Abstract

This work investigates experimentally the near-infrared optical properties of SiO2 thin film embedded with tungsten (W) nanoparticles at varying volume fractions. The samples are prepared by using the technique of magnetron sputtering. The formation and distribution of W nanoparticles are characterized using transmission electron microscopy, and the volume fraction of W nanoparticles is validated by Auger electron spectroscopy. Near- and mid-infrared diffuse reflectance measurements are conducted using Fourier transform infrared spectroscopy. The samples exhibit wavelength selective optical response in the near-infrared region and are suitable for applications involving selective thermal emitters/absorbers. Measured reflectance data is utilized to estimate the effective dielectric function of the nano-composites. Calculated reflectance spectra in different samples are compared to the measured spectra using the experimentally measured dielectric function of these samples in the near-infrared region. Reflectance spectra after thermal annealing at different temperature are compared to show how the thermal treatment affects the optical properties of samples. Optimized structures are proposed for thermal emitters and absorbers with different volume fractions of W nanoparticles.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems

Alok Ghanekar, Laura Lin, and Yi Zheng
Opt. Express 24(10) A868-A877 (2016)

Spectral selectivity of multiple nanoparticles doped thin films

Xiaojie Liu, Yanpei Tian, Alok Ghanekar, and Yi Zheng
Opt. Express 27(20) A1591-A1600 (2019)

Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes

Alok Ghanekar, Laura Lin, Junwei Su, Hongwei Sun, and Yi Zheng
Opt. Express 23(19) A1129-A1139 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
    [Crossref]
  2. M. Ghashami, S. K. Cho, and K. Park, “Near-field enhanced thermionic energy conversion for renewable energy recycling,” J. Quant. Spectrosc. Radiat. Transf. 198, 59–67 (2017).
    [Crossref]
  3. H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
    [Crossref]
  4. J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
    [Crossref]
  5. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref]
  6. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  7. S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100, 021111 (2012).
    [Crossref]
  8. A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10, 885 (2017).
    [Crossref]
  9. Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
    [Crossref]
  10. Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).
    [Crossref]
  11. Y. Tian, A. Ghanekar, M. Ricci, M. Hyde, O. Gregory, and Y. Zheng, “A review of tunable wavelength selectivity of metamaterials in near-field and far-field radiative thermal transport,” Materials 11, 862 (2018).
    [Crossref]
  12. A. Ghanekar, Y. Tian, M. Ricci, S. Zhang, O. Gregory, and Y. Zheng, “Near-field thermal rectification devices using phase change periodic nanostructure,” Opt. Express 26, A209–A218 (2018).
    [Crossref] [PubMed]
  13. S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. Huang, J. Loomis, Y. Xu, and G. Chen, “Hybrid optical-thermal devices and materials for light manipulation and radiative cooling,” arXiv preprint arXiv:1509.02516 (2015).
  14. H. Iizuka and S. Fan, “Consideration of enhancement of thermal rectification using metamaterial models,” J. Quant. Spectrosc. Radiat. Transf. 148, 156–164 (2014).
    [Crossref]
  15. B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12, 4546–4550 (2012).
    [Crossref] [PubMed]
  16. J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4, 626–630 (2017).
    [Crossref]
  17. Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).
    [Crossref]
  18. L. Wang and Z. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013).
    [Crossref]
  19. A. Ghanekar, Y. Tian, and Y. Zheng, “Photonic metamaterials: Controlling nanoscale radiative thermal transport,” in Heat Transfer-Models, Methods and Applications (IntechOpen, 2017).
  20. C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108, 400–422 (2008).
    [Crossref]
  21. M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
    [Crossref]
  22. A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
    [Crossref]
  23. S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
    [Crossref]
  24. J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
    [Crossref] [PubMed]
  25. E. Hasman, N. Dahan, A. Niv, G. Biener, and V. Kleiner, “Space-variant polarization manipulation of a thermal emission by a sio2 subwavelength grating supporting surface phonon-polariton, ” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. CTuL6.
  26. A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
    [Crossref] [PubMed]
  27. A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24, A868–A877 (2016).
    [Crossref] [PubMed]
  28. C.-G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).
    [Crossref]
  29. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6, 2704–2714 (2016).
    [Crossref]
  30. A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
    [Crossref] [PubMed]
  31. G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” J. Nanoparticle Res. 4, 157–165 (2002).
    [Crossref]
  32. A. Heilmann, Polymer Films with Embedded Metal Nanoparticles, vol. 52 (Springer Science & Business Media, 2013).
  33. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
    [Crossref] [PubMed]
  34. T. Laumer, T. Stichel, T. Bock, P. Amend, and M. Schmidt, “Characterization of temperature-dependent optical material properties of polymer powders,” in AIP Conference Proceedings, vol. 1664 (AIP Publishing, 2015), p. 160001.
    [Crossref]
  35. P. Timans, “The thermal radiative properties of semiconductors,” in Advances in Rapid Thermal and Integrated Processing (Springer, 1996), pp. 35–101.
    [Crossref]
  36. D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
    [Crossref]
  37. F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
    [Crossref]
  38. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [Crossref] [PubMed]
  39. N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. express 20, 5882–5890 (2012).
    [Crossref] [PubMed]
  40. N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
    [Crossref] [PubMed]
  41. H. Wang, J.-Y. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
    [Crossref]
  42. G. M. Burke, D. E. Wurster, M. J. Berg, P. Veng-Pedersen, and D. D. Schottelius, “Surface characterization of activated charcoal by x-ray photoelectron spectroscopy (xps): Correlation with phenobarbital adsorption data,” Pharm. Research 9, 126–130 (1992).
    [Crossref]
  43. A. Ghanekar, M. Ricci, Y. Tian, O. Gregory, and Y. Zheng, “Dynamic optical response of su-8 upon uv treatment,” Opt. Mater. Express 8, 2017–2025 (2018).
    [Crossref]
  44. H. W. Verleur, “Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films,” J. Opt. Soc. Am. 58, 1356–1364 (1968).
    [Crossref]
  45. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17, 22800–22812 (2009).
    [Crossref]
  46. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
    [Crossref]
  47. J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transf. 87, 237–247 (2015).
    [Crossref]

2018 (3)

2017 (4)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
[Crossref] [PubMed]

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4, 626–630 (2017).
[Crossref]

M. Ghashami, S. K. Cho, and K. Park, “Near-field enhanced thermionic energy conversion for renewable energy recycling,” J. Quant. Spectrosc. Radiat. Transf. 198, 59–67 (2017).
[Crossref]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10, 885 (2017).
[Crossref]

2016 (6)

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
[Crossref] [PubMed]

H. Wang, J.-Y. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24, A868–A877 (2016).
[Crossref] [PubMed]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6, 2704–2714 (2016).
[Crossref]

2015 (5)

Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
[Crossref] [PubMed]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
[Crossref]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transf. 87, 237–247 (2015).
[Crossref]

2014 (4)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

H. Iizuka and S. Fan, “Consideration of enhancement of thermal rectification using metamaterial models,” J. Quant. Spectrosc. Radiat. Transf. 148, 156–164 (2014).
[Crossref]

2013 (2)

Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).
[Crossref]

L. Wang and Z. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013).
[Crossref]

2012 (3)

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12, 4546–4550 (2012).
[Crossref] [PubMed]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100, 021111 (2012).
[Crossref]

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. express 20, 5882–5890 (2012).
[Crossref] [PubMed]

2011 (2)

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108, 400–422 (2008).
[Crossref]

2003 (1)

S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

2002 (3)

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” J. Nanoparticle Res. 4, 157–165 (2002).
[Crossref]

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

1992 (1)

G. M. Burke, D. E. Wurster, M. J. Berg, P. Veng-Pedersen, and D. D. Schottelius, “Surface characterization of activated charcoal by x-ray photoelectron spectroscopy (xps): Correlation with phenobarbital adsorption data,” Pharm. Research 9, 126–130 (1992).
[Crossref]

1977 (1)

C.-G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).
[Crossref]

1968 (1)

Agrawal, M.

Amend, P.

T. Laumer, T. Stichel, T. Bock, P. Amend, and M. Schmidt, “Characterization of temperature-dependent optical material properties of polymer powders,” in AIP Conference Proceedings, vol. 1664 (AIP Publishing, 2015), p. 160001.
[Crossref]

Bao, J.

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
[Crossref]

Basu, S.

Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).
[Crossref]

Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).
[Crossref]

Berg, M. J.

G. M. Burke, D. E. Wurster, M. J. Berg, P. Veng-Pedersen, and D. D. Schottelius, “Surface characterization of activated charcoal by x-ray photoelectron spectroscopy (xps): Correlation with phenobarbital adsorption data,” Pharm. Research 9, 126–130 (1992).
[Crossref]

Biener, G.

E. Hasman, N. Dahan, A. Niv, G. Biener, and V. Kleiner, “Space-variant polarization manipulation of a thermal emission by a sio2 subwavelength grating supporting surface phonon-polariton, ” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. CTuL6.

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Biswas, R.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Bock, T.

T. Laumer, T. Stichel, T. Bock, P. Amend, and M. Schmidt, “Characterization of temperature-dependent optical material properties of polymer powders,” in AIP Conference Proceedings, vol. 1664 (AIP Publishing, 2015), p. 160001.
[Crossref]

Boriskina, S. V.

S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. Huang, J. Loomis, Y. Xu, and G. Chen, “Hybrid optical-thermal devices and materials for light manipulation and radiative cooling,” arXiv preprint arXiv:1509.02516 (2015).

Bozhevolnyi, S. I.

Burke, C. S.

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108, 400–422 (2008).
[Crossref]

Burke, G. M.

G. M. Burke, D. E. Wurster, M. J. Berg, P. Veng-Pedersen, and D. D. Schottelius, “Surface characterization of activated charcoal by x-ray photoelectron spectroscopy (xps): Correlation with phenobarbital adsorption data,” Pharm. Research 9, 126–130 (1992).
[Crossref]

Cada, M.

N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
[Crossref] [PubMed]

Cao, F.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
[Crossref]

Celanovic, I.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Chang, J.-Y.

H. Wang, J.-Y. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transf. 87, 237–247 (2015).
[Crossref]

Chen, G.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
[Crossref]

S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. Huang, J. Loomis, Y. Xu, and G. Chen, “Hybrid optical-thermal devices and materials for light manipulation and radiative cooling,” arXiv preprint arXiv:1509.02516 (2015).

Chen, Y.-B.

Chen, Z.

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4, 626–630 (2017).
[Crossref]

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

Chirumamilla, M.

Cho, S. K.

M. Ghashami, S. K. Cho, and K. Park, “Near-field enhanced thermionic energy conversion for renewable energy recycling,” J. Quant. Spectrosc. Radiat. Transf. 198, 59–67 (2017).
[Crossref]

Choi, D.

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Cui, Y.

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10, 885 (2017).
[Crossref]

Czapla, B.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

Dahan, N.

E. Hasman, N. Dahan, A. Niv, G. Biener, and V. Kleiner, “Space-variant polarization manipulation of a thermal emission by a sio2 subwavelength grating supporting surface phonon-polariton, ” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. CTuL6.

Daly, J.

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Dames, C.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
[Crossref] [PubMed]

Deller, C.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” J. Nanoparticle Res. 4, 157–165 (2002).
[Crossref]

Ding, F.

El-Kady, I.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Fan, S.

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4, 626–630 (2017).
[Crossref]

H. Iizuka and S. Fan, “Consideration of enhancement of thermal rectification using metamaterial models,” J. Quant. Spectrosc. Radiat. Transf. 148, 156–164 (2014).
[Crossref]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12, 4546–4550 (2012).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit,” Opt. Express 17, 15145–15159 (2009).
[Crossref] [PubMed]

Fisher, W.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” J. Nanoparticle Res. 4, 157–165 (2002).
[Crossref]

Fleming, J.

S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Fong, A.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

Fukushima, N.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100, 021111 (2012).
[Crossref]

Garay, J. E.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

Garrett, P.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” J. Nanoparticle Res. 4, 157–165 (2002).
[Crossref]

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Gentle, A.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” J. Nanoparticle Res. 4, 157–165 (2002).
[Crossref]

Gentle, A. R.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref] [PubMed]

George, T.

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Ghanekar, A.

Y. Tian, A. Ghanekar, M. Ricci, M. Hyde, O. Gregory, and Y. Zheng, “A review of tunable wavelength selectivity of metamaterials in near-field and far-field radiative thermal transport,” Materials 11, 862 (2018).
[Crossref]

A. Ghanekar, Y. Tian, M. Ricci, S. Zhang, O. Gregory, and Y. Zheng, “Near-field thermal rectification devices using phase change periodic nanostructure,” Opt. Express 26, A209–A218 (2018).
[Crossref] [PubMed]

A. Ghanekar, M. Ricci, Y. Tian, O. Gregory, and Y. Zheng, “Dynamic optical response of su-8 upon uv treatment,” Opt. Mater. Express 8, 2017–2025 (2018).
[Crossref]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10, 885 (2017).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24, A868–A877 (2016).
[Crossref] [PubMed]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
[Crossref] [PubMed]

A. Ghanekar, Y. Tian, and Y. Zheng, “Photonic metamaterials: Controlling nanoscale radiative thermal transport,” in Heat Transfer-Models, Methods and Applications (IntechOpen, 2017).

Ghashami, M.

M. Ghashami, S. K. Cho, and K. Park, “Near-field enhanced thermionic energy conversion for renewable energy recycling,” J. Quant. Spectrosc. Radiat. Transf. 198, 59–67 (2017).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Granqvist, C.-G.

C.-G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).
[Crossref]

Greenwald, A.

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Gregory, O.

Guha, B.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12, 4546–4550 (2012).
[Crossref] [PubMed]

Hardin, C.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

Hasman, E.

E. Hasman, N. Dahan, A. Niv, G. Biener, and V. Kleiner, “Space-variant polarization manipulation of a thermal emission by a sio2 subwavelength grating supporting surface phonon-polariton, ” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. CTuL6.

Heilmann, A.

A. Heilmann, Polymer Films with Embedded Metal Nanoparticles, vol. 52 (Springer Science & Business Media, 2013).

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Ho, K.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Hsu, W.-C.

S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. Huang, J. Loomis, Y. Xu, and G. Chen, “Hybrid optical-thermal devices and materials for light manipulation and radiative cooling,” arXiv preprint arXiv:1509.02516 (2015).

Huang, X.

S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. Huang, J. Loomis, Y. Xu, and G. Chen, “Hybrid optical-thermal devices and materials for light manipulation and radiative cooling,” arXiv preprint arXiv:1509.02516 (2015).

Hunderi, O.

C.-G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).
[Crossref]

Hyde, M.

Y. Tian, A. Ghanekar, M. Ricci, M. Hyde, O. Gregory, and Y. Zheng, “A review of tunable wavelength selectivity of metamaterials in near-field and far-field radiative thermal transport,” Materials 11, 862 (2018).
[Crossref]

Iizuka, H.

H. Iizuka and S. Fan, “Consideration of enhancement of thermal rectification using metamaterial models,” J. Quant. Spectrosc. Radiat. Transf. 148, 156–164 (2014).
[Crossref]

Jang, W.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

Jie, Q.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

Joannopoulos, J. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Johnson, E.

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Jurado, Z.

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4, 626–630 (2017).
[Crossref]

Kimata, M.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100, 021111 (2012).
[Crossref]

Kleiner, V.

E. Hasman, N. Dahan, A. Niv, G. Biener, and V. Kleiner, “Space-variant polarization manipulation of a thermal emission by a sio2 subwavelength grating supporting surface phonon-polariton, ” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. CTuL6.

Kou, J.-l.

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4, 626–630 (2017).
[Crossref]

Kraemer, D.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
[Crossref]

Kristensen, P. K.

Laumer, T.

T. Laumer, T. Stichel, T. Bock, P. Amend, and M. Schmidt, “Characterization of temperature-dependent optical material properties of polymer powders,” in AIP Conference Proceedings, vol. 1664 (AIP Publishing, 2015), p. 160001.
[Crossref]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Li, Y.

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
[Crossref]

Lin, L.

Lin, S.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Lin, S.-Y.

S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Lipson, M.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12, 4546–4550 (2012).
[Crossref] [PubMed]

Litvinchuk, A. P.

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Liu, W.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Lo, Y.-L.

Loomis, J.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. Huang, J. Loomis, Y. Xu, and G. Chen, “Hybrid optical-thermal devices and materials for light manipulation and radiative cooling,” arXiv preprint arXiv:1509.02516 (2015).

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
[Crossref] [PubMed]

Lubner, S.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
[Crossref] [PubMed]

MacCraith, B. D.

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108, 400–422 (2008).
[Crossref]

Mason, J.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Mayo, J.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

McDonagh, C.

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108, 400–422 (2008).
[Crossref]

McEnaney, K.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

McNeal, M.

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Miller, J.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

Minnich, A. J.

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4, 626–630 (2017).
[Crossref]

Mitchell, A.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Moelders, N.

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Moreno, J.

S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

Narayanaswamy, A.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

Nguyen-Huu, N.

N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
[Crossref] [PubMed]

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. express 20, 5882–5890 (2012).
[Crossref] [PubMed]

Niv, A.

E. Hasman, N. Dahan, A. Niv, G. Biener, and V. Kleiner, “Space-variant polarization manipulation of a thermal emission by a sio2 subwavelength grating supporting surface phonon-polariton, ” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. CTuL6.

Ogawa, S.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100, 021111 (2012).
[Crossref]

Okada, K.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100, 021111 (2012).
[Crossref]

Otey, C.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12, 4546–4550 (2012).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Park, K.

M. Ghashami, S. K. Cho, and K. Park, “Near-field enhanced thermionic energy conversion for renewable energy recycling,” J. Quant. Spectrosc. Radiat. Transf. 198, 59–67 (2017).
[Crossref]

Pedersen, K.

Peumans, P.

Phelan, P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Pincon, O.

Pištora, J.

N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
[Crossref] [PubMed]

Poitras, C. B.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12, 4546–4550 (2012).
[Crossref] [PubMed]

Pralle, M.

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Puscasu, I.

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Ren, Z.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
[Crossref]

Rephaeli, E.

Ricci, M.

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Roberts, A. S.

Rosengarten, G.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Schmidt, M.

T. Laumer, T. Stichel, T. Bock, P. Amend, and M. Schmidt, “Characterization of temperature-dependent optical material properties of polymer powders,” in AIP Conference Proceedings, vol. 1664 (AIP Publishing, 2015), p. 160001.
[Crossref]

Schottelius, D. D.

G. M. Burke, D. E. Wurster, M. J. Berg, P. Veng-Pedersen, and D. D. Schottelius, “Surface characterization of activated charcoal by x-ray photoelectron spectroscopy (xps): Correlation with phenobarbital adsorption data,” Pharm. Research 9, 126–130 (1992).
[Crossref]

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Sergeant, N. P.

Sivan, V. P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Smith, G.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” J. Nanoparticle Res. 4, 157–165 (2002).
[Crossref]

Smith, G. B.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref] [PubMed]

Smith, S.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Srinivasan, A.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Stichel, T.

T. Laumer, T. Stichel, T. Bock, P. Amend, and M. Schmidt, “Characterization of temperature-dependent optical material properties of polymer powders,” in AIP Conference Proceedings, vol. 1664 (AIP Publishing, 2015), p. 160001.
[Crossref]

Su, J.

Sun, H.

Swift, P.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” J. Nanoparticle Res. 4, 157–165 (2002).
[Crossref]

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
[Crossref] [PubMed]

Tang, L.

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
[Crossref]

Tian, Y.

A. Ghanekar, Y. Tian, M. Ricci, S. Zhang, O. Gregory, and Y. Zheng, “Near-field thermal rectification devices using phase change periodic nanostructure,” Opt. Express 26, A209–A218 (2018).
[Crossref] [PubMed]

A. Ghanekar, M. Ricci, Y. Tian, O. Gregory, and Y. Zheng, “Dynamic optical response of su-8 upon uv treatment,” Opt. Mater. Express 8, 2017–2025 (2018).
[Crossref]

Y. Tian, A. Ghanekar, M. Ricci, M. Hyde, O. Gregory, and Y. Zheng, “A review of tunable wavelength selectivity of metamaterials in near-field and far-field radiative thermal transport,” Materials 11, 862 (2018).
[Crossref]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10, 885 (2017).
[Crossref]

A. Ghanekar, Y. Tian, and Y. Zheng, “Photonic metamaterials: Controlling nanoscale radiative thermal transport,” in Heat Transfer-Models, Methods and Applications (IntechOpen, 2017).

Timans, P.

P. Timans, “The thermal radiative properties of semiconductors,” in Advances in Rapid Thermal and Integrated Processing (Springer, 1996), pp. 35–101.
[Crossref]

Tong, J. K.

S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. Huang, J. Loomis, Y. Xu, and G. Chen, “Hybrid optical-thermal devices and materials for light manipulation and radiative cooling,” arXiv preprint arXiv:1509.02516 (2015).

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Veng-Pedersen, P.

G. M. Burke, D. E. Wurster, M. J. Berg, P. Veng-Pedersen, and D. D. Schottelius, “Surface characterization of activated charcoal by x-ray photoelectron spectroscopy (xps): Correlation with phenobarbital adsorption data,” Pharm. Research 9, 126–130 (1992).
[Crossref]

Verleur, H. W.

Wang, D.

Wang, E. N.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

Wang, H.

H. Wang, J.-Y. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Wang, L.

H. Wang, J.-Y. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transf. 87, 237–247 (2015).
[Crossref]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).
[Crossref]

Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).
[Crossref]

L. Wang and Z. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013).
[Crossref]

Wasserman, D.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Weinstein, L.

S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. Huang, J. Loomis, Y. Xu, and G. Chen, “Hybrid optical-thermal devices and materials for light manipulation and radiative cooling,” arXiv preprint arXiv:1509.02516 (2015).

Weinstein, L. A.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Wong, C.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

Wurster, D. E.

G. M. Burke, D. E. Wurster, M. J. Berg, P. Veng-Pedersen, and D. D. Schottelius, “Surface characterization of activated charcoal by x-ray photoelectron spectroscopy (xps): Correlation with phenobarbital adsorption data,” Pharm. Research 9, 126–130 (1992).
[Crossref]

Xu, Y.

S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. Huang, J. Loomis, Y. Xu, and G. Chen, “Hybrid optical-thermal devices and materials for light manipulation and radiative cooling,” arXiv preprint arXiv:1509.02516 (2015).

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
[Crossref] [PubMed]

Yang, Y.

H. Wang, J.-Y. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transf. 87, 237–247 (2015).
[Crossref]

Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).
[Crossref]

Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).
[Crossref]

Yee, S.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

Yeng, Y. X.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
[Crossref] [PubMed]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
[Crossref] [PubMed]

Zhang, S.

A. Ghanekar, Y. Tian, M. Ricci, S. Zhang, O. Gregory, and Y. Zheng, “Near-field thermal rectification devices using phase change periodic nanostructure,” Opt. Express 26, A209–A218 (2018).
[Crossref] [PubMed]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10, 885 (2017).
[Crossref]

Zhang, Z.

L. Wang and Z. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013).
[Crossref]

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
[Crossref] [PubMed]

Zheng, Y.

Y. Tian, A. Ghanekar, M. Ricci, M. Hyde, O. Gregory, and Y. Zheng, “A review of tunable wavelength selectivity of metamaterials in near-field and far-field radiative thermal transport,” Materials 11, 862 (2018).
[Crossref]

A. Ghanekar, Y. Tian, M. Ricci, S. Zhang, O. Gregory, and Y. Zheng, “Near-field thermal rectification devices using phase change periodic nanostructure,” Opt. Express 26, A209–A218 (2018).
[Crossref] [PubMed]

A. Ghanekar, M. Ricci, Y. Tian, O. Gregory, and Y. Zheng, “Dynamic optical response of su-8 upon uv treatment,” Opt. Mater. Express 8, 2017–2025 (2018).
[Crossref]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10, 885 (2017).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24, A868–A877 (2016).
[Crossref] [PubMed]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
[Crossref] [PubMed]

A. Ghanekar, Y. Tian, and Y. Zheng, “Photonic metamaterials: Controlling nanoscale radiative thermal transport,” in Heat Transfer-Models, Methods and Applications (IntechOpen, 2017).

ACS Photonics (1)

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4, 626–630 (2017).
[Crossref]

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 41400334 (2014).
[Crossref]

Appl. Phys. Lett. (6)

M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).
[Crossref]

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100, 021111 (2012).
[Crossref]

Chem. Rev. (1)

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108, 400–422 (2008).
[Crossref]

Energy Environ. Sci. (1)

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8, 3040–3048 (2015).
[Crossref]

Int. J. Heat Mass Transf. (2)

H. Wang, J.-Y. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transf. 87, 237–247 (2015).
[Crossref]

J. Nanoparticle Res. (1)

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” J. Nanoparticle Res. 4, 157–165 (2002).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transf. (3)

M. Ghashami, S. K. Cho, and K. Park, “Near-field enhanced thermionic energy conversion for renewable energy recycling,” J. Quant. Spectrosc. Radiat. Transf. 198, 59–67 (2017).
[Crossref]

Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).
[Crossref]

H. Iizuka and S. Fan, “Consideration of enhancement of thermal rectification using metamaterial models,” J. Quant. Spectrosc. Radiat. Transf. 148, 156–164 (2014).
[Crossref]

Materials (2)

Y. Tian, A. Ghanekar, M. Ricci, M. Hyde, O. Gregory, and Y. Zheng, “A review of tunable wavelength selectivity of metamaterials in near-field and far-field radiative thermal transport,” Materials 11, 862 (2018).
[Crossref]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10, 885 (2017).
[Crossref]

Nano Lett. (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12, 4546–4550 (2012).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref] [PubMed]

Nanoscale Microscale Thermophys. Eng. (1)

L. Wang and Z. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013).
[Crossref]

Nanotechnology (1)

N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
[Crossref] [PubMed]

Nat. Comm. (1)

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Comm. 5, 5446 (2014).
[Crossref]

Nat. Energy (1)

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1, 16153 (2016).
[Crossref]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref]

Nature (1)

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Mater. Express (2)

Pharm. Research (1)

G. M. Burke, D. E. Wurster, M. J. Berg, P. Veng-Pedersen, and D. D. Schottelius, “Surface characterization of activated charcoal by x-ray photoelectron spectroscopy (xps): Correlation with phenobarbital adsorption data,” Pharm. Research 9, 126–130 (1992).
[Crossref]

Phys. Rev. B (1)

C.-G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Science (1)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355, 1062–1066 (2017).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Other (6)

A. Ghanekar, Y. Tian, and Y. Zheng, “Photonic metamaterials: Controlling nanoscale radiative thermal transport,” in Heat Transfer-Models, Methods and Applications (IntechOpen, 2017).

S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. Huang, J. Loomis, Y. Xu, and G. Chen, “Hybrid optical-thermal devices and materials for light manipulation and radiative cooling,” arXiv preprint arXiv:1509.02516 (2015).

E. Hasman, N. Dahan, A. Niv, G. Biener, and V. Kleiner, “Space-variant polarization manipulation of a thermal emission by a sio2 subwavelength grating supporting surface phonon-polariton, ” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. CTuL6.

A. Heilmann, Polymer Films with Embedded Metal Nanoparticles, vol. 52 (Springer Science & Business Media, 2013).

T. Laumer, T. Stichel, T. Bock, P. Amend, and M. Schmidt, “Characterization of temperature-dependent optical material properties of polymer powders,” in AIP Conference Proceedings, vol. 1664 (AIP Publishing, 2015), p. 160001.
[Crossref]

P. Timans, “The thermal radiative properties of semiconductors,” in Advances in Rapid Thermal and Integrated Processing (Springer, 1996), pp. 35–101.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of samples consisting of 400 nm-thick SiO2 film on top of 9 μm W foil as a substrate. SiO2 thin film is doped with W nanoparticles of 5 nm radius with volume fraction of 10%, 20%, and 30%. (b) Schematic of magnetron sputtering system employed to fabricate samples of W nanoparticles embedded in SiO2 thin films.
Fig. 2
Fig. 2 (a) and (b) TEM images of the fabricated samples with volume fractions 10% and 30%, respectively. (c) Measured atomic concentrations of W, Si, and O at different depth for samples of different volume fractions 10%, 20%, and 30%, using Auger electron spectroscopy.
Fig. 3
Fig. 3 Comparison of reflectance spectra of samples with different volume fractions 10% and 20%, before and after thermal annealing
Fig. 4
Fig. 4 Comparison of measured and calculated reflectance spectra of samples with different volume fractions 10%, 20%, and 30%, respectively.
Fig. 5
Fig. 5 Estimated refractive indices of fabricated samples with various volume fractions of 10%, 20%, and 30%, respectively.
Fig. 6
Fig. 6 Reflectance spectra of samples before thermal treatment with different volume fractions 10%, 20%, and 30%, respectively.
Fig. 7
Fig. 7 (a) Incident solar spectrum (AM 1.5, 50 kW−2) and emission spectra of an ideal selective thermal absorber and emitter. (b) and (c) Hemispherical emissivity of the proposed thermal emitter and absorber with different volume fractions 10% and 20%, respectively.

Tables (2)

Tables Icon

Table 1 Lorentz-Drude oscillator parameters of fabricated samples

Tables Icon

Table 2 Structure of proposed selective thermal emitter and absorber

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε + k = 1 N s k 1 ( ω ω k ) 2 j Γ k ( ω ω k ) .

Metrics