Abstract

A three-wavelength passive demodulation technique to interrogate extrinsic Fabry-Perot interferometric (EFPI) sensors with arbitrary cavity length has been developed. The DC component is obtained online, then the applied dynamic signal is recovered by using three new signals without the DC component. The performance of the technique is demonstrated by simulations and experiments. The demodulation technique can extract dynamic signals, regardless of whether the phase modulation is larger than 2π. Theoretically, EFPI sensors with arbitrary cavity length can be demodulated by the demodulation technique, and EFPI sensors with cavity lengths in the 22.96-1002.3 μm range are detected successfully by the same demodulator in experiments. The technique is robust with respect to the bending loss of the leading fiber. The demodulation technique provides a robust and accurate solution to measure dynamic signals for EFPI sensors. It has the properties of high frequency, a large dynamic range, and high sensitivity. The paper demonstrates this technique’s potential for measuring dynamic signals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Common-path dual-wavelength quadrature phase demodulation of EFPI sensors using a broadly tunable MG-Y laser

Qiang Liu, Zhenguo Jing, Ang Li, Yueying Liu, Zhiyuan Huang, Yang Zhang, and Wei Peng
Opt. Express 27(20) 27873-27881 (2019)

Symmetrical demodulation method for the phase recovery of extrinsic Fabry–Perot interferometric sensors

Jingshan Jia, Yi Jiang, Junbin Huang, Jie Hu, and Lan Jiang
Opt. Express 28(7) 9149-9157 (2020)

Least square fitting demodulation technique for the interrogation of an optical fiber Fabry–Perot sensor with arbitrary reflectivity

Wenyi Liu, Qianyu Ren, Pinggang Jia, Yingping Hong, Ting Liang, Jia Liu, and Jijun Xiong
Appl. Opt. 59(5) 1301-1306 (2020)

References

  • View by:
  • |
  • |
  • |

  1. E. Cibula, S. Pevec, B. Lenardič, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
    [Crossref] [PubMed]
  2. W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
    [Crossref]
  3. G. Liu, W. Hou, and M. Han, “Unambiguous peak recognition for a silicon Fabry–Perot interferometric temperature sensor,” J. Lit. Technol. 36(10), 1970–1978 (2018).
    [Crossref]
  4. Y. Liu, C. Lang, X. Wei, and S. Qu, “Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper,” Opt. Express 25(7), 7797–7806 (2017).
    [Crossref] [PubMed]
  5. G. Liu, Q. Sheng, D. Dam, J. Hua, W. Hou, and M. Han, “Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C,” Opt. Lett. 42(7), 1412–1415 (2017).
    [Crossref] [PubMed]
  6. S. Preisser, W. Rohringer, M. Liu, C. Kollmann, S. Zotter, B. Fischer, and W. Drexler, “All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging,” Biomed. Opt. Express 7(10), 4171–4186 (2016).
    [Crossref] [PubMed]
  7. K. Prokopczuk, K. Rozwadowski, M. D. Aleksandra Starzyńska, and A. W. Domański, “Optical fiber sensor for membrane submicrometer vibration measurement,” Appl. Opt. 53(26), 6051–6057 (2014).
    [Crossref] [PubMed]
  8. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength raman fiber laser,” J. Lit. Technol. 28(21), 765339 (2010).
    [Crossref]
  9. Z. Yu and A. Wang, “Fast demodulation algorithm for multiplexed low-finesse Fabry–Perot interferometers,” J. Lit. Technol. 34(3), 1015–1019 (2016).
    [Crossref]
  10. Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Pérot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
    [Crossref]
  11. J. He, L. Wang, F. Li, and Y. Liu, “An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability,” J. Lit. Technol. 28(22), 3258–3265 (2010).
  12. F. Chen, Y. Jiang, and L. Jiang, “3 × 3 coupler based interferometric magnetic field sensor using a TbDyFe rod,” Appl. Opt. 54(8), 2085–2090 (2015).
    [Crossref] [PubMed]
  13. H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
    [Crossref]
  14. M. Schmidt and N. Fürstenau, “Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24(9), 599–601 (1999).
    [Crossref] [PubMed]
  15. Y. Wang, X. Ni, M. Wang, Y. Cui, and Q. Shi, “Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter,” Opt. Express 25(2), 644–653 (2017).
    [Crossref] [PubMed]
  16. X. M. Zhang, Y. Liu, H. Bae, C. Pang, and M. Yu, “Phase modulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors,” Opt. Express 17(26), 23965–23974 (2009).
    [Crossref] [PubMed]
  17. J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
    [Crossref]
  18. O. B. Wright, “Stabilized dual-wavelength fiber-optic interferometer for vibration measurement,” Opt. Lett. 16(1), 56–58 (1991).
    [Crossref] [PubMed]
  19. Y. Jiang, C. Tang, and G. Guo, “Note: Phase compensation in the fiber optical quadrature passive demodulation scheme,” Rev. Sci. Instrum. 81(4), 046108 (2010).
    [Crossref] [PubMed]
  20. K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
    [Crossref]

2018 (2)

G. Liu, W. Hou, and M. Han, “Unambiguous peak recognition for a silicon Fabry–Perot interferometric temperature sensor,” J. Lit. Technol. 36(10), 1970–1978 (2018).
[Crossref]

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

2017 (5)

Y. Wang, X. Ni, M. Wang, Y. Cui, and Q. Shi, “Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter,” Opt. Express 25(2), 644–653 (2017).
[Crossref] [PubMed]

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Y. Liu, C. Lang, X. Wei, and S. Qu, “Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper,” Opt. Express 25(7), 7797–7806 (2017).
[Crossref] [PubMed]

G. Liu, Q. Sheng, D. Dam, J. Hua, W. Hou, and M. Han, “Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C,” Opt. Lett. 42(7), 1412–1415 (2017).
[Crossref] [PubMed]

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

2016 (2)

2015 (1)

2014 (1)

2010 (3)

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength raman fiber laser,” J. Lit. Technol. 28(21), 765339 (2010).
[Crossref]

J. He, L. Wang, F. Li, and Y. Liu, “An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability,” J. Lit. Technol. 28(22), 3258–3265 (2010).

Y. Jiang, C. Tang, and G. Guo, “Note: Phase compensation in the fiber optical quadrature passive demodulation scheme,” Rev. Sci. Instrum. 81(4), 046108 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Pérot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

1999 (1)

1991 (1)

1982 (1)

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Aleksandra Starzynska, M. D.

Bae, H.

Chen, F.

Cibula, E.

Cui, Y.

Dam, D.

Dandridge, A.

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Domanski, A. W.

Donlagic, D.

Drexler, W.

Fischer, B.

Frazão, O.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength raman fiber laser,” J. Lit. Technol. 28(21), 765339 (2010).
[Crossref]

Fu, X.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Fürstenau, N.

Gao, H.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Guo, G.

Y. Jiang, C. Tang, and G. Guo, “Note: Phase compensation in the fiber optical quadrature passive demodulation scheme,” Rev. Sci. Instrum. 81(4), 046108 (2010).
[Crossref] [PubMed]

Guo, T.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

Han, M.

G. Liu, W. Hou, and M. Han, “Unambiguous peak recognition for a silicon Fabry–Perot interferometric temperature sensor,” J. Lit. Technol. 36(10), 1970–1978 (2018).
[Crossref]

G. Liu, Q. Sheng, D. Dam, J. Hua, W. Hou, and M. Han, “Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C,” Opt. Lett. 42(7), 1412–1415 (2017).
[Crossref] [PubMed]

He, J.

J. He, L. Wang, F. Li, and Y. Liu, “An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability,” J. Lit. Technol. 28(22), 3258–3265 (2010).

Hou, W.

G. Liu, W. Hou, and M. Han, “Unambiguous peak recognition for a silicon Fabry–Perot interferometric temperature sensor,” J. Lit. Technol. 36(10), 1970–1978 (2018).
[Crossref]

G. Liu, Q. Sheng, D. Dam, J. Hua, W. Hou, and M. Han, “Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C,” Opt. Lett. 42(7), 1412–1415 (2017).
[Crossref] [PubMed]

Hua, J.

Jia, J.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Jiang, L.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

F. Chen, Y. Jiang, and L. Jiang, “3 × 3 coupler based interferometric magnetic field sensor using a TbDyFe rod,” Appl. Opt. 54(8), 2085–2090 (2015).
[Crossref] [PubMed]

Jiang, Y.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

F. Chen, Y. Jiang, and L. Jiang, “3 × 3 coupler based interferometric magnetic field sensor using a TbDyFe rod,” Appl. Opt. 54(8), 2085–2090 (2015).
[Crossref] [PubMed]

Y. Jiang, C. Tang, and G. Guo, “Note: Phase compensation in the fiber optical quadrature passive demodulation scheme,” Rev. Sci. Instrum. 81(4), 046108 (2010).
[Crossref] [PubMed]

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Pérot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

Kobelke, J.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength raman fiber laser,” J. Lit. Technol. 28(21), 765339 (2010).
[Crossref]

Kollmann, C.

Koo, K. P.

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Lang, C.

Lenardic, B.

Li, F.

J. He, L. Wang, F. Li, and Y. Liu, “An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability,” J. Lit. Technol. 28(22), 3258–3265 (2010).

Li, J.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

Liao, H.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Liu, D.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Liu, G.

G. Liu, W. Hou, and M. Han, “Unambiguous peak recognition for a silicon Fabry–Perot interferometric temperature sensor,” J. Lit. Technol. 36(10), 1970–1978 (2018).
[Crossref]

G. Liu, Q. Sheng, D. Dam, J. Hua, W. Hou, and M. Han, “Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C,” Opt. Lett. 42(7), 1412–1415 (2017).
[Crossref] [PubMed]

Liu, L.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Liu, M.

Liu, Y.

Lopez-Amo, M.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength raman fiber laser,” J. Lit. Technol. 28(21), 765339 (2010).
[Crossref]

Lu, P.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Ma, W.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

Ni, W.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Ni, X.

Pang, C.

Pevec, S.

Pinet, E.

Pinto, A. M. R.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength raman fiber laser,” J. Lit. Technol. 28(21), 765339 (2010).
[Crossref]

Preisser, S.

Prokopczuk, K.

Qiao, X.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

Qu, S.

Rohringer, W.

Rong, Q.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

Rozwadowski, K.

Santos, J. L.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength raman fiber laser,” J. Lit. Technol. 28(21), 765339 (2010).
[Crossref]

Schmidt, M.

Schuster, K.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength raman fiber laser,” J. Lit. Technol. 28(21), 765339 (2010).
[Crossref]

Shao, Z.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

Sheng, Q.

Shi, Q.

Tang, C.

Y. Jiang, C. Tang, and G. Guo, “Note: Phase compensation in the fiber optical quadrature passive demodulation scheme,” Rev. Sci. Instrum. 81(4), 046108 (2010).
[Crossref] [PubMed]

Tveten, A. B.

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Wang, A.

Z. Yu and A. Wang, “Fast demodulation algorithm for multiplexed low-finesse Fabry–Perot interferometers,” J. Lit. Technol. 34(3), 1015–1019 (2016).
[Crossref]

Wang, L.

J. He, L. Wang, F. Li, and Y. Liu, “An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability,” J. Lit. Technol. 28(22), 3258–3265 (2010).

Wang, M.

Wang, R.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

Wang, S.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Wang, Y.

Wei, X.

Wright, O. B.

Yu, M.

Yu, Z.

Z. Yu and A. Wang, “Fast demodulation algorithm for multiplexed low-finesse Fabry–Perot interferometers,” J. Lit. Technol. 34(3), 1015–1019 (2016).
[Crossref]

Zhang, J.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Zhang, L.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Zhang, W.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

Zhang, X. M.

Zotter, S.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Biomed. Opt. Express (1)

IEEE Photonics J. (2)

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry–Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Pérot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

J. Lit. Technol. (4)

J. He, L. Wang, F. Li, and Y. Liu, “An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability,” J. Lit. Technol. 28(22), 3258–3265 (2010).

G. Liu, W. Hou, and M. Han, “Unambiguous peak recognition for a silicon Fabry–Perot interferometric temperature sensor,” J. Lit. Technol. 36(10), 1970–1978 (2018).
[Crossref]

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength raman fiber laser,” J. Lit. Technol. 28(21), 765339 (2010).
[Crossref]

Z. Yu and A. Wang, “Fast demodulation algorithm for multiplexed low-finesse Fabry–Perot interferometers,” J. Lit. Technol. 34(3), 1015–1019 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

Y. Jiang, C. Tang, and G. Guo, “Note: Phase compensation in the fiber optical quadrature passive demodulation scheme,” Rev. Sci. Instrum. 81(4), 046108 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the three-wavelength passive demodulation technique for the interrogation of EFPI sensors with arbitrary cavity length.
Fig. 2
Fig. 2 Simulation result for the DC component.
Fig. 3
Fig. 3 (a) The output signal amplitude as a function of the input signal amplitude. (b) The amplitude deviation of the output signal from the input signal.
Fig. 4
Fig. 4 (a) Three interferometric signals of the 129.28 μm EFPI working at 100 Hz, (b) the Lissajous figure for f1 and f2, the Lissajous figure for f2 and f3, and the Lissajous figure for f1 and f3.
Fig. 5
Fig. 5 Demodulated results: (a) the 100 Hz output signal demodulated from the 129.28 μm EFPI, (b) the 700 Hz output signal demodulated from the 149.33 μm EFPI, (c) the 2 kHz output signal demodulated from the 242.47 μm EFPI.
Fig. 6
Fig. 6 Power spectrum plots of demodulated signals.
Fig. 7
Fig. 7 Lissajous figures of the 242.47 μm EFPI working at 2 kHz.
Fig. 8
Fig. 8 (a) Three interferometric signals of the 22.96 μm EFPI working at 200 Hz, (b) the output signal demodulated from the 22.96 μm EFPI, (c) three interferometric signals of the 1.0023 mm EFPI working at 200 Hz, (d) the output signal demodulated from the 1.0023 mm EFPI.
Fig. 9
Fig. 9 (a) DC components and interferometric fringe visibilities of signals received by the ADC, (b) output signals.

Tables (2)

Tables Icon

Table 1 Parameters of the Simulation

Tables Icon

Table 2 Measurement and Calculation of the DC Components

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

f i = A + B cos ( 4 n π λ i d t ) , ( i = 1 , 2 , 3 ) ,
y = D cos ( ω t + ϕ ) ,
d t = d 0 + Δ d t = d 0 + k * y = d 0 + k D cos ( ω t + ϕ ) ,
f i = A + B cos ( θ t + δ i ) , ( i = 1 , 2 , 3 ) ,
δ 2 4 n π λ 1 λ 2 λ 1 λ 2 d 0 ,
δ 3 4 n π λ 1 λ 3 λ 1 λ 3 d 0 .
I 1 = f 2 f 1 = B ( cos δ 2 1 ) cos θ t B sin δ 2 sin θ t ,
I 2 = f 3 f 1 = B ( cos δ 3 1 ) cos θ t B sin δ 3 sin θ t ,
L = sin δ 3 I 1 sin δ 2 I 2 = B ( sin δ 3 cos δ 2 cos δ 3 sin δ 2 + sin δ 2 sin δ 3 ) cos θ t .
L = P B cos θ t ,
H = P f 1 L = P A .
A = H / P .
Δ δ = 4 n π ( λ i λ 1 ) λ 1 λ i Δ c l , ( i = 2 , 3 ) ,
Δ θ = 4 n π λ j Δ c l , ( j = 1 , 2 ) ,
Δ δ / Δ θ = ( λ 1 λ i ) λ j λ 1 λ i ,
Δ δ / Δ θ 3.6 × 10 3 .
F i = f i A = B cos ( θ t + δ i ) , ( i = 1 , 2 , 3 ) ,
F 2 = B cos θ t cos δ 2 B sin θ t sin δ 2 ,
F 3 = B cos θ t cos δ 3 B sin θ t sin δ 3 .
P 1 = cos δ 2 F 1 F 2 = sin δ 2 B sin θ t ,
P 2 = sin δ 2 F 1 = sin δ 2 B cos θ t .
θ t = P 1 P 2 P 1 P 2 P 1 2 + P 2 2 .
Δ d = t λ 1 4 n π θ . t

Metrics