Abstract

In this work, we theoretically investigate the enhanced Terahertz (THz) radiation by an intense laser pulse assisted with sub-cycle pulses (SCP) in the framework of quantum theory. By numerically solving the Schrödinger equation, the production and the dynamics of ionized electrons are analyzed. The simulations show that the SCP plays different roles for different time delays in the generation of THz radiation, such as increasing the production of the ionized electrons and manipulating their trajectories. The time-frequency analysis of the THz radiation is also carried out, which indicates that the THz radiation mainly occurs where the SCP is launched, and the THz radiation mainly comes from the formation of the asymmetric electric current. Finally, the scheme of dual sub-cycle pulses is studied, and we find that the THz radiations can constructively or destructively interfere, which leads to the formation of the streaky structures of radiation spectra.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz pulse radiation from argon clusters irradiated with intense femtosecond laser pulses

Takeshi Nagashima, Heijiro Hirayama, Kyoji Shibuya, Masanori Hangyo, Masaki Hashida, Shigeki Tokita, and Shuji Sakabe
Opt. Express 17(11) 8907-8912 (2009)

Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses

Maksim Kunitski, Martin Richter, Mark D. Thomson, Arno Vredenborg, Jian Wu, Till Jahnke, Markus Schöffler, Horst Schmidt-Böcking, Hartmut G. Roskos, and Reinhard Dörner
Opt. Express 21(6) 6826-6836 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X.-C. Zhang and J. Z. Xu, Introduction to THz Wave Photonics (Springer, 2010).
    [Crossref]
  2. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50 (3), 910–928 (2002).
    [Crossref]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  4. L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
    [Crossref]
  5. B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20 (7), S246–S253 (2005).
    [Crossref]
  6. P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12 (11), 1747–1756 (2001).
    [Crossref]
  7. K. Ahi and M. Anwar, “Advanced terahertz techniques for quality control and counterfeit detection,” Proc. SPIE 9856, “Terahertz physics, devices, and systems X: Advanced applications in industry and defense,” 98560G (2016).
  8. X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
    [Crossref]
  9. F. Kadlec, P. Kužel, and J. L. Coutaz, “Optical rectification at metal surfaces,” Opt. Lett. 29 (22), 2674–2676 (2004).
    [Crossref] [PubMed]
  10. F. Kadlec, P. Kužel, and J. L. Coutaz, “Study of terahertz radiation generated by optical rectification on thin gold films,” Opt. Lett. 30 (11), 1402–1404 (2005).
    [Crossref] [PubMed]
  11. M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9 (11), 446–448, (1962).
    [Crossref]
  12. F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15 (26), 999–1001 (1965).
    [Crossref]
  13. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15 (8), 4577–4584 (2007).
    [Crossref] [PubMed]
  14. K. Y. Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas 16 (5), 056706 (2009).
    [Crossref]
  15. I. Babushkin, S Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Berge, and J. Herrmann, “Tailoring terahertz radiation by controlling tunnel photoionization events in gases,” New J. Phys. 13. 123029 (2011).
    [Crossref]
  16. C. H. Lu, C. Y. Zhang, L. Q. Zhang, X. W. Wang, and S. Zhang, “Modulation of terahertz-spectrum generation from an air plasma by tunable three-color laser pulses,” Phys. Rev. A 96 (5), 053402 (2017).
    [Crossref]
  17. X. Xie, J. M. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
    [Crossref] [PubMed]
  18. A. Nguyen, P. González de Alaiza Martínez, I. Thiele, S Skupin, and L Bergé, “THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses,” New J. Phys. 20 (3), 033026 (2018).
    [Crossref]
  19. M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49 (3), 2117–2132 (1994).
    [Crossref] [PubMed]
  20. D. W. Zhang, Z. H. Lü, C. Meng, X. Y. Du, Z. Y. Zhou, Z. X. Zhao, and J. M. Yuan, “Synchronizing terahertz wave generation with attosecond bursts,” Phys. Rev. Lett. 109 (24), 243002 (2012).
    [Crossref]
  21. Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
    [Crossref]
  22. W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
    [Crossref]
  23. J. Shan, J. I. Dadap, and T. F. Heinz, “Circularly polarized light in the single-cycle limit: the nature of highly polychromatic radiation of defined polarization,” Opt. Express 17 (9), 7431–7439 (2009).
    [Crossref] [PubMed]
  24. T. Loffler, F. Jacob, and H. G. Roskos, “Generation of terahertz pulses by photoionization of electrically biased air,” Appl. Phys. Lett. 77 (3), 453–455 (2000).
    [Crossref]
  25. A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100 (25), 255006 (2008).
    [Crossref] [PubMed]
  26. J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-Color laser-induced gas plasma,” Phys. Rev. Lett. 103 (2), 023001 (2009).
    [Crossref] [PubMed]
  27. H. D. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103 (2), 023902 (2009).
    [Crossref] [PubMed]
  28. H. G. Wang, N. Li, Y. Bai, P. Liu, Z. S. Wang, and C. P. Liu, “Generation of largely elliptically polarized terahertz radiation from laser-induced filaments,” Opt. Express 25 (25), 30987–30995 (2017).
    [Crossref] [PubMed]
  29. W.-M. Wang, P. Gibbon, Z.-M. Sheng, and Y.-T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114 (25), 253901 (2015)
    [Crossref] [PubMed]
  30. R. K. Singh, M. Singh, S. K. Rajouria, and R. P. Sharma, “High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma,” Phys. Plasmas 24 (10), 103103 (2017).
    [Crossref]
  31. C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).
    [Crossref]
  32. I. P. Christov, “Propagation of ultrashort pulses in gaseous medium: breakdown of the quasistatic approximation,” Opt. Express 6 (2), 34–39 (1999).
    [Crossref]
  33. X. H. Gao and L. Tao, “Gabor time-frequency representation for transient signals using multiwindow discrete Gabor transform,” Int. J. Wavelets Multiresolution Inf. Process. 15 (4), 1750036 (2017).
    [Crossref]

2018 (1)

A. Nguyen, P. González de Alaiza Martínez, I. Thiele, S Skupin, and L Bergé, “THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses,” New J. Phys. 20 (3), 033026 (2018).
[Crossref]

2017 (4)

C. H. Lu, C. Y. Zhang, L. Q. Zhang, X. W. Wang, and S. Zhang, “Modulation of terahertz-spectrum generation from an air plasma by tunable three-color laser pulses,” Phys. Rev. A 96 (5), 053402 (2017).
[Crossref]

H. G. Wang, N. Li, Y. Bai, P. Liu, Z. S. Wang, and C. P. Liu, “Generation of largely elliptically polarized terahertz radiation from laser-induced filaments,” Opt. Express 25 (25), 30987–30995 (2017).
[Crossref] [PubMed]

R. K. Singh, M. Singh, S. K. Rajouria, and R. P. Sharma, “High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma,” Phys. Plasmas 24 (10), 103103 (2017).
[Crossref]

X. H. Gao and L. Tao, “Gabor time-frequency representation for transient signals using multiwindow discrete Gabor transform,” Int. J. Wavelets Multiresolution Inf. Process. 15 (4), 1750036 (2017).
[Crossref]

2015 (2)

W.-M. Wang, P. Gibbon, Z.-M. Sheng, and Y.-T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114 (25), 253901 (2015)
[Crossref] [PubMed]

W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
[Crossref]

2013 (2)

Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
[Crossref]

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).
[Crossref]

2012 (1)

D. W. Zhang, Z. H. Lü, C. Meng, X. Y. Du, Z. Y. Zhou, Z. X. Zhao, and J. M. Yuan, “Synchronizing terahertz wave generation with attosecond bursts,” Phys. Rev. Lett. 109 (24), 243002 (2012).
[Crossref]

2011 (1)

I. Babushkin, S Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Berge, and J. Herrmann, “Tailoring terahertz radiation by controlling tunnel photoionization events in gases,” New J. Phys. 13. 123029 (2011).
[Crossref]

2009 (4)

J. Shan, J. I. Dadap, and T. F. Heinz, “Circularly polarized light in the single-cycle limit: the nature of highly polychromatic radiation of defined polarization,” Opt. Express 17 (9), 7431–7439 (2009).
[Crossref] [PubMed]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-Color laser-induced gas plasma,” Phys. Rev. Lett. 103 (2), 023001 (2009).
[Crossref] [PubMed]

H. D. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103 (2), 023902 (2009).
[Crossref] [PubMed]

K. Y. Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas 16 (5), 056706 (2009).
[Crossref]

2008 (2)

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
[Crossref]

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100 (25), 255006 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (1)

X. Xie, J. M. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[Crossref] [PubMed]

2005 (2)

F. Kadlec, P. Kužel, and J. L. Coutaz, “Study of terahertz radiation generated by optical rectification on thin gold films,” Opt. Lett. 30 (11), 1402–1404 (2005).
[Crossref] [PubMed]

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20 (7), S246–S253 (2005).
[Crossref]

2004 (1)

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50 (3), 910–928 (2002).
[Crossref]

2001 (1)

P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12 (11), 1747–1756 (2001).
[Crossref]

2000 (1)

T. Loffler, F. Jacob, and H. G. Roskos, “Generation of terahertz pulses by photoionization of electrically biased air,” Appl. Phys. Lett. 77 (3), 453–455 (2000).
[Crossref]

1999 (1)

1994 (1)

M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49 (3), 2117–2132 (1994).
[Crossref] [PubMed]

1992 (1)

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
[Crossref]

1965 (1)

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15 (26), 999–1001 (1965).
[Crossref]

1962 (1)

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9 (11), 446–448, (1962).
[Crossref]

Ahi, K.

K. Ahi and M. Anwar, “Advanced terahertz techniques for quality control and counterfeit detection,” Proc. SPIE 9856, “Terahertz physics, devices, and systems X: Advanced applications in industry and defense,” 98560G (2016).

Anwar, M.

K. Ahi and M. Anwar, “Advanced terahertz techniques for quality control and counterfeit detection,” Proc. SPIE 9856, “Terahertz physics, devices, and systems X: Advanced applications in industry and defense,” 98560G (2016).

Babushkin, I.

I. Babushkin, S Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Berge, and J. Herrmann, “Tailoring terahertz radiation by controlling tunnel photoionization events in gases,” New J. Phys. 13. 123029 (2011).
[Crossref]

Bai, Y.

Balcou, Ph.

M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49 (3), 2117–2132 (1994).
[Crossref] [PubMed]

Bandrauk, A. D.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).
[Crossref]

Bass, M.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9 (11), 446–448, (1962).
[Crossref]

Berge, L.

I. Babushkin, S Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Berge, and J. Herrmann, “Tailoring terahertz radiation by controlling tunnel photoionization events in gases,” New J. Phys. 13. 123029 (2011).
[Crossref]

Bergé, L

A. Nguyen, P. González de Alaiza Martínez, I. Thiele, S Skupin, and L Bergé, “THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses,” New J. Phys. 20 (3), 033026 (2018).
[Crossref]

Bergé, L.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).
[Crossref]

Berman, P. R.

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15 (26), 999–1001 (1965).
[Crossref]

Boden, E. P.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
[Crossref]

Cabrera-Granado, E.

I. Babushkin, S Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Berge, and J. Herrmann, “Tailoring terahertz radiation by controlling tunnel photoionization events in gases,” New J. Phys. 13. 123029 (2011).
[Crossref]

Chelkowski, S.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).
[Crossref]

Chen, W. B.

W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
[Crossref]

Christov, I. P.

Corkum, P. B.

M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49 (3), 2117–2132 (1994).
[Crossref] [PubMed]

Coutaz, J. L.

Dadap, J. I.

Dai, J.

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-Color laser-induced gas plasma,” Phys. Rev. Lett. 103 (2), 023001 (2009).
[Crossref] [PubMed]

Dai, J. M.

X. Xie, J. M. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[Crossref] [PubMed]

Du, X. Y.

Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
[Crossref]

D. W. Zhang, Z. H. Lü, C. Meng, X. Y. Du, Z. Y. Zhou, Z. X. Zhao, and J. M. Yuan, “Synchronizing terahertz wave generation with attosecond bursts,” Phys. Rev. Lett. 109 (24), 243002 (2012).
[Crossref]

Fischer, B.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20 (7), S246–S253 (2005).
[Crossref]

Franken, P. A.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9 (11), 446–448, (1962).
[Crossref]

Gao, X. H.

X. H. Gao and L. Tao, “Gabor time-frequency representation for transient signals using multiwindow discrete Gabor transform,” Int. J. Wavelets Multiresolution Inf. Process. 15 (4), 1750036 (2017).
[Crossref]

Gibbon, P.

W.-M. Wang, P. Gibbon, Z.-M. Sheng, and Y.-T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114 (25), 253901 (2015)
[Crossref] [PubMed]

Glownia, J. H.

González de Alaiza Martínez, P.

A. Nguyen, P. González de Alaiza Martínez, I. Thiele, S Skupin, and L Bergé, “THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses,” New J. Phys. 20 (3), 033026 (2018).
[Crossref]

Guichard, R.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).
[Crossref]

Han, P. Y.

P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12 (11), 1747–1756 (2001).
[Crossref]

Heinz, T. F.

Helm, H.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20 (7), S246–S253 (2005).
[Crossref]

Herrmann, J.

I. Babushkin, S Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Berge, and J. Herrmann, “Tailoring terahertz radiation by controlling tunnel photoionization events in gases,” New J. Phys. 13. 123029 (2011).
[Crossref]

Ho, L.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
[Crossref]

Hoffmann, M.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20 (7), S246–S253 (2005).
[Crossref]

Houard, A.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100 (25), 255006 (2008).
[Crossref] [PubMed]

Huang, Y. D.

W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
[Crossref]

Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
[Crossref]

Husakou, A.

I. Babushkin, S Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Berge, and J. Herrmann, “Tailoring terahertz radiation by controlling tunnel photoionization events in gases,” New J. Phys. 13. 123029 (2011).
[Crossref]

Ivanov, M. Yu.

M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49 (3), 2117–2132 (1994).
[Crossref] [PubMed]

Jacob, F.

T. Loffler, F. Jacob, and H. G. Roskos, “Generation of terahertz pulses by photoionization of electrically biased air,” Appl. Phys. Lett. 77 (3), 453–455 (2000).
[Crossref]

Jepsen, P.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20 (7), S246–S253 (2005).
[Crossref]

Jin, Y.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
[Crossref]

Kadlec, F.

Karpowicz, N.

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-Color laser-induced gas plasma,” Phys. Rev. Lett. 103 (2), 023001 (2009).
[Crossref] [PubMed]

Kim, K. Y.

Köhler, C.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).
[Crossref]

I. Babushkin, S Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Berge, and J. Herrmann, “Tailoring terahertz radiation by controlling tunnel photoionization events in gases,” New J. Phys. 13. 123029 (2011).
[Crossref]

Kužel, P.

L’Huillier, A.

M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49 (3), 2117–2132 (1994).
[Crossref] [PubMed]

Lewenstein, M.

M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49 (3), 2117–2132 (1994).
[Crossref] [PubMed]

Li, N.

Li, Y.-T.

W.-M. Wang, P. Gibbon, Z.-M. Sheng, and Y.-T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114 (25), 253901 (2015)
[Crossref] [PubMed]

Lindenberg, A. M.

H. D. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103 (2), 023902 (2009).
[Crossref] [PubMed]

Liu, C. P.

Liu, J. L.

W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
[Crossref]

Liu, P.

Liu, Y.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100 (25), 255006 (2008).
[Crossref] [PubMed]

Loffler, T.

T. Loffler, F. Jacob, and H. G. Roskos, “Generation of terahertz pulses by photoionization of electrically biased air,” Appl. Phys. Lett. 77 (3), 453–455 (2000).
[Crossref]

Lorin, E.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).
[Crossref]

Lu, C. H.

C. H. Lu, C. Y. Zhang, L. Q. Zhang, X. W. Wang, and S. Zhang, “Modulation of terahertz-spectrum generation from an air plasma by tunable three-color laser pulses,” Phys. Rev. A 96 (5), 053402 (2017).
[Crossref]

Lu, T. M.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
[Crossref]

Lü, Z. H.

Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
[Crossref]

D. W. Zhang, Z. H. Lü, C. Meng, X. Y. Du, Z. Y. Zhou, Z. X. Zhao, and J. M. Yuan, “Synchronizing terahertz wave generation with attosecond bursts,” Phys. Rev. Lett. 109 (24), 243002 (2012).
[Crossref]

Ma, X. F.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
[Crossref]

Meng, C.

W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
[Crossref]

Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
[Crossref]

D. W. Zhang, Z. H. Lü, C. Meng, X. Y. Du, Z. Y. Zhou, Z. X. Zhao, and J. M. Yuan, “Synchronizing terahertz wave generation with attosecond bursts,” Phys. Rev. Lett. 109 (24), 243002 (2012).
[Crossref]

Modjesch, G.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20 (7), S246–S253 (2005).
[Crossref]

Mysyrowicz, A.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100 (25), 255006 (2008).
[Crossref] [PubMed]

Nguyen, A.

A. Nguyen, P. González de Alaiza Martínez, I. Thiele, S Skupin, and L Bergé, “THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses,” New J. Phys. 20 (3), 033026 (2018).
[Crossref]

Pepper, M.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
[Crossref]

Phelps, P. D.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
[Crossref]

Prade, B.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100 (25), 255006 (2008).
[Crossref] [PubMed]

Rajouria, S. K.

R. K. Singh, M. Singh, S. K. Rajouria, and R. P. Sharma, “High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma,” Phys. Plasmas 24 (10), 103103 (2017).
[Crossref]

Rodriguez, G.

Roskos, H. G.

T. Loffler, F. Jacob, and H. G. Roskos, “Generation of terahertz pulses by photoionization of electrically biased air,” Appl. Phys. Lett. 77 (3), 453–455 (2000).
[Crossref]

Shan, J.

Sharma, R. P.

R. K. Singh, M. Singh, S. K. Rajouria, and R. P. Sharma, “High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma,” Phys. Plasmas 24 (10), 103103 (2017).
[Crossref]

Sheng, Z.-M.

W.-M. Wang, P. Gibbon, Z.-M. Sheng, and Y.-T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114 (25), 253901 (2015)
[Crossref] [PubMed]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50 (3), 910–928 (2002).
[Crossref]

Singh, M.

R. K. Singh, M. Singh, S. K. Rajouria, and R. P. Sharma, “High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma,” Phys. Plasmas 24 (10), 103103 (2017).
[Crossref]

Singh, R. K.

R. K. Singh, M. Singh, S. K. Rajouria, and R. P. Sharma, “High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma,” Phys. Plasmas 24 (10), 103103 (2017).
[Crossref]

Skupin, S

A. Nguyen, P. González de Alaiza Martínez, I. Thiele, S Skupin, and L Bergé, “THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses,” New J. Phys. 20 (3), 033026 (2018).
[Crossref]

I. Babushkin, S Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Berge, and J. Herrmann, “Tailoring terahertz radiation by controlling tunnel photoionization events in gases,” New J. Phys. 13. 123029 (2011).
[Crossref]

Skupin, S.

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).
[Crossref]

Stewart, K. R.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
[Crossref]

Taday, P.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
[Crossref]

Tao, L.

X. H. Gao and L. Tao, “Gabor time-frequency representation for transient signals using multiwindow discrete Gabor transform,” Int. J. Wavelets Multiresolution Inf. Process. 15 (4), 1750036 (2017).
[Crossref]

Taylor, A. J.

Thiele, I.

A. Nguyen, P. González de Alaiza Martínez, I. Thiele, S Skupin, and L Bergé, “THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses,” New J. Phys. 20 (3), 033026 (2018).
[Crossref]

Tikhonchuk, V. T.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100 (25), 255006 (2008).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Wang, H. G.

Wang, W.-M.

W.-M. Wang, P. Gibbon, Z.-M. Sheng, and Y.-T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114 (25), 253901 (2015)
[Crossref] [PubMed]

Wang, X. W.

C. H. Lu, C. Y. Zhang, L. Q. Zhang, X. W. Wang, and S. Zhang, “Modulation of terahertz-spectrum generation from an air plasma by tunable three-color laser pulses,” Phys. Rev. A 96 (5), 053402 (2017).
[Crossref]

Wang, Z. S.

Ward, J. F.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9 (11), 446–448, (1962).
[Crossref]

Weinreich, G.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9 (11), 446–448, (1962).
[Crossref]

Wen, H. D.

H. D. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103 (2), 023902 (2009).
[Crossref] [PubMed]

Xie, X.

X. Xie, J. M. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[Crossref] [PubMed]

Xu, J. Z.

X.-C. Zhang and J. Z. Xu, Introduction to THz Wave Photonics (Springer, 2010).
[Crossref]

Yakymyshyn, C. P.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
[Crossref]

Yuan, J. M.

W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
[Crossref]

Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
[Crossref]

D. W. Zhang, Z. H. Lü, C. Meng, X. Y. Du, Z. Y. Zhou, Z. X. Zhao, and J. M. Yuan, “Synchronizing terahertz wave generation with attosecond bursts,” Phys. Rev. Lett. 109 (24), 243002 (2012).
[Crossref]

Zernike, F.

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15 (26), 999–1001 (1965).
[Crossref]

Zhang, C. Y.

C. H. Lu, C. Y. Zhang, L. Q. Zhang, X. W. Wang, and S. Zhang, “Modulation of terahertz-spectrum generation from an air plasma by tunable three-color laser pulses,” Phys. Rev. A 96 (5), 053402 (2017).
[Crossref]

Zhang, D. W.

W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
[Crossref]

Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
[Crossref]

D. W. Zhang, Z. H. Lü, C. Meng, X. Y. Du, Z. Y. Zhou, Z. X. Zhao, and J. M. Yuan, “Synchronizing terahertz wave generation with attosecond bursts,” Phys. Rev. Lett. 109 (24), 243002 (2012).
[Crossref]

Zhang, L. Q.

C. H. Lu, C. Y. Zhang, L. Q. Zhang, X. W. Wang, and S. Zhang, “Modulation of terahertz-spectrum generation from an air plasma by tunable three-color laser pulses,” Phys. Rev. A 96 (5), 053402 (2017).
[Crossref]

Zhang, S.

C. H. Lu, C. Y. Zhang, L. Q. Zhang, X. W. Wang, and S. Zhang, “Modulation of terahertz-spectrum generation from an air plasma by tunable three-color laser pulses,” Phys. Rev. A 96 (5), 053402 (2017).
[Crossref]

Zhang, X. C.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
[Crossref]

Zhang, X.-C.

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-Color laser-induced gas plasma,” Phys. Rev. Lett. 103 (2), 023001 (2009).
[Crossref] [PubMed]

X. Xie, J. M. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[Crossref] [PubMed]

P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12 (11), 1747–1756 (2001).
[Crossref]

X.-C. Zhang and J. Z. Xu, Introduction to THz Wave Photonics (Springer, 2010).
[Crossref]

Zhao, Z. X.

W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
[Crossref]

Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
[Crossref]

D. W. Zhang, Z. H. Lü, C. Meng, X. Y. Du, Z. Y. Zhou, Z. X. Zhao, and J. M. Yuan, “Synchronizing terahertz wave generation with attosecond bursts,” Phys. Rev. Lett. 109 (24), 243002 (2012).
[Crossref]

Zhou, Z. Y.

W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
[Crossref]

Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
[Crossref]

D. W. Zhang, Z. H. Lü, C. Meng, X. Y. Du, Z. Y. Zhou, Z. X. Zhao, and J. M. Yuan, “Synchronizing terahertz wave generation with attosecond bursts,” Phys. Rev. Lett. 109 (24), 243002 (2012).
[Crossref]

Appl. Phys. Lett. (2)

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61 (26), 3080–3082 (1992).
[Crossref]

T. Loffler, F. Jacob, and H. G. Roskos, “Generation of terahertz pulses by photoionization of electrically biased air,” Appl. Phys. Lett. 77 (3), 453–455 (2000).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50 (3), 910–928 (2002).
[Crossref]

Int. J. Wavelets Multiresolution Inf. Process. (1)

X. H. Gao and L. Tao, “Gabor time-frequency representation for transient signals using multiwindow discrete Gabor transform,” Int. J. Wavelets Multiresolution Inf. Process. 15 (4), 1750036 (2017).
[Crossref]

J. Phys. B (1)

Z. H. Lü, D. W. Zhang, C. Meng, X. Y. Du, Z. Y. Zhou, Y. D. Huang, Z. X. Zhao, and J. M. Yuan, “Attosecond synchronization of terahertz wave and high-harmonics,” J. Phys. B 46 (15), 155602 (2013).
[Crossref]

Meas. Sci. Technol. (1)

P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12 (11), 1747–1756 (2001).
[Crossref]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
[Crossref]

New J. Phys. (2)

A. Nguyen, P. González de Alaiza Martínez, I. Thiele, S Skupin, and L Bergé, “THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses,” New J. Phys. 20 (3), 033026 (2018).
[Crossref]

I. Babushkin, S Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Berge, and J. Herrmann, “Tailoring terahertz radiation by controlling tunnel photoionization events in gases,” New J. Phys. 13. 123029 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Plasmas (2)

R. K. Singh, M. Singh, S. K. Rajouria, and R. P. Sharma, “High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma,” Phys. Plasmas 24 (10), 103103 (2017).
[Crossref]

K. Y. Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas 16 (5), 056706 (2009).
[Crossref]

Phys. Rev. A (4)

C. H. Lu, C. Y. Zhang, L. Q. Zhang, X. W. Wang, and S. Zhang, “Modulation of terahertz-spectrum generation from an air plasma by tunable three-color laser pulses,” Phys. Rev. A 96 (5), 053402 (2017).
[Crossref]

M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49 (3), 2117–2132 (1994).
[Crossref] [PubMed]

W. B. Chen, Y. D. Huang, C. Meng, J. L. Liu, Z. Y. Zhou, D. W. Zhang, J. M. Yuan, and Z. X. Zhao, “Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields,” Phys. Rev. A 92 (3), 033410 (2015).
[Crossref]

C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).
[Crossref]

Phys. Rev. Lett. (8)

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100 (25), 255006 (2008).
[Crossref] [PubMed]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-Color laser-induced gas plasma,” Phys. Rev. Lett. 103 (2), 023001 (2009).
[Crossref] [PubMed]

H. D. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103 (2), 023902 (2009).
[Crossref] [PubMed]

W.-M. Wang, P. Gibbon, Z.-M. Sheng, and Y.-T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114 (25), 253901 (2015)
[Crossref] [PubMed]

D. W. Zhang, Z. H. Lü, C. Meng, X. Y. Du, Z. Y. Zhou, Z. X. Zhao, and J. M. Yuan, “Synchronizing terahertz wave generation with attosecond bursts,” Phys. Rev. Lett. 109 (24), 243002 (2012).
[Crossref]

X. Xie, J. M. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[Crossref] [PubMed]

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9 (11), 446–448, (1962).
[Crossref]

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15 (26), 999–1001 (1965).
[Crossref]

Semicond. Sci. Technol. (1)

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20 (7), S246–S253 (2005).
[Crossref]

Other (2)

K. Ahi and M. Anwar, “Advanced terahertz techniques for quality control and counterfeit detection,” Proc. SPIE 9856, “Terahertz physics, devices, and systems X: Advanced applications in industry and defense,” 98560G (2016).

X.-C. Zhang and J. Z. Xu, Introduction to THz Wave Photonics (Springer, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The profiles of the driving, the proposed sub-cycle and the synthesized pulses, and the calculated ionization probability is given in black solid line.; (b) The photocurrents JE and JC are presented in the arbitrary unit (arb.u.).
Fig. 2
Fig. 2 Upper panel: The THz radiation spectra from JE and JC; Lower panel: The real and imaginary parts of the electric field of THz pulse calculated by JE, which span 300 ∼ 400 fs.
Fig. 3
Fig. 3 The distribution of the ionized electrons with (lower panel) or without (upper panel) the SCP, where the colorbar is given in logarithmic scale. The corresponding laser field (yellow line) and the current (black line) are also presented.
Fig. 4
Fig. 4 The THz radiaiton spectra (in arbitrary unit) v.s. the frequency for different time delay. Several time delays are marked to demonstrate the roles of the SCP in the dynamics of the ionized electrons.
Fig. 5
Fig. 5 The time-frequency patten for the time delay td = 39.5 fs. The width of the Gabor window σ = 4.0, and the time-dependent production the ionzied electrons and the SCP are also presented.
Fig. 6
Fig. 6 The time-frequency analysis of THz radiation for several time delays.
Fig. 7
Fig. 7 The profile of dual sub-cycle pulses scheme, where the blue lines stand for the first sub-cycle pulse centered at t = 0, and the green lines represent the second sub-cycle pulses determined by an adjustable time delay (td).
Fig. 8
Fig. 8 (a) and (c) The THz radiation spectra |THz(Ω)|2 versus different time delays; (b) and (d) the time-frequency picture P(t, Ω) for td = 40 fs. The black lines in (b) and (d) stand for the two SCPs, and the yellow lines represent the electric current caused by the ionized electrons in the total laser field.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

i Ψ ( r , t ) t = H ( r , p ) Ψ ( r , t )
d J d t d p ¯ d t = i Ψ | [ p , H ] | Ψ
J ( f ) t Ψ f | V ( r ) | Ψ f η E ( t )
[ p 2 2 + V ( r ) ] ϕ ( r ) = ϕ ( r )
η = 1 | ϕ | Ψ ( r , t ) | 2
E ˜ THz ( Ω ) = + J ( f ) ( t ) t exp ( i Ω t ) d t , P THz ( Ω ) = | E ˜ THz ( Ω ) | 2
E THz ( t ) = Ω 1 Ω 2 E ˜ THz ( Ω ) exp ( i Ω t ) d Ω
E D ( t ) = f D ( t ) cos ( ω D t + ϕ )
E S ( t t d ) = f S ( t t d ) cos [ ω S ( t t d ) ]
f S ( t ) = { A S 0 cos 2 [ ω S t 2 ] , | t | π ω S 0 , otherwise
J E ( t ) = t η ( τ ) E ( τ ) d τ
J C ( t ) = t Ψ f ( τ ) | V ( x ) | Ψ f ( τ ) d τ
E ˜ THz ( Ω ) = + η ( t ) E ( t ) exp ( i Ω t ) d t = η ˜ ( Ω ) * E ˜ ( Ω )
P ( t , Ω ) = | + d J E ( τ ) d τ exp [ ( t τ ) 2 σ 2 ] exp ( i Ω τ ) d τ | 2
E ( t ) = E D ( t ) + E S ( t ) ± E S 2 ( t t d )

Metrics