×5) MoO3 supercell. In this group of test, we employed the generalized gradient approximation (GGA) [42] as the exchange-correlation function where the two dimensional 22 Monkhorst-Pack grid in momentum space is applied [41].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic image of the MoS2/MoO3 heterostructure. It consists of a MoS2 monolayer, the MoO3 few layers, and the SiO2/Si substrate from top to bottom. The 514 nm laser is used to excite the sample. (b) Diagrammatic sketch of measurements. (c) Optical image of MoS2/MoO3 heterostructure. The scale bar is 2µm. The insets show the Raman shift of 403 rel cm−1 (from MoS2) and 815 rel cm−1 (from MoO3), respectively.
Fig. 2.
Fig. 2. (a) Raman shift of pristine MoS2 and MoS2/MoO3 heterostructure. There is a blue shift of A1g peak in MoS2/MoO3 heterostructure, which is the evidence of p-doping of monolayer MoS2. (b) PL signal of pristine MoS2 and MoS2/MoO3 heterostructure. The increased peak intensity of A exciton and the increased peak intensity ratio between A and B exciton confirm the p-doping of MoS2 in the MoS2/MoO3 heterostructure. (c) Band structure of MoS2/MoO3 heterostructure. After absorbing the energy of a photon, electrons in conduction band of MoS2 can transfer to MoO3 layer and the hole in valence band is left. This process results the in-plane voltage in the heterostructure. (d) Charge density difference in a unit cell of MoS2/MoO3 heterostructure. The isosurface value is set to be 0.00015e/bohr3. Orange and green color represent for the electron accumulation and depletion, respectively. The atoms with light purple, yellow, and red color are Mo, S, and O, respectively. (e) The scheme of $\mbox{p}({6 \times 6} )$ MoS2 supercell on the three layers p( $4 \times 5)$ MoO3 supercell substrate. Each layer of MoO3 substrate is labeled. (f) The labeling for atoms in each MoO3 layer.
Fig. 3.
Fig. 3. σ and σ + detected PL signal of pristine MoS2 with (a) σ excitation (b) σ + excitation. σ + and σ detected PL signal of MoS2/MoO3 heterostructure with (d) σ excitation (e) σ + excitation. DP of PL with σ (P (σ )) and σ + (P (σ +)) excitation in (c) pristine MoS2 and (f) MoS2/MoO3 heterostructure. Obviously, P (σ ) is unequal to P (σ +) in the MoS2/MoO3 heterostructure. The inset of (c) shows the electron-hole recombination when the K′ and K valleys are symmetric polarized in pristine MoS2, and the inset of (f) shows the electron-hole recombination when the K′ and K valleys are asymmetric polarized in the MoS2/MoO3 heterostructure.
Fig. 4.
Fig. 4. (a)–(d) DP of PL with σ (P (σ )) and σ + (P (σ +)) excitation in different MoS2/MoO3 heterostructure samples (S2-S5).
Fig. 5.
Fig. 5. DP of PL with σ (P (σ )) and σ + (P (σ +)) excitation at different excitation wavelength and power of excitation laser: (a) 442 nm and 10 mW (MDL-III—442-30, CNILaser); (b) 532 nm and 10mW (MGL-H-532-1, CNILaser); (c) 532 nm and 18 mW; (d) 532 nm and 39 mW, respectively.
Fig. 6.
Fig. 6. (a) DP measured at 4.8 K. (b) DP measured at 270 K. The difference between P (σ +) and P (σ ) is decreased with increasing the temperature. (c) The gap between two curves of $P({\sigma ^ + })$ and $P({\sigma ^ - })$ i.e., $\varDelta P = P({\sigma ^ + }) - P({\sigma ^ - })$ , as a function of wavelength at different temperature.

Tables (1)

Tables Icon

Table 1. The distribution of valence electrons in MoO3 substrates obtained from Bader charge analysis of the p ( 6 × 6 ) MoS2 supercell on the three layers p( 4 × 5 ) MoO3 supercell substrate as it is shown in Fig. 2(e) and Fig. 2(f). The numbers of the atoms close to the interface region are different with the ones in the rest part of the substrate and are highlighted in red colour.

Metrics