Abstract

A high-speed refractive index sensing system based on the Fourier domain mode locked laser (FDML) and a microfiber Bragg grating (mFBG) is theoretically studied and experimentally demonstrated. Unlike traditional physical parameter sensing systems, which directly use the FDML as the wavelength scanning source and the optical sensor as the spectra shaping component, we inserted an mFBG into the FDML cavity in order to generate time domain pulse signals used for sensing. The wavelength shift in optical frequency domain is converted into time domain pulse drift. The sensitivity of the proposed refractive index (RI) sensing system is improved by two orders of magnitude, compared with the wavelength monitoring method. The scanning speed is as high as 43 kHz. Moreover, the sensitivity curve can be adjusted by tuning the direct current voltage. The nonlinear sensitivity and linear sensitivity with RI can be achieved.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Long distance fiber Bragg grating strain sensor interrogation using a high speed Raman-based Fourier domain mode-locked fiber laser with recycled residual Raman pump

Sunduck Kim, Oh-Jang Kwon, Hyeong-Seok Lee, Chang-Seok Kim, and Young-Geun Han
Opt. Express 21(11) 13402-13407 (2013)

High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs

Min Yong Jeon, Jun Zhang, Qiang Wang, and Zhongping Chen
Opt. Express 16(4) 2547-2554 (2008)

High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy

Laura A. Kranendonk, Xinliang An, Andrew W. Caswell, Randy E. Herold, Scott T. Sanders, Robert Huber, James G. Fujimoto, Yasuhiro Okura, and Yasuhiro Urata
Opt. Express 15(23) 15115-15128 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors, 2nd Edition, CRC Press (2008).
  2. M. E. Lippman, Harrison’s Principles of Internal Medicine, McGraw-Hill, Medical Publishing Division (2008).
  3. L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
    [Crossref] [PubMed]
  4. J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
    [Crossref] [PubMed]
  5. J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
    [Crossref] [PubMed]
  6. Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
    [Crossref] [PubMed]
  7. N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
    [Crossref] [PubMed]
  8. T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
    [Crossref] [PubMed]
  9. L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
    [Crossref]
  10. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).
  11. Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
    [Crossref] [PubMed]
  12. N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
    [Crossref] [PubMed]
  13. W. Si and A. Aksimentiev, “Nanopore sensing of protein folding,” ACS Nano 11(7), 7091–7100 (2017).
    [Crossref] [PubMed]
  14. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  15. H. D. Lee, G. H. Kim, T. J. Eom, M. Y. Jeong, and C. S. Kim, “Linearized wavelength interrogation system of fiber Bragg grating strain sensor based on wavelength-swept active mode locking fiber laser,” J. Lightwave Technol. 33(12), 2617–2622 (2015).
    [Crossref]
  16. J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
    [Crossref]
  17. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
    [PubMed]
  18. X. Liang, Z. Li, Y. Wang, Y. Hou, and P. Shen, “Delay-disorder fiber Bragg grating recognition and calibration method for a Fourier domain mode-locked wavelength-swept laser-based interrogation system,” Appl. Opt. 57(28), 8148–8153 (2018).
    [Crossref] [PubMed]
  19. FFP-TF2 Fiber Fabry-Perot Tunable Filter Technical Reference, [Online]. Available: http://www.micronoptics.com/wp-content/uploads/2016/08/Fiber-Fabry-Perot-Tunable-Filter-Technical-Reference.pdf
  20. F. Li, A. Zhang, X. Feng, and P. K. A. Wai, “Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks,” Opt. Express 21(25), 30255–30265 (2013).
    [Crossref] [PubMed]
  21. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
    [Crossref] [PubMed]

2018 (3)

2017 (3)

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

W. Si and A. Aksimentiev, “Nanopore sensing of protein folding,” ACS Nano 11(7), 7091–7100 (2017).
[Crossref] [PubMed]

L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (2)

2013 (1)

2012 (1)

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2008 (1)

2006 (1)

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Aissaoui, N.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Aksimentiev, A.

W. Si and A. Aksimentiev, “Nanopore sensing of protein folding,” ACS Nano 11(7), 7091–7100 (2017).
[Crossref] [PubMed]

Bao, X.

Bergaoui, L.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Boujday, S.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Cai, L.

L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
[Crossref]

Cao, Y.

Chen, L.

Chen, Z.

Eom, T. J.

Feng, X.

Fujimoto, J. G.

Gao, S.

Guan, B. O.

Guan, B.-O.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Guo, T.

Harris, E.

Hou, Y.

Huang, Y.

J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref] [PubMed]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Huang, Y.-Y.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Huber, R.

Jeon, M. Y.

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

Jeong, M. Y.

Jin, L.

Jung, E. J.

Jung, W.

Kim, C. S.

Kim, G. H.

Kim, M. K.

Ko, M. O.

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Kwon, Y. S.

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Lambert, J. F.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Landoulsi, J.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Lee, H. D.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Li, F.

Li, J.

Li, M.

Li, X. G.

L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
[Crossref]

Li, Y.

Li, Z.

Liang, L.-L.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Liang, X.

Liang, Y.

Liu, B.

Liu, N.

Liu, T.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Park, J.

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Ran, Y.

Shen, P.

Shi, L.

Si, W.

W. Si and A. Aksimentiev, “Nanopore sensing of protein folding,” ACS Nano 11(7), 7091–7100 (2017).
[Crossref] [PubMed]

Sun, D.

Sun, L. P.

Sun, L.-P.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Tan, Y. N.

Wai, P. K. A.

Wang, H.

Wang, X.

Wang, Y.

Wojtkowski, M.

Xiao, P.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Xu, X.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Yuan, S.

Zhang, A.

Zhang, X.

Zhao, Y.

L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
[Crossref]

Zhu, S.

ACS Nano (1)

W. Si and A. Aksimentiev, “Nanopore sensing of protein folding,” ACS Nano 11(7), 7091–7100 (2017).
[Crossref] [PubMed]

Appl. Opt. (2)

Biosens. Bioelectron. (1)

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Langmuir (1)

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Opt. Express (9)

J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref] [PubMed]

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[Crossref] [PubMed]

F. Li, A. Zhang, X. Feng, and P. K. A. Wai, “Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks,” Opt. Express 21(25), 30255–30265 (2013).
[Crossref] [PubMed]

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref] [PubMed]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Opt. Lett. (1)

Sens. Actuators B Chem. (1)

L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
[Crossref]

Other (3)

S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors, 2nd Edition, CRC Press (2008).

M. E. Lippman, Harrison’s Principles of Internal Medicine, McGraw-Hill, Medical Publishing Division (2008).

FFP-TF2 Fiber Fabry-Perot Tunable Filter Technical Reference, [Online]. Available: http://www.micronoptics.com/wp-content/uploads/2016/08/Fiber-Fabry-Perot-Tunable-Filter-Technical-Reference.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The experimental set up of the FDML based RI sensing system.
Fig. 2
Fig. 2 (a)The optical reflective spectra of the mFBG measured in air (red line) and in water (blue line). (b) The CW laser optical spectra with the mFBG integrated in the cavity (red line: mFBG in air, blue line: mFBG in water).
Fig. 3
Fig. 3 (a) The optical spectra of the FDML output when the mFBG is inside the cavity (the blue curve) and the mFBG is outside the cavity (the red curve). (b) The waveforms of pulse in time domain when the mFBG is inside the cavity (the blue curve) and the mFBG is outside the cavity (the red curve).
Fig. 4
Fig. 4 (a) The sensing curve of the wavelength demodulation method (the red circles are the experimental results and the black line is the fitting line). (b) The sensing curve of the time domain demodulation method (the blue triangles are the experimental results and the black line is the fitting line).
Fig. 5
Fig. 5 The driving voltage versus time curve (blue line) and the FDML wavelength versus pulse peak time (red triangles for the forward pulse and red inverted triangles for the backward triangle).
Fig. 6
Fig. 6 (a) The simulated RI sensing data (red markers) and fitting curves (blue lines) under different DC voltages. (b) The experiment results and the fitting curve (blue line) when DC voltage is 5.394 V.

Tables (1)

Tables Icon

Table 1 RI Sensing Resolution Comparison and Speed Comparison between Optical Wavelength Monitoring and FDML Forward Pulse Monitoring for Ambient RIa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V(t)=0.5 V pp sin(2π f d t)+ V DC
λ(t)=AV(t)+ λ 0
λ(t)=A(0.5 V pp sin(2π f d t)+ V DC )+ λ 0 =Δλ( V pp , f d ) sin(2π f d t)+ λ c ( V DC )
f cav = c n core L
t p =arcsin(( λ s λ c )/Δλ)/2π f d
r λ = dλ dn 1 R OSA
r t = d(arcsin(( λ s λ c )/Δλ)/2π f d ) dn 1 R OSA = d(arcsin(( λ s λ c )/Δλ)/2π f d ) dλ dλ dn 1 R Oscilloscope

Metrics