Abstract

Metamaterial absorbers, consisting of assembling arrays of optical resonators with subwavelength dimensions and spacing, allow efficiently absorption electromagnetic radiation by leveraging the strong electrical and magnetic resonances. Beyond the enhanced absorption, there is a growing interest to realize multi-functional absorbers, for example, absorbers with extended bandwidth, strong polarization extinction ratio, to name a few. Traditionally, designing multi-functional absorbers require complex brute-force optimizations with sizable parameter space, which turn out to be rather inefficient. Here, using the particle swarm optimization algorithm, we design and experimentally demonstrate broadband and highly polarization selective mid-IR metal-insulator-metal absorbers, covering the technologically important 3–5 μm atmospheric transparency band. With spectrally averaged absorption exceeding 70%, a high polarization extinction ratio of 40.6 is concurrently achieved by the algorithm. We also investigate the incident angle dependence of the spectral absorption and clarify the origin of optical losses. By integrating with the growing range of mid-IR detectors and imagers, our devices can enable new applications such as mid-IR full Stokes imaging polarimetry for remote sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms

Chun-Hao Fann, Jihua Zhang, Mohamed ElKabbash, William R. Donaldson, E. Michael Campbell, and Chunlei Guo
Opt. Express 27(20) 27917-27926 (2019)

Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons

Junyu Li, Rulei Gan, Qiushi Guo, Huan Liu, Jianfeng Xu, and Fei Yi
Opt. Express 26(13) 16769-16781 (2018)

Graphene on metal-insulator-metal-based plasmonic metamaterials at infrared wavelengths

Shinpei Ogawa, Masaaki Shimatani, Shoichiro Fukushima, Satoshi Okuda, and Kazuhiko Matsumoto
Opt. Express 26(5) 5665-5674 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
    [PubMed]
  2. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  3. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
    [Crossref]
  4. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  5. F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
    [Crossref] [PubMed]
  6. F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
    [Crossref]
  7. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
    [Crossref]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  9. A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
    [Crossref] [PubMed]
  10. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
    [Crossref]
  11. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  12. D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
    [Crossref]
  13. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  14. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
    [Crossref] [PubMed]
  15. Z.-H. Wang, Y.-S. Hu, X. Xiong, R.-W. Peng, and M. Wang, “Encoding and display with stereo split-ring resonator arrays,” Opt. Lett. 42(6), 1153–1156 (2017).
    [Crossref] [PubMed]
  16. A. Chanana, A. Paulsen, S. Guruswamy, and A. Nahata, “Hiding multi-level multi-color images in terahertz metasurfaces,” Optica 3(12), 1466–1470 (2016).
    [Crossref]
  17. P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
    [Crossref] [PubMed]
  18. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [Crossref] [PubMed]
  19. H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
    [Crossref] [PubMed]
  20. P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
    [Crossref] [PubMed]
  21. F. SM, and H. Banu, “Gold Nanoparticles in Cancer Diagnosis and Treatment: A Review,” Austin Journal of Biotechnology & Bioengineering 1 (2015).
  22. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
    [Crossref] [PubMed]
  23. X. Luo, “Subwavelength Optical Engineering with Metasurface Waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
    [Crossref]
  24. M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
    [Crossref]
  25. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  26. Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  27. S. Kang, Z. Qian, V. Rajaram, A. Alu, and M. Rinaldi, “Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)(2017), pp. 886–889.
    [Crossref]
  28. B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
    [Crossref]
  29. F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
    [Crossref]
  30. J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
    [Crossref] [PubMed]
  31. S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
    [Crossref]
  32. J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
    [Crossref] [PubMed]
  33. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
    [Crossref]
  34. L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
    [Crossref] [PubMed]
  35. Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).
    [Crossref]
  36. Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion,” Opt. Lett. 42(14), 2818–2821 (2017).
    [Crossref] [PubMed]
  37. D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
    [Crossref] [PubMed]
  38. B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1(5), 356–360 (2014).
    [Crossref]
  39. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995. Proceedings., IEEE International Conference on(1995), pp. 1942–1948 vol.1944.
    [Crossref]
  40. J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
    [Crossref]
  41. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref] [PubMed]
  42. M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
    [Crossref] [PubMed]
  43. Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
    [Crossref]
  44. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  45. S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” presented at the Sandia Report SAND2006–6889, Sandia National Lab. Albuquerque, NM2006.
  46. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
    [Crossref]
  47. E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
    [Crossref]
  48. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
    [Crossref]
  49. A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
    [Crossref]
  50. T. York and V. Gruev, “Optical characterization of a polarization imager,” in International Symposium on Circuits and Systems(2011), pp. 1576–1579.
  51. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [Crossref] [PubMed]
  52. C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
    [Crossref]
  53. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
    [Crossref] [PubMed]
  54. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  55. Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
    [Crossref] [PubMed]
  56. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
    [Crossref] [PubMed]
  57. S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
    [Crossref]
  58. N. Jin and Y. Rahmat-Samii, “Particle Swarm Optimization for Antenna Designs in Engineering Electromagnetics,” J. Artif. Evol. Appl. 2008, 1 (2008).
    [Crossref]
  59. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  60. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]

2018 (7)

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

X. Luo, “Subwavelength Optical Engineering with Metasurface Waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
[Crossref]

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

2017 (7)

2016 (3)

2015 (2)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

2014 (5)

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1(5), 356–360 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

2013 (4)

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

2012 (4)

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
[PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

2011 (4)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

2010 (5)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

N. Jin and Y. Rahmat-Samii, “Particle Swarm Optimization for Antenna Designs in Engineering Electromagnetics,” J. Artif. Evol. Appl. 2008, 1 (2008).
[Crossref]

2007 (3)

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

2004 (1)

J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

2002 (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

1999 (2)

Adomanis, B. M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Andreou, A. G.

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

Araghchini, M.

Arbabi, A.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

Arbabi, E.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Beack, S.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Bermel, P.

Bethke, D.

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Bingham, C.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Bringuier, J. N.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bruce Burckel, D.

Burton Neuner, I.

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

Cederberg, J. G.

Celanovic, I.

Chan, W.

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chanana, A.

Chen, M. K.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Chenault, D. B.

Cheng, Y.

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Chu, C. H.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

Cubukcu, E.

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Cui, Y. X.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Deguzman, P. C.

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Doshay, S.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Englund, D.

Fan, J. A.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Fan, K.

Fan, S.

Fang, N. X.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Faraon, A.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Fortina, P.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Fu, S. M.

Fung, K. H.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Fushman, I.

Garg, A.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Ghebrebrhan, M.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Girard, C.

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Goh, J.

Goldstein, D. L.

Graves, D. J.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Grine, A. D.

Gruev, V.

Guruswamy, S.

Hahn, S. K.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Halas, N.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Hamam, R.

Han, S.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, S. L.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Hensley, J. M.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hsiao, H.-H.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Hu, Y.-S.

Huang, J. Y.-W.

Huang, W.

Hyslop, T.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Jensen, K. F.

Jin, N.

N. Jin and Y. Rahmat-Samii, “Particle Swarm Optimization for Antenna Designs in Engineering Electromagnetics,” J. Artif. Evol. Appl. 2008, 1 (2008).
[Crossref]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Joannopoulos, J. D.

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Johnson, S. G.

Jokerst, N. M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Jones, M. W.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kadlec, E. A.

Kalayjian, Z. K.

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

Kamali, S. M.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

Kim, H.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Kim, K. S.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

Koirala, M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Kong, S. G.

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Kricka, L. J.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Kulkarni, M.

Kumar, A.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Kwon, W.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Lee, B. J.

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Lee, T.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Liang, X.

Lin, A.

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Lin, Z.

Lipson, H.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Lipson, M.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Liu, A.-Q.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
[PubMed]

Loncar, M.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
[Crossref] [PubMed]

Luk, T. S.

Luo, X.

X. Luo, “Subwavelength Optical Engineering with Metasurface Waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
[Crossref]

Marton, C. H.

Meier, J. T.

Menon, R.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mijakovic, I.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Mokkapati, V. R. S. S.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Montoya, J.

Nahata, A.

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Nogan, J. J.

Nordin, G. P.

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Padilla, W. J.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
[PubMed]

Pan, Q.

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Pandit, S.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Parashar, P.

Park, J.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Park, Y.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Paulsen, A.

Peng, R.-W.

Perkins, R.

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Piggott, A. Y.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Polson, R.

Preble, S.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Rahmat-Samii, Y.

N. Jin and Y. Rahmat-Samii, “Particle Swarm Optimization for Antenna Designs in Engineering Electromagnetics,” J. Artif. Evol. Appl. 2008, 1 (2008).
[Crossref]

J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Ravikumar, V.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Reed, J. C.

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Rephaeli, E.

Robinson, J.

J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Rodriguez, A. W.

Rung, D.

Sapra, N. V.

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sell, D.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Shaner, E. A.

Shaw, J. A.

Shen, B.

Shim, E.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Shin, M.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Singh, P.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Soljacic, M.

Sriram, S.

Starr, A. F.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Starr, T.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Stenger, V.

Su, L.

Suen, J. Y.

Sun, G.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

Surrey, S.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Tam, F.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Trivedi, R.

Tsai, D. P.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Tseng, M. L.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Tyler, T.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Tyo, J. S.

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Vercruysse, D.

Vuckovic, J.

Waldman, S. A.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, L. P.

Wang, M.

Wang, P.

Wang, S.

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Wang, Y.

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Wang, Z.-H.

Watts, C. M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
[PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

West, K. G.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Woolf, D. N.

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Xiong, X.

Xu, J.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Yang, J.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, R.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yeng, Y. X.

Yetisen, A. K.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Yi, C.

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Yi, F.

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

York, T.

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

T. York and V. Gruev, “Optical characterization of a polarization imager,” in International Symposium on Circuits and Systems(2011), pp. 1576–1579.

Yun, S. H.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Zhang, S.

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Zhang, Z. M.

Zhao, Y.

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Zheng, W.

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zhong, Y. K.

Zhu, A. Y.

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Zhu, H.

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

ACS Photonics (1)

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
[PubMed]

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

X. Luo, “Subwavelength Optical Engineering with Metasurface Waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
[Crossref]

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

IEEE Sens. J. (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Int. J. Mol. Sci. (1)

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

J. Artif. Evol. Appl. (1)

N. Jin and Y. Rahmat-Samii, “Particle Swarm Optimization for Antenna Designs in Engineering Electromagnetics,” J. Artif. Evol. Appl. 2008, 1 (2008).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Sens. (1)

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Laser Photonics Rev. (2)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Nano Lett. (5)

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Opt. Express (9)

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[Crossref] [PubMed]

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
[Crossref] [PubMed]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[Crossref] [PubMed]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (5)

Phys. Lett. A (1)

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Phys. Rev. Lett. (1)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Science (1)

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

Trends Biotechnol. (1)

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Other (6)

F. SM, and H. Banu, “Gold Nanoparticles in Cancer Diagnosis and Treatment: A Review,” Austin Journal of Biotechnology & Bioengineering 1 (2015).

S. Kang, Z. Qian, V. Rajaram, A. Alu, and M. Rinaldi, “Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)(2017), pp. 886–889.
[Crossref]

T. York and V. Gruev, “Optical characterization of a polarization imager,” in International Symposium on Circuits and Systems(2011), pp. 1576–1579.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995. Proceedings., IEEE International Conference on(1995), pp. 1942–1948 vol.1944.
[Crossref]

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” presented at the Sandia Report SAND2006–6889, Sandia National Lab. Albuquerque, NM2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Micro-polarizer based polarization imaging architecture. (b) PMAs based polarization imaging architecture (c) and (d) Schematic diagram of the proposed three-layered optimized absorber. The inset of (c) shows the SEM image of the fabricated sample with P = 2.672 μm, t1 = 50 nm, t2 = 100 nm, and H = 67.5 nm. Strip widths (from W1 to W6) form an arithmetic sequence, with average width W = 386.7 nm, the difference = 54.3 nm, and the spaces S = 58.7 nm.
Fig. 2
Fig. 2 (a) Evolution of the fitness values as a function of the number of iterations during the PSO optimization by using 20 particles for 50 iterations. Blue star markers represent the fitness values of the 20 particles in each iteration. The “average fitness” represents the averaged fitness value of the 20 particles in each iteration and the “global best” records the largest value of the “current best” since the first iteration. (b) Comparison of the absorption spectra between the absorber with multi-sized nanostrips and the single-sized nanostrip absorber. Mark I to VI stand for six absorption peaks of the absorber with multi-sized nanostrips, respectively. (c) Comparison between (i) the PMA based architecture and (ii) the micro-polarizer based architecture and regarding the optical crosstalk. For the PMA based architecture, the metamaterial absorber converts the incident electromagnetic waves into heat directly to the corresponding pixels, and there is no significant optical crosstalk between adjacent pixels under oblique incidence. For the micro-polarizer based architecture, due to the air gap between the micropolarizer and the pixel, the obliquely incident wave could penetrate the micropolarizer above a pixel (Pixel 1) and hit its neighboring pixel (Pixel 2), thus leading to crosstalk [47,50].
Fig. 3
Fig. 3 The distribution of the normalized magnetic field magnitude |H| in the optimized structure under TM polarization at (a) peak II (c) peak IV and (e) peak VI of the spectral absorption shown in Fig. 2(b). Fig. (b), (d) and (f) show the corresponding normalized absorption intensity distribution. (g) The distribution of |H| under TE polarization at λ = 4μm and (h) the corresponding distribution of absorption intensity.
Fig. 4
Fig. 4 The spectral absorption of the TE polarization (yellow line) and TM polarization (purple line) and the corresponding FF (green line) as a function of the number of nanostrips per period assuming (a) silicon dioxide (c) silicon nitride and (e) amorphous silicon (α-Si) as the spacing material. The optimal number of nanostrips per period and the corresponding maximal FFs are also labeled in the plots. (b), (d) and (f) show the absorption spectra of TE polarization and TM polarization corresponding to (a), (c) and (e), assuming the number of nanostrips per period is 3, 4 and 6, respectively. The black arrows point out the influence of the excited SPP. The black dash lines show the averaged absorption of the TM polarization in the 3 μm–5 μm range. (g) and (h) SEM images of the optimized absorbers with silicon nitride and amorphous silicon as the spacing materials.
Fig. 5
Fig. 5 (a) The spectral absorption of the optimized absorber as a function of the incident angle. The white dash line stands for the resonant wavelength of the surface plasmon polariton excited in the structure as a function of the incident angle. (b) The red solid line stands for the FF as a function of incident angle of the impingent light as compared to the blue solid line showing the incident angle dependence of the normalized polarization extinction ratio of the micro-polarizer [41].
Fig. 6
Fig. 6 The refractive index of silicon dioxide is from reference [59], while the refractive index of silicon nitride and α-Si are obtained by ellipsometry measurement (IR-VASE II from J.A.Woollam).

Tables (1)

Tables Icon

Table 1 Relevant parameters of the optimized absorbers with three spacing materials

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S 0 = I 0 + I 45 + I 90 + I 135 2 ,
S 1 = I 0 I 90 ,
S 2 = I 45 I 135 ,
D o L P = S 1 2 + S 2 2 S 0 ,
A o P = 1 2 tan 1 S 2 S 1 ,
FF = λ = 3 μ m λ = 5 μ m A T M ( λ ) d λ λ = 3 μ m λ = 5 μ m A T E ( λ ) d λ .
v i D k + 1 = w v i D k + c 1 ξ ( p i D k x i D k ) + c 2 η ( p g D k x i D k ) ,
x i D k + 1 = x i D k + v i D k + 1 Δ t .

Metrics