Abstract

We achieve the continuous-wave (CW) lasing of electrically-injected, first-of-their-kind vertical-cavity surface-emitting lasers (VCSELs) that use a subwavelength monolithic high-refractive-index-contrast grating (MHCG) mirror. The MHCG, unlike the well-known high-refractive-index-contrast grating (HCG) is neither a membrane suspended in the air nor a structure that requires a cladding layer. The MHCG is patterned in a semiconductor material atop the VCSEL cavity creating an all-semiconductor laser. Static measurements show CW operation of the VCSELs from room temperature up to 75 °C. The VCSEL with a 13.5 μm current oxide aperture diameter operates with quasi-single mode emission from threshold to rollover. Our results open a way to produce all-semiconductor surface emitting lasers emitting at wavelengths from the ultraviolet and the visible (GaN-based) to the infrared (InP- and GaSb-based) with a reduced vertical thickness and thus we believe the manufacturing costs potentially will be reduced by approximately up to about 90% in comparison to the typical DBR VCSELs. Our VCSELs have immediate and emerging applications in optical communication, illumination, sensing, and as light sources in photonic integrated circuits.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror

M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski
Opt. Express 23(9) 11674-11686 (2015)

Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings

E. Haglund, J.S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan
Opt. Express 24(3) 1999-2005 (2016)

Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning

Ye Zhou, Michael C. Y. Huang, and Connie J. Chang-Hasnain
Opt. Express 16(18) 14221-14226 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
    [Crossref]
  2. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express 15(3), 1222–1227 (2007).
    [Crossref] [PubMed]
  3. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
    [Crossref]
  4. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [Crossref]
  5. T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
    [Crossref]
  6. W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
    [Crossref]
  7. C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express 18(15), 15461–15466 (2010).
    [Crossref] [PubMed]
  8. Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
    [Crossref]
  9. E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
    [Crossref] [PubMed]
  10. T.-C. Chang, S.-Y. Kuo, E. Hashemi, Å. Haglund, and T.-C. Lu, “GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector,” Proc. SPIE 10542, 105420T (2018).
  11. T.-T. Wu, S.-H. Wu, T.-C. Lu, and S.-C. Wang, “GaN-based high contrast grating surface-emitting lasers,” Appl. Phys. Lett. 102(8), 081111 (2013).
    [Crossref]
  12. G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
    [Crossref]
  13. C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
    [Crossref]
  14. A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
    [Crossref]
  15. C. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
    [Crossref]
  16. R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39(15), 4337–4340 (2014).
    [Crossref] [PubMed]
  17. A. Taghizadeh, G.-C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22(18), 21175–21184 (2014).
    [Crossref] [PubMed]
  18. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long wavelength VCSELs,” IEEE Photonics Technol. Lett. 10(9), 1205–1207 (1998).
    [Crossref]
  19. J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17(25), 22535–22542 (2009).
    [Crossref] [PubMed]
  20. M. Marciniak, M. Gębski, M. Dems, E. Haglund, A. Larsson, M. Riaziat, J. A. Lott, and T. Czyszanowski, “Optimal parameters of monolithic high-contrast grating mirrors,” Opt. Lett. 41(15), 3495–3498 (2016).
    [Crossref] [PubMed]
  21. M. Dems, “Monolithic high-contrast gratings: why do they not scatter light?” J. Lightwave Technol. 35(2), 159–165 (2017).
    [Crossref]
  22. M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23(9), 11674–11686 (2015).
    [Crossref] [PubMed]
  23. M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high-index-contrast grating VCSEL,” IEEE Photonics Technol. Lett. 27(18), 1953–1956 (2015).
    [Crossref]
  24. M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high refractive-index-contrast grating VCSELs,” Proc. SPIE 9766, 97660M (2016).
  25. T. Czyszanowski, M. Gębski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
    [Crossref] [PubMed]
  26. N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
  27. K. Li, C. Chase, P. Qiao, and C. J. Chang-Hasnain, “Widely tunable 1060-nm VCSEL with high-contrast grating mirror,” Opt. Express 25(10), 11844–11854 (2017).
    [Crossref] [PubMed]
  28. K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE 6484, 64840J (2007).
    [Crossref]
  29. G. Zhao, X. Yang, Y. Zhang, M. Li, D. G. Deppe, C. Cao, J. Thorp, P. Thiagarajan, and M. McElhinnery, Record low thermal resistance of mode-confined VCSELs using AlAs/AlGaAs DBRs. Proc. CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CF2F.7.
    [Crossref]

2018 (2)

T.-C. Chang, S.-Y. Kuo, E. Hashemi, Å. Haglund, and T.-C. Lu, “GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector,” Proc. SPIE 10542, 105420T (2018).

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).

2017 (3)

2016 (3)

2015 (4)

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23(9), 11674–11686 (2015).
[Crossref] [PubMed]

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high-index-contrast grating VCSEL,” IEEE Photonics Technol. Lett. 27(18), 1953–1956 (2015).
[Crossref]

2014 (2)

2013 (3)

T.-T. Wu, S.-H. Wu, T.-C. Lu, and S.-C. Wang, “GaN-based high contrast grating surface-emitting lasers,” Appl. Phys. Lett. 102(8), 081111 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

2012 (2)

C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[Crossref]

C. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

2010 (2)

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express 18(15), 15461–15466 (2010).
[Crossref] [PubMed]

2009 (2)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17(25), 22535–22542 (2009).
[Crossref] [PubMed]

2008 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

2007 (3)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express 15(3), 1222–1227 (2007).
[Crossref] [PubMed]

K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE 6484, 64840J (2007).
[Crossref]

1998 (1)

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long wavelength VCSELs,” IEEE Photonics Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Ahn, S.

Al-Omari, A. N.

K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE 6484, 64840J (2007).
[Crossref]

Amann, M. C.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Ansbaek, T.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Baets, R.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long wavelength VCSELs,” IEEE Photonics Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Ben Bakir, B.

C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[Crossref]

Bengtsson, J.

Böhm, G.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Boons, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long wavelength VCSELs,” IEEE Photonics Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Bugajski, M.

Caekebeke, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long wavelength VCSELs,” IEEE Photonics Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Chang, H.

Chang, T.-C.

T.-C. Chang, S.-Y. Kuo, E. Hashemi, Å. Haglund, and T.-C. Lu, “GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector,” Proc. SPIE 10542, 105420T (2018).

Chang-Hasnain, C.

C. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Chang-Hasnain, C. J.

K. Li, C. Chase, P. Qiao, and C. J. Chang-Hasnain, “Widely tunable 1060-nm VCSEL with high-contrast grating mirror,” Opt. Express 25(10), 11844–11854 (2017).
[Crossref] [PubMed]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express 18(15), 15461–15466 (2010).
[Crossref] [PubMed]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express 15(3), 1222–1227 (2007).
[Crossref] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
[Crossref]

Chase, C.

K. Li, C. Chase, P. Qiao, and C. J. Chang-Hasnain, “Widely tunable 1060-nm VCSEL with high-contrast grating mirror,” Opt. Express 25(10), 11844–11854 (2017).
[Crossref] [PubMed]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express 18(15), 15461–15466 (2010).
[Crossref] [PubMed]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Chitgarha, M. R.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Chung, I.-S.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

A. Taghizadeh, G.-C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22(18), 21175–21184 (2014).
[Crossref] [PubMed]

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Czyszanowski, T.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).

T. Czyszanowski, M. Gębski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref] [PubMed]

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high refractive-index-contrast grating VCSELs,” Proc. SPIE 9766, 97660M (2016).

M. Marciniak, M. Gębski, M. Dems, E. Haglund, A. Larsson, M. Riaziat, J. A. Lott, and T. Czyszanowski, “Optimal parameters of monolithic high-contrast grating mirrors,” Opt. Lett. 41(15), 3495–3498 (2016).
[Crossref] [PubMed]

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high-index-contrast grating VCSEL,” IEEE Photonics Technol. Lett. 27(18), 1953–1956 (2015).
[Crossref]

M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23(9), 11674–11686 (2015).
[Crossref] [PubMed]

Dems, M.

T. Czyszanowski, M. Gębski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref] [PubMed]

M. Dems, “Monolithic high-contrast gratings: why do they not scatter light?” J. Lightwave Technol. 35(2), 159–165 (2017).
[Crossref]

M. Marciniak, M. Gębski, M. Dems, E. Haglund, A. Larsson, M. Riaziat, J. A. Lott, and T. Czyszanowski, “Optimal parameters of monolithic high-contrast grating mirrors,” Opt. Lett. 41(15), 3495–3498 (2016).
[Crossref] [PubMed]

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high refractive-index-contrast grating VCSELs,” Proc. SPIE 9766, 97660M (2016).

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high-index-contrast grating VCSEL,” IEEE Photonics Technol. Lett. 27(18), 1953–1956 (2015).
[Crossref]

M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23(9), 11674–11686 (2015).
[Crossref] [PubMed]

Dhoedt, B.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long wavelength VCSELs,” IEEE Photonics Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Fattal, D.

Fedeli, J.-M.

C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[Crossref]

Frasunkiewicz, L.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).

Gebski, M.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).

T. Czyszanowski, M. Gębski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref] [PubMed]

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high refractive-index-contrast grating VCSELs,” Proc. SPIE 9766, 97660M (2016).

M. Marciniak, M. Gębski, M. Dems, E. Haglund, A. Larsson, M. Riaziat, J. A. Lott, and T. Czyszanowski, “Optimal parameters of monolithic high-contrast grating mirrors,” Opt. Lett. 41(15), 3495–3498 (2016).
[Crossref] [PubMed]

M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23(9), 11674–11686 (2015).
[Crossref] [PubMed]

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high-index-contrast grating VCSEL,” IEEE Photonics Technol. Lett. 27(18), 1953–1956 (2015).
[Crossref]

Goeman, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long wavelength VCSELs,” IEEE Photonics Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Grasse, C.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Gustavsson, J. S.

Haghighi, N.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).

Haglund, Å.

T.-C. Chang, S.-Y. Kuo, E. Hashemi, Å. Haglund, and T.-C. Lu, “GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector,” Proc. SPIE 10542, 105420T (2018).

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
[Crossref] [PubMed]

Haglund, E.

Harduin, J.

C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[Crossref]

Hashemi, E.

T.-C. Chang, S.-Y. Kuo, E. Hashemi, Å. Haglund, and T.-C. Lu, “GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector,” Proc. SPIE 10542, 105420T (2018).

Hofmann, W.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express 18(15), 15461–15466 (2010).
[Crossref] [PubMed]

Huang, M. C. Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express 15(3), 1222–1227 (2007).
[Crossref] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
[Crossref]

Jeon, H.

Karagodsky, V.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Khaleghi, S.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Kim, J.

Kruszka, R.

Kuo, S.-Y.

T.-C. Chang, S.-Y. Kuo, E. Hashemi, Å. Haglund, and T.-C. Lu, “GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector,” Proc. SPIE 10542, 105420T (2018).

Larisch, G.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).

Larsson, A.

Lear, K. L.

K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE 6484, 64840J (2007).
[Crossref]

Lee, J.

Letartre, X.

C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[Crossref]

Li, K.

Lott, J. A.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).

M. Marciniak, M. Gębski, M. Dems, E. Haglund, A. Larsson, M. Riaziat, J. A. Lott, and T. Czyszanowski, “Optimal parameters of monolithic high-contrast grating mirrors,” Opt. Lett. 41(15), 3495–3498 (2016).
[Crossref] [PubMed]

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high refractive-index-contrast grating VCSELs,” Proc. SPIE 9766, 97660M (2016).

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high-index-contrast grating VCSEL,” IEEE Photonics Technol. Lett. 27(18), 1953–1956 (2015).
[Crossref]

Lu, T.-C.

T.-C. Chang, S.-Y. Kuo, E. Hashemi, Å. Haglund, and T.-C. Lu, “GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector,” Proc. SPIE 10542, 105420T (2018).

T.-T. Wu, S.-H. Wu, T.-C. Lu, and S.-C. Wang, “GaN-based high contrast grating surface-emitting lasers,” Appl. Phys. Lett. 102(8), 081111 (2013).
[Crossref]

Magnusson, R.

Marciniak, M.

Marona, L.

Moewe, M.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Mørk, J.

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

A. Taghizadeh, G.-C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22(18), 21175–21184 (2014).
[Crossref] [PubMed]

Motyka, M.

Müller, M.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Olivier, N.

C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[Crossref]

Palka, N.

Panajotov, K.

T. Czyszanowski, M. Gębski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref] [PubMed]

Park, G. C.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Park, G.-C.

Park, Y.

Pesala, B.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Qiao, P.

Rao, Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express 18(15), 15461–15466 (2010).
[Crossref] [PubMed]

Riaziat, M.

Rosales, R.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).

Sarzala, R.

T. Czyszanowski, M. Gębski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref] [PubMed]

Sciancalepore, C.

C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[Crossref]

Seassal, C.

C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[Crossref]

Sedgwick, F. G.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Semenova, E.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Semenova, E. S.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Sorin, W.

Szerling, A.

Taghizadeh, A.

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

A. Taghizadeh, G.-C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22(18), 21175–21184 (2014).
[Crossref] [PubMed]

Tan, M.

Urbanczyk, D.

Van Daele, P.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long wavelength VCSELs,” IEEE Photonics Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Vandeputte, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long wavelength VCSELs,” IEEE Photonics Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Viktorovitch, P.

C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[Crossref]

Walczakowski, M.

Wang, Q. J.

Wang, S.-C.

T.-T. Wu, S.-H. Wu, T.-C. Lu, and S.-C. Wang, “GaN-based high contrast grating surface-emitting lasers,” Appl. Phys. Lett. 102(8), 081111 (2013).
[Crossref]

Wasiak, M.

Willner, A. E.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Wójcik-Jedlinska, A.

Worland, D. P.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Wu, S.-H.

T.-T. Wu, S.-H. Wu, T.-C. Lu, and S.-C. Wang, “GaN-based high contrast grating surface-emitting lasers,” Appl. Phys. Lett. 102(8), 081111 (2013).
[Crossref]

Wu, T.-T.

T.-T. Wu, S.-H. Wu, T.-C. Lu, and S.-C. Wang, “GaN-based high contrast grating surface-emitting lasers,” Appl. Phys. Lett. 102(8), 081111 (2013).
[Crossref]

Xue, W.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Yang, W.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

C. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Yvind, K.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Zhang, D. H.

Zhou, Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express 15(3), 1222–1227 (2007).
[Crossref] [PubMed]

Ziyadi, M.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Adv. Opt. Photonics (1)

C. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Appl. Phys. Lett. (2)

T.-T. Wu, S.-H. Wu, T.-C. Lu, and S.-C. Wang, “GaN-based high contrast grating surface-emitting lasers,” Appl. Phys. Lett. 102(8), 081111 (2013).
[Crossref]

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

IEEE Photonics J. (1)

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (4)

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long wavelength VCSELs,” IEEE Photonics Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high-index-contrast grating VCSEL,” IEEE Photonics Technol. Lett. 27(18), 1953–1956 (2015).
[Crossref]

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

C. Sciancalepore, B. Ben Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, and P. Viktorovitch, “CMOS-Compatible Ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Nat. Photonics (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Opt. Express (7)

K. Li, C. Chase, P. Qiao, and C. J. Chang-Hasnain, “Widely tunable 1060-nm VCSEL with high-contrast grating mirror,” Opt. Express 25(10), 11844–11854 (2017).
[Crossref] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express 15(3), 1222–1227 (2007).
[Crossref] [PubMed]

J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17(25), 22535–22542 (2009).
[Crossref] [PubMed]

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express 18(15), 15461–15466 (2010).
[Crossref] [PubMed]

A. Taghizadeh, G.-C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22(18), 21175–21184 (2014).
[Crossref] [PubMed]

M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23(9), 11674–11686 (2015).
[Crossref] [PubMed]

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (4)

T.-C. Chang, S.-Y. Kuo, E. Hashemi, Å. Haglund, and T.-C. Lu, “GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector,” Proc. SPIE 10542, 105420T (2018).

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).

K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE 6484, 64840J (2007).
[Crossref]

M. Gębski, M. Dems, J. A. Lott, and T. Czyszanowski, “Monolithic subwavelength high refractive-index-contrast grating VCSELs,” Proc. SPIE 9766, 97660M (2016).

Sci. Rep. (1)

T. Czyszanowski, M. Gębski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref] [PubMed]

Other (1)

G. Zhao, X. Yang, Y. Zhang, M. Li, D. G. Deppe, C. Cao, J. Thorp, P. Thiagarajan, and M. McElhinnery, Record low thermal resistance of mode-confined VCSELs using AlAs/AlGaAs DBRs. Proc. CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CF2F.7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic view of the MHCG DBR VCSEL design.
Fig. 2
Fig. 2 SEM images of the MHCG DBR VCSEL (Device A, see section ‘Results’): a) an entire device; b) mesa region; and c) cross-section of the top part of the cavity (FIB cut, with added thin layer of Pt to aid the FIB process); d) the surface MHCG region. Optical microscope images of the device connected with a GSG prober: e) illuminated by an outside light source; f) below the threshold (with a forward bias I = 3 mA); and g) above the threshold (with I = 12 mA).
Fig. 3
Fig. 3 a) simulated optical field intensity profile (blue) and real refractive index at 980 nm both versus distance z in the top part of the MHCG DBR VCSEL structure; and b) simulated power reflectance (R) of the top MHCG DBR outcoupling mirror and 5.5 top DBR periods (inset) as seen from the optical cavity at normal incidence for TM polarized light and ranges of fundamental mode wavelengths for devices A (blue), B (green) and C (red) from threshold to rollover at 25 °C. In the simulations the real measured geometry of the MHCG mirrors were used (see Fig. 2(d)). The Inset in b) is the simulated R of our 5.5 period DBR into air (thus without the MHCG and phase matching layer) as seen from the optical cavity at normal incidence.
Fig. 4
Fig. 4 a) light output power-voltage-current characteristics for devices A, B, and C taken at 25 °C; and b) threshold current (blue) and optical output power at rollover (red) vs. heat-sink temperature for device A.
Fig. 5
Fig. 5 Emission spectra: a) of the double mode VCSEL A; b) of the single mode VCSEL C; and c) of a device of nominally the same size as VCSELs A and B but without the MHCG for various forward bias currents taken at a 25 °C ambient temperature. For both Devices A and C the emission spectrum taken at 5 mA is below the laser threshold.

Metrics