Abstract

We present a novel long-range surface plasmon polariton (LRSPP) device consisting of a suspended dielectric matrix in which an electrically active, millimeter-long metallic waveguide is embedded. We show that, by opening an air gap under the lower cladding, the influence of the substrate is suppressed and the symmetry of the thermo-optical distribution around the LRSPP waveguide is preserved over extended ranges of applied electrical current with minimal optical losses. Experimental results show that, compared to a standard nonsuspended structure, our device allows either the induction of a phase change that is three times larger, for a fixed electrical power, or, equivalently, a scaling down of the device to one-tenth of its original length, for a fixed phase change.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flat-top surface plasmon-polariton modes guided by double-electrode structures

Jaewoong Yoon, Seok Ho Song, and Suntak Park
Opt. Express 15(25) 17151-17162 (2007)

Thermo-optic characterization of long-range surface-plasmon devices in Cytop

Hui Fan and Pierre Berini
Appl. Opt. 52(2) 162-170 (2013)

Long-range surface plasmon polariton waveguides embedded in fluorinated polymer

Jia Jiang, Claire L. Callender, Sarkis Jacob, Julian P. Noad, Shengrong Chen, John Ballato, and Dennis W. Smith, Jr.
Appl. Opt. 47(21) 3892-3900 (2008)

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [Crossref]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  3. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1902).
    [Crossref]
  4. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23(12), 2135–2136 (1968).
    [Crossref]
  5. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift ffir Phys. 216(4), 398–410 (1968).
    [Crossref]
  6. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  7. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [Crossref]
  8. R. Charbonneau, “Demonstration of a passive integrated optics technology based on plasmons,” University of Ottawa (2001).
  9. A. Boltasseva, “Integrated-optics components utilizing long-range surface plasmon polaritons,” Technical University of Denmark (2004).
  10. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
    [Crossref]
  11. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
    [Crossref] [PubMed]
  12. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long ranging surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
    [Crossref]
  13. H. Fan, R. Charbonneau, and P. Berini, “Long-range surface plasmon triple-output Mach-Zehnder interferometers,” Opt. Express 22(4), 4006–4020 (2014).
    [Crossref] [PubMed]
  14. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
    [Crossref]
  15. H. Fan and B. Pierre, “Noise cancellation in long-range surface plasmon dual-output Mach-Zehnder interferometers,” J. Lightwave Technol. 31(15), 2606–2612 (2013).
    [Crossref]
  16. T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
    [Crossref]
  17. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14(1), 314–319 (2006).
    [Crossref] [PubMed]
  18. G. Gagnon, N. Lahoud, G. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
    [Crossref]
  19. J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
    [Crossref] [PubMed]
  20. X. Sun, Y. Xie, T. Liu, C. Chen, F. Wang, and D. Zhang, “Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler,” J. Nanomater. 2014, 1–9 (2014).
    [Crossref]
  21. J. Lee, F. Lu, and M. A. Belkin, “Broadly wavelength tunable bandpass filters based on long-range surface plasmon polaritons,” Opt. Lett. 36, 3744–3746 (2011).
    [Crossref] [PubMed]
  22. J. Lee and M. A. Belkin, “Widely tunable thermo-optic plasmonic bandpass filter,” Appl. Phys. Lett. 103(18), 181115 (2013).
    [Crossref]
  23. I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23(8), 1971–1977 (2006).
    [Crossref] [PubMed]
  24. S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
    [Crossref]
  25. O. Krupin, W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Detection of small molecules using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 23(2), 103–112 (2017).
    [Crossref]
  26. H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon dual-output Mach–Zehnder interferometer,” J. Lightwave Technol. 34(11), 2631–2638 (2016).
    [Crossref]
  27. H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon triple-output Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 33(6), 1068–1074 (2016).
    [Crossref]
  28. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 63(12), 125417 (2001).
    [Crossref]
  29. P. Berini, “Optical waveguide structures,” U.S. patent 6,741,782 (2004).
  30. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
    [Crossref]
  31. S. J. Al-Bader, “Optical transmission on metallic wires; fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
    [Crossref]
  32. K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
    [Crossref]
  33. Z. Ling and K. Lian, “In situ fabrication of SU-8 movable parts by using PAG-diluted SU-8 as the sacrificial layer,” Microsyst. Technol. 13(3-4), 253–257 (2007).
    [Crossref]
  34. J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
    [Crossref]
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  36. Microchem, “Processing guidelines for SU-8 2000 permanent epoxy negative photoresist,” (Microchem, 2015).
  37. J. L. Lai, C. J. Liao, and G. D. J. Su, “Using an SU-8 photoresist structure and cytochrome C thin film sensing material for a microbolometer,” Sensors (Basel) 12(12), 16390–16403 (2012).
    [Crossref] [PubMed]
  38. X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21(2), 2110–2117 (2013).
    [Crossref] [PubMed]
  39. H. Fan and P. Berini, “Thermo-optic characterization of long-range surface-plasmon devices in Cytop,” Appl. Opt. 52(2), 162–170 (2013).
    [Crossref] [PubMed]

2018 (1)

J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
[Crossref] [PubMed]

2017 (1)

O. Krupin, W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Detection of small molecules using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 23(2), 103–112 (2017).
[Crossref]

2016 (3)

2014 (2)

X. Sun, Y. Xie, T. Liu, C. Chen, F. Wang, and D. Zhang, “Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

H. Fan, R. Charbonneau, and P. Berini, “Long-range surface plasmon triple-output Mach-Zehnder interferometers,” Opt. Express 22(4), 4006–4020 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

J. L. Lai, C. J. Liao, and G. D. J. Su, “Using an SU-8 photoresist structure and cytochrome C thin film sensing material for a microbolometer,” Sensors (Basel) 12(12), 16390–16403 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
[Crossref]

2007 (1)

Z. Ling and K. Lian, “In situ fabrication of SU-8 movable parts by using PAG-diluted SU-8 as the sacrificial layer,” Microsyst. Technol. 13(3-4), 253–257 (2007).
[Crossref]

2006 (5)

2005 (3)

2004 (2)

S. J. Al-Bader, “Optical transmission on metallic wires; fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

2003 (1)

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

2001 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 63(12), 125417 (2001).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

1983 (1)

B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23(12), 2135–2136 (1968).
[Crossref]

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift ffir Phys. 216(4), 398–410 (1968).
[Crossref]

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1902).
[Crossref]

Aguirregabiria, M.

J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
[Crossref]

Al-Bader, S. J.

S. J. Al-Bader, “Optical transmission on metallic wires; fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
[Crossref]

Aranburu, I.

J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
[Crossref]

Arroyo, M. T.

J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
[Crossref]

Belkin, M. A.

Berganzo, J.

J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
[Crossref]

Berini, P.

O. Krupin, W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Detection of small molecules using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 23(2), 103–112 (2017).
[Crossref]

H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon dual-output Mach–Zehnder interferometer,” J. Lightwave Technol. 34(11), 2631–2638 (2016).
[Crossref]

H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon triple-output Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 33(6), 1068–1074 (2016).
[Crossref]

H. Fan, R. Charbonneau, and P. Berini, “Long-range surface plasmon triple-output Mach-Zehnder interferometers,” Opt. Express 22(4), 4006–4020 (2014).
[Crossref] [PubMed]

H. Fan and P. Berini, “Thermo-optic characterization of long-range surface-plasmon devices in Cytop,” Appl. Opt. 52(2), 162–170 (2013).
[Crossref] [PubMed]

G. Gagnon, N. Lahoud, G. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long ranging surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[Crossref]

I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23(8), 1971–1977 (2006).
[Crossref] [PubMed]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
[Crossref] [PubMed]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 63(12), 125417 (2001).
[Crossref]

Blanco, F. J.

J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
[Crossref]

Boltasseva, A.

Bozhevolnyi, S. I.

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14(1), 314–319 (2006).
[Crossref] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Breukelaar, I.

Charbonneau, R.

Chen, C.

T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

X. Sun, Y. Xie, T. Liu, C. Chen, F. Wang, and D. Zhang, “Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

Chen, R. T.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Elizalde, J.

J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
[Crossref]

Fafard, S.

Fan, H.

Fu, X. C.

J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
[Crossref] [PubMed]

Gagnon, G.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Guo, L. J.

He, G.

T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Ji, L.

T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ju, J. J.

S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
[Crossref]

Kim, J. T.

S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
[Crossref]

Kim, M. S.

S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
[Crossref]

Kjaer, K.

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23(12), 2135–2136 (1968).
[Crossref]

Krupin, O.

O. Krupin, W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Detection of small molecules using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 23(2), 103–112 (2017).
[Crossref]

Lahoud, N.

Lai, J. L.

J. L. Lai, C. J. Liao, and G. D. J. Su, “Using an SU-8 photoresist structure and cytochrome C thin film sensing material for a microbolometer,” Sensors (Basel) 12(12), 16390–16403 (2012).
[Crossref] [PubMed]

Larsen, M. S.

Lee, J.

Lee, J. M.

S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
[Crossref]

Lee, M. H.

S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
[Crossref]

Lee, W. J.

S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
[Crossref]

Leosson, K.

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14(1), 314–319 (2006).
[Crossref] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Lian, K.

Z. Ling and K. Lian, “In situ fabrication of SU-8 movable parts by using PAG-diluted SU-8 as the sacrificial layer,” Microsyst. Technol. 13(3-4), 253–257 (2007).
[Crossref]

Liao, C. J.

J. L. Lai, C. J. Liao, and G. D. J. Su, “Using an SU-8 photoresist structure and cytochrome C thin film sensing material for a microbolometer,” Sensors (Basel) 12(12), 16390–16403 (2012).
[Crossref] [PubMed]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Lin, X.

Ling, T.

Ling, Z.

Z. Ling and K. Lian, “In situ fabrication of SU-8 movable parts by using PAG-diluted SU-8 as the sacrificial layer,” Microsyst. Technol. 13(3-4), 253–257 (2007).
[Crossref]

Liu, T.

T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

X. Sun, Y. Xie, T. Liu, C. Chen, F. Wang, and D. Zhang, “Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

Liu, Y. R.

J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
[Crossref] [PubMed]

Lu, F.

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Mahamd Adikan, F. R.

O. Krupin, W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Detection of small molecules using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 23(2), 103–112 (2017).
[Crossref]

Mattiussi, G.

Mayora, K.

J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
[Crossref]

Nikolajsen, T.

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14(1), 314–319 (2006).
[Crossref] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift ffir Phys. 216(4), 398–410 (1968).
[Crossref]

Park, S.

S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
[Crossref]

Park, S. K.

S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
[Crossref]

Pierre, B.

Pun, E. Y. B.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
[Crossref]

Qian, G.

J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
[Crossref] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23(12), 2135–2136 (1968).
[Crossref]

Ruano-López, J. M.

J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
[Crossref]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

Scales, C.

Su, G. D. J.

J. L. Lai, C. J. Liao, and G. D. J. Su, “Using an SU-8 photoresist structure and cytochrome C thin film sensing material for a microbolometer,” Sensors (Basel) 12(12), 16390–16403 (2012).
[Crossref] [PubMed]

Subbaraman, H.

Sun, X.

T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

X. Sun, Y. Xie, T. Liu, C. Chen, F. Wang, and D. Zhang, “Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

Tang, J.

J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
[Crossref] [PubMed]

Tijero, M.

J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
[Crossref]

Tung, K. K.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
[Crossref]

Wang, F.

T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

X. Sun, Y. Xie, T. Liu, C. Chen, F. Wang, and D. Zhang, “Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

Wang, X.

T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

Wong, W. H.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
[Crossref]

Wong, W. R.

O. Krupin, W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Detection of small molecules using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 23(2), 103–112 (2017).
[Crossref]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1902).
[Crossref]

Xie, Y.

X. Sun, Y. Xie, T. Liu, C. Chen, F. Wang, and D. Zhang, “Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

Xue, X. M.

J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yi, Y.

T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

Zhang, D.

T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

X. Sun, Y. Xie, T. Liu, C. Chen, F. Wang, and D. Zhang, “Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

Zhang, L. J.

J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
[Crossref] [PubMed]

Zhang, T.

J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
[Crossref] [PubMed]

Zhao, N.

J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Lee and M. A. Belkin, “Widely tunable thermo-optic plasmonic bandpass filter,” Appl. Phys. Lett. 103(18), 181115 (2013).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

S. J. Al-Bader, “Optical transmission on metallic wires; fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

O. Krupin, W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Detection of small molecules using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 23(2), 103–112 (2017).
[Crossref]

J. Lightwave Technol. (5)

J. Nanomater. (1)

X. Sun, Y. Xie, T. Liu, C. Chen, F. Wang, and D. Zhang, “Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

J. Opt. (1)

T. Liu, L. Ji, G. He, X. Sun, Y. Yi, X. Wang, C. Chen, F. Wang, and D. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Micromachines (Basel) (1)

J. Tang, Y. R. Liu, L. J. Zhang, X. C. Fu, X. M. Xue, G. Qian, N. Zhao, and T. Zhang, “Flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton waveguides,” Micromachines (Basel) 9(8), 369 (2018).
[Crossref] [PubMed]

Microsyst. Technol. (1)

Z. Ling and K. Lian, “In situ fabrication of SU-8 movable parts by using PAG-diluted SU-8 as the sacrificial layer,” Microsyst. Technol. 13(3-4), 253–257 (2007).
[Crossref]

Opt. Commun. (1)

S. Park, M. S. Kim, J. J. Ju, J. T. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun. 283(17), 3267–3270 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 63(12), 125417 (2001).
[Crossref]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

Proc. Phys. Soc. Lond. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1902).
[Crossref]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Sens. Actuators B Chem. (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

J. M. Ruano-López, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sens. Actuators B Chem. 114(1), 542–551 (2006).
[Crossref]

Sensors (Basel) (1)

J. L. Lai, C. J. Liao, and G. D. J. Su, “Using an SU-8 photoresist structure and cytochrome C thin film sensing material for a microbolometer,” Sensors (Basel) 12(12), 16390–16403 (2012).
[Crossref] [PubMed]

Z. Naturforsch. B (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23(12), 2135–2136 (1968).
[Crossref]

Zeitschrift ffir Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift ffir Phys. 216(4), 398–410 (1968).
[Crossref]

Other (5)

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

R. Charbonneau, “Demonstration of a passive integrated optics technology based on plasmons,” University of Ottawa (2001).

A. Boltasseva, “Integrated-optics components utilizing long-range surface plasmon polaritons,” Technical University of Denmark (2004).

P. Berini, “Optical waveguide structures,” U.S. patent 6,741,782 (2004).

Microchem, “Processing guidelines for SU-8 2000 permanent epoxy negative photoresist,” (Microchem, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) LRSPP consisting of an Au stripe embedded in a SU-8 polymer matrix. (b) Complex effective RI obtained numerically by varying the stripe Gold thickness (t).
Fig. 2
Fig. 2 Schematic of (a) the NS-LRSPP structure, and (b) the S-LRSPP structure. (c) Cross-sectional temperature distribution for different values of electrical current (4, 5, 6 and 7 mA) for the NS-LRSPP, and (d) the corresponding vertical cuts at the center of the waveguide. (e) Cross-sectional temperature distribution for a S-LRSPP with air gaps of different width (W = 10, 20, 50 and, 100 µm), with h = 5 µm and I = 7mA, and (f) the corresponding vertical cuts at the center of the waveguide.
Fig. 3
Fig. 3 A schematic overview of the main steps required in the fabrication of the suspended LRSPP devices.
Fig. 4
Fig. 4 (a) Top view picture of the fabricated LRSPP devices showing both the NS-LRSPP and the S-LRSPP structures. (b) The zoom shows the NS-LRSPP structure in more detail, where the Au stripe is connected to the Au contact. (c) The picture shows a cross section of the S-LRSPP structure with the suspended SU8 layer. (d) The zoom shows the S-LRSPP structure in detail, where we see the small square windows used to etch the SiO2 below the SU8 and the Au stripe running between the squares and connected to the Au contact.
Fig. 5
Fig. 5 Experimental setup for measuring the optical power transmitted and phase changes through the NS-LRSPP and S-LRSPP waveguides. The images shown to the right are the power transmitted at different polarizations with λ = 1.55 μm, stripe width of 5 μm and 15 nm thick.
Fig. 6
Fig. 6 Experimental results obtained for the NS-LRSPP and S-LRSPP devices. a) Comparison of the total power transmitted as a function of the applied electrical power. b) Comparison of phase shift response as a function of the applied electric power.

Metrics