Abstract

Vectorial ptychography has been recently introduced to reconstruct the Jones matrix of an anisotropic object by means of series of ptychographic measurements performed using a set of polarized illumination probes in conjugation with various analyzers. So far, the probes were assumed to be completely known (amplitude, wavefront, state of polarization), which is rarely the case in practice. Here we address the issue of the joint estimating of the set of polarized illumination probes together with the Jones matrix of an anisotropic object in vectorial ptychography. We propose an algorithm based on a conjugate gradient strategy. Experimental results are reported, showing an improvement on the object estimate, in addition to a precise reconstruction of the probes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ptychography in anisotropic media

Patrick Ferrand, Marc Allain, and Virginie Chamard
Opt. Lett. 40(22) 5144-5147 (2015)

Probe position correction based on overlapped object wavefront cross-correlation for continuous-wave terahertz ptychography

Lu Rong, Chao Tang, Dayong Wang, Bing Li, Fangrui Tan, Yunxin Wang, and Xiaoyu Shi
Opt. Express 27(2) 938-950 (2019)

Quantitative imaging of anisotropic material properties with vectorial ptychography

Patrick Ferrand, Arthur Baroni, Marc Allain, and Virginie Chamard
Opt. Lett. 43(4) 763-766 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
    [Crossref] [PubMed]
  2. H. M. L. Faulkner and J. M. Rodenburg, “Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy,” Ultramicroscopy 103, 153–164 (2005).
    [Crossref] [PubMed]
  3. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
    [Crossref] [PubMed]
  4. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
    [Crossref] [PubMed]
  5. J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
    [Crossref]
  6. L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
    [Crossref] [PubMed]
  7. S. McDermott, P. Li, G. Williams, and A. Maiden, “Characterizing a spatial light modulator using ptychography,” Opt. Lett. 42, 371–374 (2017).
    [Crossref] [PubMed]
  8. P. Ferrand, M. Allain, and V. Chamard, “Ptychography in anisotropic media,” Opt. Lett. 40, 5144–5147 (2015).
    [Crossref] [PubMed]
  9. P. Ferrand, A. Baroni, M. Allain, and V. Chamard, “Quantitative imaging of anisotropic material properties with vectorial ptychography,” Opt. Lett. 43, 763–766 (2018).
    [Crossref] [PubMed]
  10. R. C. Jones, “A new calculus formalism for the treatment of optical systems. I. Description and discussion of the method,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [Crossref]
  11. L. Sorber, M. Barel, and L. Lathauwer, “Unconstrained optimization of real functions in complex variables,” SIAM J. Optimiz. 22, 879–898 (2012).
    [Crossref]
  12. P. Godard, M. Allain, V. Chamard, and J. Rodenburg, “Noise models for low counting rate coherent diffraction imaging,” Opt. Express 20, 25914–25934 (2012).
    [Crossref] [PubMed]
  13. J. Nocedal and S. Wright, Numerical Optimization (Springer-Verlag, 2006), 2nd ed.
  14. J. W. Goodman, Introduction to Fourier Optics (W. H. Freeman & Co Ltd, 2017), 4th ed.
  15. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264–7278 (2008).
    [Crossref] [PubMed]
  16. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref] [PubMed]
  17. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27, 2200–2202 (2002).
    [Crossref]
  18. S. McDermott, P. Li, G. Williams, and A. Maiden, “Characterizing a spatial light modulator using ptychography,” Opt. Lett. 42, 371–374 (2017).
    [Crossref] [PubMed]
  19. D. Kogan, S. Sivankutty, V. Tsvirkun, G. Bouwmans, E. R. Andresen, H. Rigneault, and D. Oron, “Phase retrieval in multicore fiber bundles,” Opt. Lett. 42, 647–650 (2017).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

2015 (2)

P. Ferrand, M. Allain, and V. Chamard, “Ptychography in anisotropic media,” Opt. Lett. 40, 5144–5147 (2015).
[Crossref] [PubMed]

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

2013 (2)

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

2012 (2)

L. Sorber, M. Barel, and L. Lathauwer, “Unconstrained optimization of real functions in complex variables,” SIAM J. Optimiz. 22, 879–898 (2012).
[Crossref]

P. Godard, M. Allain, V. Chamard, and J. Rodenburg, “Noise models for low counting rate coherent diffraction imaging,” Opt. Express 20, 25914–25934 (2012).
[Crossref] [PubMed]

2009 (1)

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

2008 (2)

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264–7278 (2008).
[Crossref] [PubMed]

2005 (1)

H. M. L. Faulkner and J. M. Rodenburg, “Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy,” Ultramicroscopy 103, 153–164 (2005).
[Crossref] [PubMed]

2004 (1)

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref] [PubMed]

2002 (1)

1941 (1)

Allain, M.

Andresen, E. R.

Barel, M.

L. Sorber, M. Barel, and L. Lathauwer, “Unconstrained optimization of real functions in complex variables,” SIAM J. Optimiz. 22, 879–898 (2012).
[Crossref]

Baroni, A.

Baumberg, J. J.

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Bouwmans, G.

Bricchi, E.

Bunk, O.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Chamard, V.

David, C.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Dierolf, M.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Estandarte, A. K.

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

Faulkner, H. M. L.

H. M. L. Faulkner and J. M. Rodenburg, “Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy,” Ultramicroscopy 103, 153–164 (2005).
[Crossref] [PubMed]

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref] [PubMed]

Ferrand, P.

Fienup, J. R.

Godard, P.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (W. H. Freeman & Co Ltd, 2017), 4th ed.

Guizar-Sicairos, M.

Harder, R.

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

Jones, R. C.

Kazansky, P. G.

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Klappauf, B. G.

Kogan, D.

Lathauwer, L.

L. Sorber, M. Barel, and L. Lathauwer, “Unconstrained optimization of real functions in complex variables,” SIAM J. Optimiz. 22, 879–898 (2012).
[Crossref]

Li, P.

Maiden, A.

Maiden, A. M.

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

Marriott, P.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref]

Marrison, J.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref]

McDermott, S.

Menzel, A.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Mills, J. D.

Nocedal, J.

J. Nocedal and S. Wright, Numerical Optimization (Springer-Verlag, 2006), 2nd ed.

O’Toole, P.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref]

Oron, D.

Parmar, N.

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

Pfeiffer, F.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Räty, L.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref]

Rigneault, H.

Robinson, I. K.

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

Rodenburg, J.

Rodenburg, J. M.

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

H. M. L. Faulkner and J. M. Rodenburg, “Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy,” Ultramicroscopy 103, 153–164 (2005).
[Crossref] [PubMed]

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref] [PubMed]

Schwenke, J.

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Shemilt, L.

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

Sivankutty, S.

Sorber, L.

L. Sorber, M. Barel, and L. Lathauwer, “Unconstrained optimization of real functions in complex variables,” SIAM J. Optimiz. 22, 879–898 (2012).
[Crossref]

Thibault, P.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Tsvirkun, V.

Verbanis, E.

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

Williams, G.

Wright, S.

J. Nocedal and S. Wright, Numerical Optimization (Springer-Verlag, 2006), 2nd ed.

Xiong, G.

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

Yusuf, M.

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

Zhang, F.

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

Biophys. J. (1)

L. Shemilt, E. Verbanis, J. Schwenke, A. K. Estandarte, G. Xiong, R. Harder, N. Parmar, M. Yusuf, F. Zhang, and I. K. Robinson, “Karyotyping human chromosomes by optical and x-ray ptychography methods,” Biophys. J. 108, 706–713 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref]

Science (2)

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

SIAM J. Optimiz. (1)

L. Sorber, M. Barel, and L. Lathauwer, “Unconstrained optimization of real functions in complex variables,” SIAM J. Optimiz. 22, 879–898 (2012).
[Crossref]

Ultramicroscopy (2)

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

H. M. L. Faulkner and J. M. Rodenburg, “Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy,” Ultramicroscopy 103, 153–164 (2005).
[Crossref] [PubMed]

Other (2)

J. Nocedal and S. Wright, Numerical Optimization (Springer-Verlag, 2006), 2nd ed.

J. W. Goodman, Introduction to Fourier Optics (W. H. Freeman & Co Ltd, 2017), 4th ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Initial guess of the three probes for k = 1 to 3, from left to right. From top to bottom, pk,x, pk,y, and SoP of pk. Inset shows the complex value color coding, with phase encoded as hue and modulus as brightness. Scale bar is 25 μm.
Fig. 2
Fig. 2 Reconstructed probes pk. Same formatting as Fig. 1. Scale bar is 25 μm.
Fig. 3
Fig. 3 Reconstructed Jones maps of the birefringent test target. Inset shows the complex value color coding, with phase encoded as hue and modulus as brightness. Scale bar is 25 μm.
Fig. 4
Fig. 4 Retrieved optical properties of the birefringent test target: Normalized power transmittance T, relative optical path length (OPL) variations, in nm, fast axis orientation θ, in degrees, and retardance R, in nm. Scale bar is 25 μm.
Fig. 5
Fig. 5 Retrieved optical properties of the test target, obtained with methods (b) and (c), to be compared with Fig. 4. Scale bar is 25 μm.
Fig. 6
Fig. 6 Evolution of the criterion L ( s ( n ) ) for different reconstruction strategies. For each method, labelled (a) to (c), colored patterns remind which algorithm is used and which variable is updated, either the object only or both object and probes.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ψ j k ( r ) = O ( r )   p k ( r r j ) ,
[ ψ j k , x ( r ) ψ j k , y ( r ) ] = [ ρ x x ( r ) ρ y x ( r ) ρ x y ( r ) ρ y y ( r ) ] [ p k , x ( r r j ) p k , y ( r r j ) ] ,
ψ j k ( r ) = P k ( r r j )   ρ ( r ) ,
P k ( r ) = [ p k , x ( r ) 0 p k , y ( r ) 0 0 p k , y ( r ) 0 p k , x ( r ) ]
ρ ( r ) = [ ρ x x ( r ) ρ y y ( r ) ρ y x ( r ) ρ x y ( r ) ] .
S = { O ( r ) ; p k ( r ) , k }
L ( S ) = j , k , l ( I j k l ( calc ) ( S ) - I j k l ( meas ) ) 2 ,
I j k l (calc) ( q ) = | ξ j k l ( q ) | 2 + ϵ k l ( q ) ,
ξ j k l = h l T F ψ j k ,
s = [ ρ p ]
s ( n + 1 ) = s ( n ) α ( n ) d ( n ) D ( n ) ,
d ( n ) = ( n ) + β ( n ) d ( n 1 ) ,
( n ) = L ( s ( n ) ) s ,
( n ) = [ L ( s ( n ) ) ρ L ( s ( n ) ) p ] .
L ( s ( n ) ) ρ = 2 j , k P k ( n ) F l h l ξ j k l [ I ( meas ) j k l I ( calc ) j k l 1 ] ,
L ( s ( n ) ) p k = 2 j O j F l h l ξ j k l [ I ( meas ) j k l I ( calc ) j k l 1 ] ,
D O ( n ) = [ a x x j , k p k , ; x ( n ) ( r r j ) a x x j , k p k , y ( n ) ( r r j ) a y y j , k p k , x ( n ) ( r r j ) a y y j , k p k , y ( n ) ( r r j ) ] ,
D p ( n ) = diag [ j O j [ a x x a y x a y x a y y ] O j ] ,
ψ j k ( r ) = O ( r ) M M 1 p k ( r r j ) ,
O ( r ) = O ( r ) M ,
p k ( r ) = M 1 p k ( r )

Metrics