Abstract

We demonstrate a technique to compensate the nonlocal effects that appear in Brillouin optical time-domain analysis sensors when pump pulses with limited extinction ratio are deployed. These recently discovered nonlocal effects are originated in the interaction between the probe wave and the pulse pedestal. Hence, their compensation method is based on deploying a modulation (dithering) of the optical frequency of the probe and pulse pedestal waves that provides a reduction of the effective interaction length between them. This is implemented by taking advantage of the chirp associated to the direct current modulation of a semiconductor laser used as common source for both waves. The net effect of this procedure is that the probe and pulse pedestal waves display efficient Brillouin interaction just at correlation peaks along the fiber where the frequency difference between both waves remains constant. Proof-of-concept experiments in a 25-km sensing link demonstrate the performance of the technique, where large errors of more than 10 MHz in the measurement of the Brillouin frequency shift are completely compensated by introducing a sinusoidal dithering to the laser source.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors

Haritz Iribas, Jon Mariñelarena, Cheng Feng, Javier Urricelqui, Thomas Schneider, and Alayn Loayssa
Opt. Express 25(22) 27896-27912 (2017)

Pulse coding linearization for Brillouin optical time-domain analysis sensors

Jon Mariñelarena, Haritz Iribas, and Alayn Loayssa
Opt. Lett. 43(22) 5607-5610 (2018)

Synthesis of Brillouin frequency shift profiles to compensate non-local effects and Brillouin induced noise in BOTDA sensors

Javier Urricelqui, Mikel Sagues, and Alayn Loayssa
Opt. Express 22(15) 18195-18202 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21, 14017–14035 (2013).
    [Crossref] [PubMed]
  2. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sensors J. 9, 633–634 (2009).
    [Crossref]
  3. J. Urricelqui, M. Sagues, and A. Loayssa, “BOTDA measurements tolerant to non-local effects by using a phase-modulated probe wave and RF demodulation,” Opt. Express 21, 17186–17194 (2013).
    [Crossref]
  4. A. Domínguez-López, X. Angulo-Vinuesa, A. López-Gil, S. Martín-López, and M. González-Herráez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23, 10341–10352 (2015).
    [Crossref]
  5. R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. J. 7, 1–9 (2015).
    [Crossref]
  6. S. Wang, Z. Yang, X. Hong, W. Lin, and J. Wu, “Non-local effect compensation in frequency-fixed probe based BOTDA sensor,” J. Lightwave Technol. 36, 1005–1010 (2018).
    [Crossref]
  7. J. Urricelqui, M. Sagues, and A. Loayssa, “Synthesis of Brillouin frequency shift profiles to compensate non-local effects and Brillouin induced noise in BOTDA sensors,” Opt. Express 22, 18195–18202 (2014).
    [Crossref] [PubMed]
  8. J. J. Mompó, J. Urricelqui, and A. Loayssa, “Brillouin optical time-domain analysis sensor with pump pulse amplification,” Opt. Express 24, 12672–12681 (2016).
    [Crossref]
  9. H. Iribas, J. Mariñelarena, C. Feng, J. Urricelqui, T. Schneider, and A. Loayssa, “Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors,” Opt. Express 25, 27896–27912 (2017).
    [Crossref] [PubMed]
  10. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
    [Crossref] [PubMed]
  11. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.  E83-C, 405–411 (2000).
  12. J. Mompo, H. Iribas, J. Urricelqui, and A. Loayssa, “Second-order nonlocal effects mitigation in Brillouin optical time-domain analysis sensors by tracking the Brillouin frequency shift profile of the fiber,” IEEE Photon. J. 9, 1–12 (2017).
    [Crossref]
  13. M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23, 29514–29532 (2015).
    [Crossref]

2018 (1)

2017 (2)

H. Iribas, J. Mariñelarena, C. Feng, J. Urricelqui, T. Schneider, and A. Loayssa, “Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors,” Opt. Express 25, 27896–27912 (2017).
[Crossref] [PubMed]

J. Mompo, H. Iribas, J. Urricelqui, and A. Loayssa, “Second-order nonlocal effects mitigation in Brillouin optical time-domain analysis sensors by tracking the Brillouin frequency shift profile of the fiber,” IEEE Photon. J. 9, 1–12 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (1)

2013 (2)

2009 (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sensors J. 9, 633–634 (2009).
[Crossref]

2008 (1)

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.  E83-C, 405–411 (2000).

Alem, M.

Angulo-Vinuesa, X.

Bao, X.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sensors J. 9, 633–634 (2009).
[Crossref]

Chen, L.

Domínguez-López, A.

Feng, C.

González-Herráez, M.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.  E83-C, 405–411 (2000).

Hong, X.

Hotate, K.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.  E83-C, 405–411 (2000).

Iribas, H.

J. Mompo, H. Iribas, J. Urricelqui, and A. Loayssa, “Second-order nonlocal effects mitigation in Brillouin optical time-domain analysis sensors by tracking the Brillouin frequency shift profile of the fiber,” IEEE Photon. J. 9, 1–12 (2017).
[Crossref]

H. Iribas, J. Mariñelarena, C. Feng, J. Urricelqui, T. Schneider, and A. Loayssa, “Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors,” Opt. Express 25, 27896–27912 (2017).
[Crossref] [PubMed]

Li, W.

Li, Y.

Lin, J.

Lin, W.

Loayssa, A.

López-Gil, A.

López-Higuera, J. M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. J. 7, 1–9 (2015).
[Crossref]

Mafang, S. F.

Mariñelarena, J.

Martín-López, S.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sensors J. 9, 633–634 (2009).
[Crossref]

Mirapeix, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. J. 7, 1–9 (2015).
[Crossref]

Mompo, J.

J. Mompo, H. Iribas, J. Urricelqui, and A. Loayssa, “Second-order nonlocal effects mitigation in Brillouin optical time-domain analysis sensors by tracking the Brillouin frequency shift profile of the fiber,” IEEE Photon. J. 9, 1–12 (2017).
[Crossref]

Mompó, J. J.

Ruiz-Lombera, R.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. J. 7, 1–9 (2015).
[Crossref]

Sagues, M.

Schneider, T.

Soto, M. A.

Thévenaz, L.

Urricelqui, J.

Wang, S.

Wu, J.

Yang, Z.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sensors J. 9, 633–634 (2009).
[Crossref]

IEEE Photon. J. (2)

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. J. 7, 1–9 (2015).
[Crossref]

J. Mompo, H. Iribas, J. Urricelqui, and A. Loayssa, “Second-order nonlocal effects mitigation in Brillouin optical time-domain analysis sensors by tracking the Brillouin frequency shift profile of the fiber,” IEEE Photon. J. 9, 1–12 (2017).
[Crossref]

IEEE Sensors J. (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sensors J. 9, 633–634 (2009).
[Crossref]

IEICE Trans. Electron (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.  E83-C, 405–411 (2000).

J. Lightwave Technol. (1)

Opt. Express (8)

J. Urricelqui, M. Sagues, and A. Loayssa, “Synthesis of Brillouin frequency shift profiles to compensate non-local effects and Brillouin induced noise in BOTDA sensors,” Opt. Express 22, 18195–18202 (2014).
[Crossref] [PubMed]

A. Domínguez-López, X. Angulo-Vinuesa, A. López-Gil, S. Martín-López, and M. González-Herráez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23, 10341–10352 (2015).
[Crossref]

J. J. Mompó, J. Urricelqui, and A. Loayssa, “Brillouin optical time-domain analysis sensor with pump pulse amplification,” Opt. Express 24, 12672–12681 (2016).
[Crossref]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
[Crossref] [PubMed]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21, 14017–14035 (2013).
[Crossref] [PubMed]

J. Urricelqui, M. Sagues, and A. Loayssa, “BOTDA measurements tolerant to non-local effects by using a phase-modulated probe wave and RF demodulation,” Opt. Express 21, 17186–17194 (2013).
[Crossref]

H. Iribas, J. Mariñelarena, C. Feng, J. Urricelqui, T. Schneider, and A. Loayssa, “Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors,” Opt. Express 25, 27896–27912 (2017).
[Crossref] [PubMed]

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23, 29514–29532 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fundamentals of the light source wavelength modulation technique to compensate ER-originated NLEs.
Fig. 2
Fig. 2 Experimental setup deployed to demonstrate the capabilities of the technique to mitigate ER-originated NLEs.
Fig. 3
Fig. 3 Probe gain profile measured along the fiber for different ER values of the pump pulse, using either EDFA I or EDFA II, (a) without dithering of the light source and (b) when the dithering is turned on.
Fig. 4
Fig. 4 Brillouin spectra distribution measured along the fiber when the source frequency is modulated with a sinusoid.
Fig. 5
Fig. 5 Depletion of the pump pulses at the output of the fiber (a) using the SOA to generated the pulses, (b) using the MZ-EOM to generate the pulses and (c) using the MZ-EOM to generate the pulses and deploying the source dithering technique. The pulse shapes are shown with and without probe wave in the fiber and using either the low transient EDFA (EDFA I) or the conventional EDFA (EDFA II).
Fig. 6
Fig. 6 Brillouin frequency shift distribution measured along the optical fiber when using EDFA I (negligible transient response) for pump pulses with ER of 45 dB (blue line), 26 dB (green line) or 26 dB with dithering of the optical source (red line). The insets highlight the details of the measurement around the two hotspots.
Fig. 7
Fig. 7 Brillouin frequency shift distribution measured along the optical fiber when using EDFA II (conventional amplifier) for pump pulses with ER of 45 dB (blue line), 26 dB (green line) or 26 dB with dithering of the optical source (red line). The insets highlight the details of the measurement around the two hotspots.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ f ( t , z ) = Δ f 0 + Δ f p c o s [ π f m ( 2 t L / v g ) ] s i n [ π f m ( L 2 z ) / v g ]
δ z = v g Δ ν B 2 π f m Δ f p
d m = v g 2 f m
δ z d m = Δ ν B π Δ f p
T = 2 Δ f p + Δ f T Δ f T

Metrics