Abstract

We demonstrate a practical method that is used to generate on-demand first- and higher-order cylindrical vector beams, in the 1550 nm band, directly from an all polarization maintaining mode-locked Er-fiber laser. On demand typical 1st order CVBs, including the radially and azimuthally polarized beams, can be easily achieved by properly adjusting the angle of a half-wave plate with respect to the fast axis of the vortex wave plate. The spatial beam mode can be flexibly switched with no disturbance on the time domain mode-locking output. The laser outputs the desired vector beams at 1571 nm with a spectral bandwidth at full-width at half-maximum of 32 nm. The mode-locked laser pulses have a repetition rate of 74.9 MHz. Moreover, the proposed method can be easily extended to create higher-order CVBs. Our research provides a convenient way to generate ultrafast pulses in highly flexible-controlled structured modes, which is essential for optical fabrication and light trapping applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cylindrical vector beam fiber laser with a symmetric two-mode fiber coupler

Yang Xu, Su Chen, Zhiqiang Wang, Bing Sun, Hongdan Wan, and Zuxing Zhang
Photon. Res. 7(12) 1479-1484 (2019)

High-power femtosecond cylindrical vector beam optical parametric oscillator

Jun Zhao, Jintao Fan, Ruoyu Liao, Na Xiao, and Minglie Hu
Opt. Express 27(23) 33080-33089 (2019)

High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler

Hongdan Wan, Jie Wang, Zuxing Zhang, Yu Cai, Bin Sun, and Lin Zhang
Opt. Express 25(10) 11444-11451 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  2. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
    [Crossref] [PubMed]
  3. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  4. S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
    [Crossref] [PubMed]
  5. G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
    [Crossref] [PubMed]
  6. G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
    [Crossref] [PubMed]
  7. Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
    [Crossref] [PubMed]
  8. Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
    [Crossref] [PubMed]
  9. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012).
    [Crossref] [PubMed]
  10. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
    [Crossref] [PubMed]
  11. C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
    [Crossref]
  12. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
    [Crossref] [PubMed]
  13. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  14. Q. Zhan and J. R. Leger, “Measurement of surface features beyond the diffraction limit with an imaging ellipsometer,” Opt. Lett. 27(10), 821–823 (2002).
    [Crossref] [PubMed]
  15. X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
    [Crossref]
  16. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [Crossref] [PubMed]
  17. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
    [Crossref] [PubMed]
  18. B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
    [Crossref]
  19. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [Crossref] [PubMed]
  20. A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
    [Crossref] [PubMed]
  21. X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
    [Crossref]
  22. A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos Trans A Math Phys Eng Sci 375(2087), 20150436 (2017).
    [Crossref] [PubMed]
  23. C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
    [Crossref]
  24. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
    [Crossref] [PubMed]
  25. H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
    [Crossref] [PubMed]
  26. K. Huang, J. Zeng, J. Gan, Q. Hao, and H. Zeng, “Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser,” Opt. Lett. 43(16), 3933–3936 (2018).
    [Crossref] [PubMed]
  27. W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
    [Crossref] [PubMed]
  28. R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
    [Crossref] [PubMed]
  29. Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
    [Crossref]
  30. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
    [Crossref] [PubMed]

2018 (6)

2017 (4)

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos Trans A Math Phys Eng Sci 375(2087), 20150436 (2017).
[Crossref] [PubMed]

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

2015 (5)

2014 (1)

2013 (1)

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (1)

2009 (2)

2008 (1)

2007 (1)

2005 (1)

2004 (1)

2002 (2)

2000 (1)

Alfano, R. R.

Biener, G.

Bomzon, Z.

Brambilla, G.

Brown, T.

Cai, Y.

Cai, Z.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Changjun Min, C. M.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Chen, L.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Chen Xie, C. X.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Cox, M. A.

Cui, J.

Cui, S.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Du, L.

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Forbes, A.

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos Trans A Math Phys Eng Sci 375(2087), 20150436 (2017).
[Crossref] [PubMed]

Gan, J.

Gu, C.

Gu, Z.

Hao, Q.

Hashimoto, N.

Hasman, E.

Heckenberg, N. R.

Hibi, T.

Horanai, H.

Hu, M.

Huang, H.

Huang, K.

Huang, X.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Ismaeel, R.

Ito, A.

Jackel, S.

Jing Bu, J. B.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Jung, Y.

Karimi, E.

Kleiner, V.

Kozawa, Y.

Kristensen, P.

Kuang, C.

Kurihara, M.

Lavery, M. P. J.

Leach, J.

Lee, T.

Leger, J. R.

Li, R.

Li, S.

Li, Y.

Lin, Z.

Liu, B.

Liu, W.

Liu, X.

Lumer, Y.

Machavariani, G.

Marrucci, L.

Meir, A.

Milione, G.

Min, C.

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Ming, H.

Moshe, I.

Nape, I.

Ndagano, B.

Nemoto, T.

Nguyen, T. A.

Nieminen, T. A.

Nolan, D. A.

Oduro, B.

Pereira, S. F.

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

Ramachandran, S.

Ren, Y.

Rosales-Guzman, C.

Rosales-Guzmán, C.

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

Roy, S.

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

Sato, A.

Sato, S.

Shi, H.

Song, Y.

Sun, B.

Tian, H.

Urbach, H. P.

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

Ushakova, K.

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

van den Berg, Q.

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

Wan, H.

Wang, A.

Wang, C.

Wang, J.

Wang, R.

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Weng, X.

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Willner, A. E.

Xie, C.

Xie, G.

Xiujie Dou, X. D.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Xu, B.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Xu, H.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Xu, L.

Xue, Y.

Yan, M. F.

Yang, A.

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Yokoyama, H.

Yong Yang, Y. Y.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Youngworth, K.

Yuan, X.

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Yuan, X. C.

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Yuan, X. Y.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Yuquan Zhang, Y Y. Z.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Zeng, H.

Zeng, J.

Zhan, Q.

Zhang, C.

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Zhang, L.

Zhang, Z.

Zhao, Y.

Zhu, S.

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Phys. Lett. (1)

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Chin. Opt. Lett. (1)

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

IEEE Photonics J. (1)

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (8)

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012).
[Crossref] [PubMed]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
[Crossref] [PubMed]

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

Opt. Lett. (12)

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
[Crossref] [PubMed]

K. Huang, J. Zeng, J. Gan, Q. Hao, and H. Zeng, “Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser,” Opt. Lett. 43(16), 3933–3936 (2018).
[Crossref] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

Q. Zhan and J. R. Leger, “Measurement of surface features beyond the diffraction limit with an imaging ellipsometer,” Opt. Lett. 27(10), 821–823 (2002).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[Crossref] [PubMed]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
[Crossref] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

Philos Trans A Math Phys Eng Sci (1)

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos Trans A Math Phys Eng Sci 375(2087), 20150436 (2017).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Experimental setup. COL: collimator; EDF: Erbium-doped fiber; WDM: wavelength division multiplexer; FR: Faraday rotator; HWP: half-wave plate; QWP: quarter-wave plate; PBS: polarization beam splitter; VWP: vortex wave-plate; M: dielectric mirror with an intensity transmission of 2%. (b) Polarization state evolution before PBS2, NPS, nonreciprocal phase shifter; PMF, polarization maintaining fiber, point and arrow presents horizontal polarization and vertical polarization, respectively.
Fig. 2
Fig. 2 (a) Principle for the generation of CVBs. Radially, azimuthally, clockwise and anticlockwise polarized vector beams, can be switched by adjusting the orientation of the HWP. (b) The mathematical derivation for the CVB generation.
Fig. 3
Fig. 3 (a) CVBs output power of the laser as a function of the pump power. Mode-locked operation starts at pump power of 430 mW. Inset shows the Gaussian output power of the laser as a function of the pump power. (b) The long-term stability of the generated 1st order CVBs.
Fig. 4
Fig. 4 Typical output characteristics of the NALM-based mode-locked fiber laser. (a) Normalized optical spectra for output1 and output2. (b) RF spectrum over a 5 MHz span with 300 Hz resolution. Inset: RF spectrum over a 1.5 GHz span with 10 kHz resolution.
Fig. 5
Fig. 5 (a) Doughnut-shape intensity profiles for four typical cylindrical vector beams, arrows are used to indicate the polarization distributions. Figures 5(b)-5(e) Transmitted intensity distributions after a linear polarizer in different angles of 0, 45°, 90° and 135°, where the white double-ended arrows indicate the polarizer orientation.
Fig. 6
Fig. 6 Normalized optical spectra of high-order CVBs generation at output1 and output2. (a) 2nd-order CVBs generation at output1 and output2. (b) 3rd-order CVBs generation at output1 and output2.
Fig. 7
Fig. 7 Experimentally-obtained 2nd-order CVBs and 3rd-order CVBs. (a) Doughnut-shape intensity profiles for 2nd-order CVBs and 3rd-order CVBs with the HWP2 in angles of 0° and 22.5°. Figures 7(b)-7(e) Petal intensity distributions after a linear polarizer in different angles of 0, 45°, 90° and 135°.

Tables (2)

Tables Icon

Table 1 Jones Matrices of Optical Elements

Tables Icon

Table 2 Laser Output Parameters at Different Orders of CVBs

Metrics