Abstract

In this paper, we propose a holographic zoom micro-projection system based on three spatial light modulators (SLMs). Three color lasers, three filters, and three solid lenses form the system’s collimated light sources. Three beam splitters and a prism are used in the system for beam deflection. The SLMs are used as the micro-displays in order to realize phase modulation. A liquid lens, which consists of a circular hole in the center of the middle substrate and several holes around the center, is developed in the system and it. A receiving screen is located behind the liquid lens. When the voltage applied to the liquid lens is changed, the focal length changes accordingly due to electrowetting effect. Three color holograms are loaded on the SLMs, respectively. When three color lasers are used to illuminate the corresponding holograms, the position and size of each color reproduction image can be adjusted by changing the focal length of the liquid lens and holograms loaded onto the SLMs. Therefore, three color images can be reconstructed together perfectly. The proposed system can realize function of zoom micro-projection without chromatic aberration. The experimental results verify its feasibility.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Method of chromatic aberration elimination in holographic display based on zoomable liquid lens

Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 27(7) 10058-10066 (2019)

Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens

Chao Liu, Di Wang, and Qiong-Hua Wang
Opt. Express 27(13) 18210-18221 (2019)

Full color holographic display system based on intensity matching of reconstructed image

Di Wang, Chao Liu, Fan Chu, and Qiong-Hua Wang
Opt. Express 27(12) 16599-16612 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
    [Crossref] [PubMed]
  2. H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
    [Crossref] [PubMed]
  3. Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
    [Crossref] [PubMed]
  4. D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
    [Crossref]
  5. H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
    [Crossref]
  6. E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
    [Crossref]
  7. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
    [Crossref] [PubMed]
  8. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
    [Crossref] [PubMed]
  9. D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. M. Liu, “Active optical zoom system,” Appl. Opt. 53(31), 7402–7406 (2014).
    [Crossref] [PubMed]
  10. Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25(3), 2016–2030 (2017).
    [Crossref] [PubMed]
  11. T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
    [Crossref] [PubMed]
  12. K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
    [Crossref] [PubMed]
  13. X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
    [Crossref] [PubMed]
  14. C. Liu and D. Wang, “Light intensity and FOV-controlled adaptive fluidic iris,” Appl. Opt. 57(18), D27–D31 (2018).
    [Crossref] [PubMed]
  15. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  16. H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [Crossref] [PubMed]
  17. J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
    [Crossref] [PubMed]
  18. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
    [Crossref] [PubMed]
  19. T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
    [Crossref] [PubMed]
  20. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref] [PubMed]
  21. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
    [Crossref]
  22. D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
    [Crossref] [PubMed]
  23. M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
    [Crossref]
  24. Y. Takaki and Y. Hayashi, “Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator,” Appl. Opt. 47(19), D6–D11 (2008).
    [Crossref] [PubMed]
  25. C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
    [Crossref]
  26. D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
    [Crossref] [PubMed]
  27. F. Yaras and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. SPIE 7237, 72370O (2009).
    [Crossref]

2018 (4)

2017 (1)

2016 (2)

2015 (2)

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (2)

2012 (3)

2011 (2)

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

2010 (1)

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

2009 (3)

2008 (1)

2004 (1)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Abelé, N.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Barras, T.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Bernet, S.

Buckley, E.

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

Chang, S.

Chen, C. P.

Chen, H. S.

Chen, M. S.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Chlipala, M.

Chou, H. H.

H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
[Crossref] [PubMed]

Collings, N.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Domicone, N. W.

Ducin, I.

Endo, Y.

Fabre, L.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Guo, W.

Hayashi, Y.

Hirayama, R.

Ichihashi, Y.

Ito, T.

Javidi, B.

Jesacher, A.

Jia, J.

Jiang, J. S.

H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
[Crossref] [PubMed]

Kakarenko, K.

Kakue, T.

Kayal, M.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Kechana, F.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Kilcher, L.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Kim, Y. K.

Kolodziejczyk, A.

Kozacki, T.

Kurita, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Lee, J. S.

Li, L.

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

Li, X.

Li, Y.

Lin, H. C.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Lin, Y. H.

Liu, C.

Liu, C. M.

Liu, J.

Liu, L.

Lo Conte, F.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Lu, Y.

Maitlo, N.

Makowski, M.

Masuda, N.

Matsushima, K.

Mccray, D. L.

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

Mi, L.

Mishina, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Niwa, M.

Oi, R.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Oikawa, M.

Okada, N.

Onural, L.

F. Yaras and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

Pan, Y.

Pang, Z.

Raboud, D.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Ren, H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Ritsch-Marte, M.

Senoh, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Shen, C.

Shen, X.

Shimobaba, T.

Shiraki, A.

Suszek, J.

Sypek, M.

Takada, N.

Takaki, Y.

Teng, D.

Tsai, C. Y.

H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
[Crossref] [PubMed]

Tsuchiyama, Y.

Wang, B.

Wang, C.

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

Wang, D.

Wang, Q. H.

Wang, Y.

Wang, Y. J.

Wei, K.

Won, Y. H.

Wu, S.-T.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Wu, Y.

Xiao, X.

Xie, J.

Yamamoto, K.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Yao, D.

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

Yaras, F.

F. Yaras and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

Yi, A. Y.

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

Yu, B.

Zhang, H.

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref] [PubMed]

Zhang, J.

Zhang, W.

Zhang, Y.

Zhao, J.

Zhao, Y.

Zhou, X.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

J. Disp. Technol. (3)

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

J. Soc. Inf. Disp. (1)

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

Opt. Express (11)

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25(3), 2016–2030 (2017).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

F. Yaras and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

Procedia Eng. (1)

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Sens. Actuators A Phys. (1)

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

Sensors (Basel) (1)

H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Principle of the holographic micro-projection system.
Fig. 2
Fig. 2 Principle of the electrowetting effect. (a) State I without applied voltage; (b) state II with applied voltage.
Fig. 3
Fig. 3 Structure of the developed new liquid lens. (a) Top view of the liquid lens when U = 0; (b) side view of the liquid lens when U = 0; (c) top view of the liquid lens with applied voltage; (d) side view of the liquid lens with applied voltage.
Fig. 4
Fig. 4 Chromatic aberration in the traditional holographic system. (a) Sizes and center positions of the color reproduction images; (b) focus positions of the color reproduction images.
Fig. 5
Fig. 5 Zoom effect of the liquid lens. (a)-(c) are different images when the voltage of the liquid lens changes.
Fig. 6
Fig. 6 Relationship between the voltage and the focal length of the liquid lens.
Fig. 7
Fig. 7 Green reconstructed images on the receiving screen. (a) M = 1.1; (b) M = 1; (c) M = 0.6.
Fig. 8
Fig. 8 Blue reconstructed images on the receiving screen. (a) M = 1.2; (b) M = 1; (c) M = 0.8.
Fig. 9
Fig. 9 Red reconstructed images on the receiving screen. (a) M = 1.4; (b) M = 1.25; (c) M = 1.
Fig. 10
Fig. 10 Relationship between the magnification of the system and the focal length of the digital lens.
Fig. 11
Fig. 11 Color holographic micro-projection result. (a) Reconstructed images with chromatic aberration; (b) color reconstructed image with eliminated chromatic aberration.
Fig. 12
Fig. 12 Schematic diagram of holographic micro-projection system after integrating three panels together.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

cos θ 0 =cos θ 1 + ε 0 ε d 2d( γ D2 +F) U 2 ,
U f (x,y)= e ik f 1 iλ f 1 exp[ iπ λ f 1 ( x 2 + y 2 )] [U(u,v)]exp [ 2iπ λ f 1 (xu+yv)]dudv,
1 d 2 + 1 d 1 f 1 = 1 f 2 ,
H= f 1 λ d 2 p( f 1 d 1 ) ,
M= f 1 f 1 d 1 .
f= r 2(n1) ,

Metrics