Abstract

A photonic method used to simultaneously measure the Doppler-frequency-shift (DFS) and angle-of-arrival (AOA) of microwave signals is proposed and experimentally demonstrated. At the remote antenna unit (RAU), the local oscillator (LO) signal and two echo signals are applied to a phase modulator (PM) and a polarization-division-multiplexed Mach-Zehnder modulator (PDM-MZM), respectively. After transmission over a fiber link, the DFS and AOA parameters can be obtained by processing the two low-frequency electrical signals at the central office (CO). Experimental results show that the DFS between ± 100-kHz with < ± 5 × 10−3-Hz error and the AOA from 1.82° to 90° with <0.85° error at 10 GHz are obtained over a 10-km single mode fiber (SMF) transmission. Moreover, the DFS direction can also be distinguished by comparing the phase difference of two electrical signals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic Doppler frequency shift measurement based on a dual-polarization modulator

Xiaoyan Li, Aijun Wen, Wei Chen, Yongsheng Gao, Shuiying Xiang, Huixing Zhang, and Xiaoming Ma
Appl. Opt. 56(8) 2084-2089 (2017)

Simple approach for Doppler frequency shift estimation based on a dual-polarization quadrature phase shift keying (DP-QPSK) modulator

Jinye Li, Wenqi Yu, Zhike Zhang, Tao Lin, Shuangxing Dai, and Jianguo Liu
Appl. Opt. 59(7) 2114-2120 (2020)

Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal

Xihua Zou, Wangzhe Li, Wei Pan, Bin Luo, Lianshan Yan, and Jianping Yao
Opt. Lett. 37(4) 755-757 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stohr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
    [Crossref]
  2. V. C. Chen, Fayin Li, Shen-Shyang Ho, and H. Wechsler, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42(1), 2–21 (2006).
    [Crossref]
  3. M. I. Skolnil, Introduction to radar systems, 3rd ed. New York, NY, USA: McGraw-Hill, 1–3(2001).
  4. X. H. Zou, W. L. Bai, W. Chen, P. X. Li, B. Lu, G. Yu, W. Pan, B. Luo, L. S. Yan, and L. Y. Shao, “Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing,” J. Lightwave Technol. 36(19), 4337–4346 (2018).
    [Crossref]
  5. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  6. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  7. S. L. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).
    [Crossref]
  8. H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).
    [Crossref]
  9. X. Li, A. Wen, W. Chen, Y. Gao, S. Xiang, H. Zhang, and X. Ma, “Photonic Doppler frequency shift measurement based on a dual-polarization modulator,” Appl. Opt. 56(8), 2084–2089 (2017).
    [Crossref] [PubMed]
  10. M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
    [Crossref]
  11. S. Preussler and T. Schneider, “Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection,” Opt. Express 23(20), 26879–26887 (2015).
    [Crossref] [PubMed]
  12. H. Y. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. S. Yan, and B. J. Eggleton, “Wide-range high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
    [Crossref]
  13. S. L. Pan and J. P. Yao, “Photonics based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
    [Crossref]
  14. E. Rubiola, E. Salik, S. Huang, N. Yu, and L. Maleki, “Photonic-delay technique for phase-noise measurement of microwave oscillators,” J. Opt. Soc. Am. B 22(5), 987–997 (2005).
    [Crossref]
  15. D. Zhu, F. Zhang, P. Zhou, and S. Pan, “Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter,” Opt. Lett. 40(7), 1326–1329 (2015).
    [Crossref] [PubMed]
  16. X. H. Zou, W. Z. Li, B. Lu, W. Pan, L. S. Yan, and L. Y. Shao, “Photonic approach to wide-frequency range high resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Tech. 63(4), 1421–1430 (2015).
    [Crossref]
  17. B. Lu, W. Pan, X. Zou, X. Yan, L. Yan, and B. Luo, “Wideband Doppler frequency shift measurement and direction ambiguity resolution using optical frequency shift and optical heterodyning,” Opt. Lett. 40(10), 2321–2324 (2015).
    [Crossref] [PubMed]
  18. W. Chen, A. J. Wen, X. Y. Li, Y. S. Gao, Y. Wang, S. Y. Xiang, H. Y. He, and H. X. Zheng, “Wideband Doppler frequency shift measurement and direction discrimination based on a DPMZM,” IEEE Photonics J. 9(2), 1 (2017).
    [Crossref]
  19. H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photonics J. 8(5), 1 (2016).
    [Crossref]
  20. L. Xu, Y. Yu, H. T. Tang, and X. L. Zhang, “A simplified photonic approach to measuring the microwave Doppler frequency shift,” IEEE Photonics Technol. Lett. 30(3), 246–249 (2018).
    [Crossref]
  21. B. Vidal, M. A. Piqueras, and J. Marti, “Direction-of-arrive estimation of broadband microwave signals in phased-array antennas using photonic techniques,” J. Lightwave Technol. 24(7), 2741–2745 (2006).
    [Crossref]
  22. X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett. 37(4), 755–757 (2012).
    [Crossref] [PubMed]
  23. R. K. Mohan, C. Harrington, T. Sharpe, Z. W. Barber, and W. R. Babbitt, “Broadband multi-emitter signal analysis and direction finding using a dual-port interferometric photonic spectrum analyzer based on spatial-spectral materials”, in Proc. Int. Top. Meet. Microw. Photonics (MWP) (2013).
    [Crossref]
  24. E. Nova, J. Romeu, S. Capdevila, F. Torres, and L. Jofre, “Optical signal processor for millimeter-wave interferometric radiometry,” IEEE Trans. Geosci. Remote Sens. 52(5), 2357–2368 (2014).
    [Crossref]
  25. Z. Y. Tu, A. J. Wen, Z. G. Xiu, W. Zhang, and M. Chen, “Angle-of-arrival estimation of broadband microwave signals based on microwave photonic filtering,” IEEE Photonics J. 9(5), 1 (2017).
    [Crossref]

2018 (2)

2017 (4)

Z. Y. Tu, A. J. Wen, Z. G. Xiu, W. Zhang, and M. Chen, “Angle-of-arrival estimation of broadband microwave signals based on microwave photonic filtering,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

X. Li, A. Wen, W. Chen, Y. Gao, S. Xiang, H. Zhang, and X. Ma, “Photonic Doppler frequency shift measurement based on a dual-polarization modulator,” Appl. Opt. 56(8), 2084–2089 (2017).
[Crossref] [PubMed]

S. L. Pan and J. P. Yao, “Photonics based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
[Crossref]

W. Chen, A. J. Wen, X. Y. Li, Y. S. Gao, Y. Wang, S. Y. Xiang, H. Y. He, and H. X. Zheng, “Wideband Doppler frequency shift measurement and direction discrimination based on a DPMZM,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

2016 (3)

H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photonics J. 8(5), 1 (2016).
[Crossref]

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stohr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

H. Y. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. S. Yan, and B. J. Eggleton, “Wide-range high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
[Crossref]

2015 (4)

2014 (2)

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).
[Crossref]

E. Nova, J. Romeu, S. Capdevila, F. Torres, and L. Jofre, “Optical signal processor for millimeter-wave interferometric radiometry,” IEEE Trans. Geosci. Remote Sens. 52(5), 2357–2368 (2014).
[Crossref]

2012 (1)

2010 (1)

S. L. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).
[Crossref]

2009 (2)

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (2)

V. C. Chen, Fayin Li, Shen-Shyang Ho, and H. Wechsler, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42(1), 2–21 (2006).
[Crossref]

B. Vidal, M. A. Piqueras, and J. Marti, “Direction-of-arrive estimation of broadband microwave signals in phased-array antennas using photonic techniques,” J. Lightwave Technol. 24(7), 2741–2745 (2006).
[Crossref]

2005 (1)

Alavi, S. E.

H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photonics J. 8(5), 1 (2016).
[Crossref]

Ashourian, M.

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).
[Crossref]

Bai, W. L.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Capdevila, S.

E. Nova, J. Romeu, S. Capdevila, F. Torres, and L. Jofre, “Optical signal processor for millimeter-wave interferometric radiometry,” IEEE Trans. Geosci. Remote Sens. 52(5), 2357–2368 (2014).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, M.

Z. Y. Tu, A. J. Wen, Z. G. Xiu, W. Zhang, and M. Chen, “Angle-of-arrival estimation of broadband microwave signals based on microwave photonic filtering,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Chen, V. C.

V. C. Chen, Fayin Li, Shen-Shyang Ho, and H. Wechsler, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42(1), 2–21 (2006).
[Crossref]

Chen, W.

Choi, D. Y.

H. Y. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. S. Yan, and B. J. Eggleton, “Wide-range high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Eggleton, B. J.

H. Y. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. S. Yan, and B. J. Eggleton, “Wide-range high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Emami, H.

H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photonics J. 8(5), 1 (2016).
[Crossref]

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).
[Crossref]

Fayin Li,

V. C. Chen, Fayin Li, Shen-Shyang Ho, and H. Wechsler, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42(1), 2–21 (2006).
[Crossref]

Gao, Y.

Gao, Y. S.

W. Chen, A. J. Wen, X. Y. Li, Y. S. Gao, Y. Wang, S. Y. Xiang, H. Y. He, and H. X. Zheng, “Wideband Doppler frequency shift measurement and direction discrimination based on a DPMZM,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Hajihashemi, M.

H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photonics J. 8(5), 1 (2016).
[Crossref]

He, H. Y.

W. Chen, A. J. Wen, X. Y. Li, Y. S. Gao, Y. Wang, S. Y. Xiang, H. Y. He, and H. X. Zheng, “Wideband Doppler frequency shift measurement and direction discrimination based on a DPMZM,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Huang, S.

Jiang, H. Y.

Jofre, L.

E. Nova, J. Romeu, S. Capdevila, F. Torres, and L. Jofre, “Optical signal processor for millimeter-wave interferometric radiometry,” IEEE Trans. Geosci. Remote Sens. 52(5), 2357–2368 (2014).
[Crossref]

Lamont, M. R.

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Li, P. X.

Li, W.

Li, W. Z.

X. H. Zou, W. Z. Li, B. Lu, W. Pan, L. S. Yan, and L. Y. Shao, “Photonic approach to wide-frequency range high resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Tech. 63(4), 1421–1430 (2015).
[Crossref]

Li, X.

Li, X. Y.

W. Chen, A. J. Wen, X. Y. Li, Y. S. Gao, Y. Wang, S. Y. Xiang, H. Y. He, and H. X. Zheng, “Wideband Doppler frequency shift measurement and direction discrimination based on a DPMZM,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Lu, B.

X. H. Zou, W. L. Bai, W. Chen, P. X. Li, B. Lu, G. Yu, W. Pan, B. Luo, L. S. Yan, and L. Y. Shao, “Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing,” J. Lightwave Technol. 36(19), 4337–4346 (2018).
[Crossref]

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stohr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

X. H. Zou, W. Z. Li, B. Lu, W. Pan, L. S. Yan, and L. Y. Shao, “Photonic approach to wide-frequency range high resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Tech. 63(4), 1421–1430 (2015).
[Crossref]

B. Lu, W. Pan, X. Zou, X. Yan, L. Yan, and B. Luo, “Wideband Doppler frequency shift measurement and direction ambiguity resolution using optical frequency shift and optical heterodyning,” Opt. Lett. 40(10), 2321–2324 (2015).
[Crossref] [PubMed]

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Luo, B.

Luther-Davies, B.

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Ma, X.

Madden, S. J.

H. Y. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. S. Yan, and B. J. Eggleton, “Wide-range high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Maleki, L.

Marpaung, D.

Marti, J.

Nova, E.

E. Nova, J. Romeu, S. Capdevila, F. Torres, and L. Jofre, “Optical signal processor for millimeter-wave interferometric radiometry,” IEEE Trans. Geosci. Remote Sens. 52(5), 2357–2368 (2014).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Pagani, M.

Pan, S.

Pan, S. L.

S. L. Pan and J. P. Yao, “Photonics based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
[Crossref]

S. L. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).
[Crossref]

Pan, W.

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Piqueras, M. A.

Preussler, S.

Romeu, J.

E. Nova, J. Romeu, S. Capdevila, F. Torres, and L. Jofre, “Optical signal processor for millimeter-wave interferometric radiometry,” IEEE Trans. Geosci. Remote Sens. 52(5), 2357–2368 (2014).
[Crossref]

Rubiola, E.

Salik, E.

Schneider, T.

Shao, L. Y.

X. H. Zou, W. L. Bai, W. Chen, P. X. Li, B. Lu, G. Yu, W. Pan, B. Luo, L. S. Yan, and L. Y. Shao, “Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing,” J. Lightwave Technol. 36(19), 4337–4346 (2018).
[Crossref]

X. H. Zou, W. Z. Li, B. Lu, W. Pan, L. S. Yan, and L. Y. Shao, “Photonic approach to wide-frequency range high resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Tech. 63(4), 1421–1430 (2015).
[Crossref]

Shen-Shyang Ho,

V. C. Chen, Fayin Li, Shen-Shyang Ho, and H. Wechsler, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42(1), 2–21 (2006).
[Crossref]

Stohr, A.

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stohr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Tang, H. T.

L. Xu, Y. Yu, H. T. Tang, and X. L. Zhang, “A simplified photonic approach to measuring the microwave Doppler frequency shift,” IEEE Photonics Technol. Lett. 30(3), 246–249 (2018).
[Crossref]

Torres, F.

E. Nova, J. Romeu, S. Capdevila, F. Torres, and L. Jofre, “Optical signal processor for millimeter-wave interferometric radiometry,” IEEE Trans. Geosci. Remote Sens. 52(5), 2357–2368 (2014).
[Crossref]

Tu, Z. Y.

Z. Y. Tu, A. J. Wen, Z. G. Xiu, W. Zhang, and M. Chen, “Angle-of-arrival estimation of broadband microwave signals based on microwave photonic filtering,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Vidal, B.

Vo, T. D.

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Vu, K.

Wang, Y.

W. Chen, A. J. Wen, X. Y. Li, Y. S. Gao, Y. Wang, S. Y. Xiang, H. Y. He, and H. X. Zheng, “Wideband Doppler frequency shift measurement and direction discrimination based on a DPMZM,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Wechsler, H.

V. C. Chen, Fayin Li, Shen-Shyang Ho, and H. Wechsler, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42(1), 2–21 (2006).
[Crossref]

Wen, A.

Wen, A. J.

W. Chen, A. J. Wen, X. Y. Li, Y. S. Gao, Y. Wang, S. Y. Xiang, H. Y. He, and H. X. Zheng, “Wideband Doppler frequency shift measurement and direction discrimination based on a DPMZM,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Z. Y. Tu, A. J. Wen, Z. G. Xiu, W. Zhang, and M. Chen, “Angle-of-arrival estimation of broadband microwave signals based on microwave photonic filtering,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Xiang, S.

Xiang, S. Y.

W. Chen, A. J. Wen, X. Y. Li, Y. S. Gao, Y. Wang, S. Y. Xiang, H. Y. He, and H. X. Zheng, “Wideband Doppler frequency shift measurement and direction discrimination based on a DPMZM,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Xiu, Z. G.

Z. Y. Tu, A. J. Wen, Z. G. Xiu, W. Zhang, and M. Chen, “Angle-of-arrival estimation of broadband microwave signals based on microwave photonic filtering,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Xu, L.

L. Xu, Y. Yu, H. T. Tang, and X. L. Zhang, “A simplified photonic approach to measuring the microwave Doppler frequency shift,” IEEE Photonics Technol. Lett. 30(3), 246–249 (2018).
[Crossref]

Yan, L.

Yan, L. S.

X. H. Zou, W. L. Bai, W. Chen, P. X. Li, B. Lu, G. Yu, W. Pan, B. Luo, L. S. Yan, and L. Y. Shao, “Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing,” J. Lightwave Technol. 36(19), 4337–4346 (2018).
[Crossref]

H. Y. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. S. Yan, and B. J. Eggleton, “Wide-range high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
[Crossref]

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stohr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

X. H. Zou, W. Z. Li, B. Lu, W. Pan, L. S. Yan, and L. Y. Shao, “Photonic approach to wide-frequency range high resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Tech. 63(4), 1421–1430 (2015).
[Crossref]

Yan, X.

Yao, J.

Yao, J. P.

S. L. Pan and J. P. Yao, “Photonics based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
[Crossref]

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stohr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

S. L. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).
[Crossref]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Yu, G.

Yu, N.

Yu, Y.

L. Xu, Y. Yu, H. T. Tang, and X. L. Zhang, “A simplified photonic approach to measuring the microwave Doppler frequency shift,” IEEE Photonics Technol. Lett. 30(3), 246–249 (2018).
[Crossref]

Zhang, F.

Zhang, H.

Zhang, W.

Z. Y. Tu, A. J. Wen, Z. G. Xiu, W. Zhang, and M. Chen, “Angle-of-arrival estimation of broadband microwave signals based on microwave photonic filtering,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Zhang, X. L.

L. Xu, Y. Yu, H. T. Tang, and X. L. Zhang, “A simplified photonic approach to measuring the microwave Doppler frequency shift,” IEEE Photonics Technol. Lett. 30(3), 246–249 (2018).
[Crossref]

Zheng, H. X.

W. Chen, A. J. Wen, X. Y. Li, Y. S. Gao, Y. Wang, S. Y. Xiang, H. Y. He, and H. X. Zheng, “Wideband Doppler frequency shift measurement and direction discrimination based on a DPMZM,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Zhou, P.

Zhu, D.

Zou, X.

Zou, X. H.

X. H. Zou, W. L. Bai, W. Chen, P. X. Li, B. Lu, G. Yu, W. Pan, B. Luo, L. S. Yan, and L. Y. Shao, “Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing,” J. Lightwave Technol. 36(19), 4337–4346 (2018).
[Crossref]

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stohr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

X. H. Zou, W. Z. Li, B. Lu, W. Pan, L. S. Yan, and L. Y. Shao, “Photonic approach to wide-frequency range high resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Tech. 63(4), 1421–1430 (2015).
[Crossref]

Appl. Opt. (1)

IEEE Photonics J. (3)

Z. Y. Tu, A. J. Wen, Z. G. Xiu, W. Zhang, and M. Chen, “Angle-of-arrival estimation of broadband microwave signals based on microwave photonic filtering,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

W. Chen, A. J. Wen, X. Y. Li, Y. S. Gao, Y. Wang, S. Y. Xiang, H. Y. He, and H. X. Zheng, “Wideband Doppler frequency shift measurement and direction discrimination based on a DPMZM,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photonics J. 8(5), 1 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Xu, Y. Yu, H. T. Tang, and X. L. Zhang, “A simplified photonic approach to measuring the microwave Doppler frequency shift,” IEEE Photonics Technol. Lett. 30(3), 246–249 (2018).
[Crossref]

S. L. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

V. C. Chen, Fayin Li, Shen-Shyang Ho, and H. Wechsler, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42(1), 2–21 (2006).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

E. Nova, J. Romeu, S. Capdevila, F. Torres, and L. Jofre, “Optical signal processor for millimeter-wave interferometric radiometry,” IEEE Trans. Geosci. Remote Sens. 52(5), 2357–2368 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

X. H. Zou, W. Z. Li, B. Lu, W. Pan, L. S. Yan, and L. Y. Shao, “Photonic approach to wide-frequency range high resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Tech. 63(4), 1421–1430 (2015).
[Crossref]

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stohr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optica (1)

Other (2)

M. I. Skolnil, Introduction to radar systems, 3rd ed. New York, NY, USA: McGraw-Hill, 1–3(2001).

R. K. Mohan, C. Harrington, T. Sharpe, Z. W. Barber, and W. R. Babbitt, “Broadband multi-emitter signal analysis and direction finding using a dual-port interferometric photonic spectrum analyzer based on spatial-spectral materials”, in Proc. Int. Top. Meet. Microw. Photonics (MWP) (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the proposed approach for DFS and AOA measurements. LD, laser diode; PM, phase modulator; LO, local oscillator; PDM-MZM, polarization division multiplexing Mach-Zehnder modulator; PBC, polarization beam combiner; TOF, tunable optical filter; PBS, polarization beam splitter; PD, photodetector; LPF, low pass filter; DSP, digital signal processor; RAU, remote antenna unit; CO, central office.
Fig. 2
Fig. 2 Experimental setup of the proposed approach for DFS and AOA measurements. PC, polarization controller; MSG, microwave signal generator; PS, phase shifter; EDFA, erbium doped fiber amplifier; OSC, oscilloscope;
Fig. 3
Fig. 3 Measured optical spectra before and after the TOF.
Fig. 4
Fig. 4 Temporal waveforms of the upper (blue line) and lower (red line) path for the DFS at (a) 1 MHz and (b) −1 MHz; Measured electrical spectra of the upper path for the DFS at (c) 1 MHz and (b) −1 MHz.
Fig. 5
Fig. 5 Measured Doppler frequency shift from −100 kHz to 100 kHz at 10 GHz and corresponding errors.
Fig. 6
Fig. 6 Phase shifts measured by vector network analyzer (VNA, blue, dotted line) and proposed method (orange, dotted line), and corresponding measurement errors (green, dotted line) at 10 GHz
Fig. 7
Fig. 7 (a) Measured DFS from −100 kHz to 100 kHz and corresponding errors, and (b) Phase shifts measured by vector network analyzer (VNA, blue, dotted line) and proposed method (orange, dotted line), and corresponding measurement errors (green, dotted line) at 18 GHz

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E PM ( t ) E o exp( j ω c t )( j J 1 ( m 1 )exp( j ω 1 t )+ J 0 ( m 1 ) +j J 1 ( m 1 )exp( j ω 1 t ) )
θ= ω 2 Δτ+2kπ
φ= cos 1 ( cΔτ/d )
[ E x E y ] E 0 exp(j ω c t)[ J 0 ( m 1 )+j J 1 ( m 1 )exp(j ω 1 t) +j J 0 ( m 1 ) J 1 ( m 2 )exp(j ω 2 t) J 0 ( m 1 )+j J 1 ( m 1 )exp(j ω 1 t) +j J 0 ( m 1 ) J 1 ( m 2 )exp(j ω 2 t+θ) ]
[ E x E y ] E 0 exp(j ω c t)[ J 0 ( m 1 )expj ϕ 0 +j J 1 ( m 1 )exp(j ω 1 t+j ϕ 1 ) +j J 0 ( m 1 ) J 1 ( m 2 )exp(j ω 2 t+j ϕ 2 ) J 0 ( m 1 )j ϕ 0 +j J 1 ( m 1 )exp(j ω 1 t+j ϕ 1 ) +j J 0 ( m 1 ) J 1 ( m 2 )exp(j ω 2 t+θ+j ϕ 2 ) ]
{ I Upper I 0 + I 1 cos( Δωt+ ϕ 2 ϕ 1 ) I Lower I 0 + I 1 cos( Δωt+θ+ ϕ 2 ϕ 1 ) ω 2 > ω 1
{ I Upper I 0 + I 1 cos( Δωt ϕ 2 + ϕ 1 ) ) I Lower I 0 + I 1 cos( Δωtθ ϕ 2 + ϕ 1 ) ω 2 < ω 1

Metrics