Abstract

The annular laser beam (ALB) has been widely used in many fields for its unique intensity distribution. Especially, in the materials processing, the power and the beam quality of the large-aperture thin-wall ALB are of vital. However, limited by the aperture, the actuators’ spacing or the damage threshold, the existing deformable mirrors (DMs) are not suitable for the correction of the ALB. Considering the stretching effect of the oblique incidence, in this paper, by using the tubular DM (TDM), a novel adaptive optics (AO) configuration is promoted to increase the number of the effective actuators covered by the input ALB. The coordinate transformation equations and correction principle of the novel AO configuration are derived based on the ray tracing. A typical TDM prototype is designed based on the coordinate transformation equations. The influence function characteristics of the TDM is analyzed using the finite element method, and the correction ability of the novel AO configuration based on the TDM is verified. Simulation results show that the TDM could perfectly compensate the wavefront distortions described by the 2th to 15th order Zernike annular aberrations.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical analysis of a novel two-stage enlargement and adaptive correction approach for the annular aberration compensation

Chuang Sun, Deen Wang, Xuewei Deng, Qiang Yuan, Dongxia Hu, Licheng Sun, Yamin Zheng, and Lei Huang
Opt. Express 27(18) 25205-25227 (2019)

Wavefront correction by a low-cost deformable mirror group in a small-aperture-beam fiber laser

Lei Huang, Chenlu Zhou, Xingkun Ma, Meng Yan, and Junbiao Fan
Appl. Opt. 56(8) 2176-2182 (2017)

Double drive modes unimorph deformable mirror for low-cost adaptive optics

Jianqiang Ma, Ying Liu, Ting He, Baoqing Li, and Jiaru Chu
Appl. Opt. 50(29) 5647-5654 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Chaloupka and D. D. Meyerhofer, “Observation of Electron Trapping in an Intense Laser Beam,” Phys. Rev. Lett. 83(22), 4538–4541 (1999).
    [Crossref]
  2. K. T. Gahagan and G. A. Swartzlander, “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16(4), 533–537 (1999).
    [Crossref]
  3. H. T. Eyyuboğlu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
    [Crossref]
  4. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
    [Crossref]
  5. W. P. Latham, “Shaping of annular laser intensity profiles and their thermal effects for optical trepanning,” Opt. Eng. 45(1), 014301 (2006).
    [Crossref]
  6. G. J. Xu, A. Tsuboi, T. Ogawa, T. Ikeda, and M. Kutsuna, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
    [Crossref]
  7. L. Sun, Y. Guo, C. Shao, Y. Li, Y. Zheng, C. Sun, X. Wang, and L. Huang, “10.8 kW, 2.6 times diffraction limited laser based on a continuous wave Nd:YAG oscillator and an extra-cavity adaptive optics system,” Opt. Lett. 43(17), 4160–4163 (2018).
    [Crossref] [PubMed]
  8. A. Lapucci and M. Ciofini, “Extraction of high-quality beams from narrow annular laser sources,” Appl. Opt. 38(21), 4552–4557 (1999).
    [Crossref] [PubMed]
  9. S. Tamura, M. Yamakawa, Y. Takashima, and K. Ogura, “Instability of Thin-Walled Annular Beam in Dielectric-Loaded Cylindrical Waveguide,” Proc. ITC/ISHW P1–011 (2007).
  10. U. Wittrock, H. Weber, and B. Eppich, “Inside-pumped Nd:YAG tube laser,” Opt. Lett. 16(14), 1092–1094 (1991).
    [Crossref] [PubMed]
  11. M. W. Ao, P. Yang, Z. P. Yang, E. D. Li, C. H. Rao, and W. H. Jiang, “A method of aberration measurement and correction for entire beam path of ICF beam path,” Proc. SPIE 6823, 68230I (2007).
    [Crossref]
  12. B. Wattellier, J. Fuchs, J. P. Zou, K. Abdeli, H. Pépin, and C. Haefner, “Repetition rate increase and diffraction-limited focal spots for a nonthermal-equilibrium 100-TW Nd:glass laser chain by use of adaptive optics,” Opt. Lett. 29(21), 2494–2496 (2004).
    [Crossref] [PubMed]
  13. P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Dong, H. Yan, W. Liu, W. Jiang, L. Liu, C. Wang, X. Liang, and X. Tang, “Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18(7), 7121–7130 (2010).
    [Crossref] [PubMed]
  14. M. A. Ealey and J. A. Wellman, “Deformable Mirrors: Design Fundamentals, Key Performance Specifications, and Parametric Trades,” Proc. SPIE 1543, 36–52 (1992).
    [Crossref]
  15. X. Ma, L. Huang, M. Gong, Q. Xue, Z. Feng, P. Yan, and Q. Liu, “Orientation dependent wavefront correction system under grazing incidence,” Opt. Express 21(18), 20497–20505 (2013).
    [Crossref] [PubMed]
  16. L. J. Hornbeck, “Deformable mirror spatial light modulators,” Proc. SPIE 1150, 1150 (1989).
  17. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12(26), 6403–6409 (2004).
    [Crossref] [PubMed]
  18. K. Yao, J. Wang, X. Liu, and W. Liu, “Closed-loop adaptive optics system with a single liquid crystal spatial light modulator,” Opt. Express 22(14), 17216–17226 (2014).
    [Crossref] [PubMed]
  19. N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
    [Crossref]
  20. B. P. Wallace, P. J. Hampton, C. H. Bradley, and R. Conan, “Evaluation of a MEMS deformable mirror for an adaptive optics test bench,” Opt. Express 14(22), 10132–10138 (2006).
    [Crossref] [PubMed]
  21. D. Guzmán, F. J. D. C. Juez, R. Myers, A. Guesalaga, and F. S. Lasheras, “Modeling a MEMS deformable mirror using non-parametric estimation techniques,” Opt. Express 18(20), 21356–21369 (2010).
    [Crossref] [PubMed]
  22. V. Mathur, S. R. Vangala, X. F. Qian, and W. D. Goodhue, “All optically driven MEMS deformable mirrors via direct cascading with wafer bonded GaAs/GaP PIN photodetectors,” IEEE/LEOS 156–157 (2009).
  23. M. A. Helmbrecht, M. He, and C. J. Kempf, “Development of high-order segmented MEMS deformable mirrors,” Proc. SPIE 825, 82530 (2012).
  24. B. Fernández and J. Kubby, “Initial Performance Results for High-Aspect Ratio Gold MEMS Deformable Mirrors,” Proc. SPIE 7209, 72090O (2009).
  25. A. R. Bayanna, R. E. Louis, S. Chatterjee, S. K. Mathew, and P. Venkatakrisnan, “Membrane-based deformable mirror: intrinsic aberrations and alignment issues,” Appl. Opt. 54(7), 1727–1736 (2015).
    [Crossref]
  26. J. S. Lu and G. D. J. Su, “Optical zoom lens module using MEMS deformable mirrors for portable device,” Proc. SPIE848, 84880D (2012).
  27. L. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38(1), 168–176 (1999).
    [Crossref] [PubMed]
  28. G. Vdovin, M. Loktev, and A. Simonov, “Low-cost deformable mirrors: technologies and goals,” Proc. SPIE58940B (2005).
  29. S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49(31), G37–G46 (2010).
    [Crossref]
  30. S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
    [Crossref]
  31. L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
    [Crossref]
  32. S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro. Nanolithogr. MEMS MOEMS 8(3), 031308 (2009).
    [Crossref]
  33. A. Diouf, M. Gingras, J. B. Stewart, T. G. Bifano, S. Cornelissen, and P. Bierden, “Fabrication of single crystalline MEMS DM using anodic wafer bonding,” Proc. SPIE, 68880U (2008).
  34. A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE, 580 (2004).
  35. J. C. Sinquin, J. M. Lurcon, and P. Morin, “Piezo Array Deformable Mirrors and new associated technologies: Spherical Shape and Tip/Tilt Mount,” OSA. AOThD3 (2009).
  36. M. Ealey, “High Density Deformable Mirrors to Enable Coronagraphic Planet Detection,” Proc. SPIE, 5166 (2004).
  37. M. Tabatabaian, COMSOL for Engineers (Mercury Learning & Information, 2014).
  38. R. W. Pryor, Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, 2011).
  39. W. Swantner and W. W. Chow, “Gram-Schmidt orthonormalization of Zernike polynomials for general aperture shapes,” Appl. Opt. 33(10), 1832–1837 (1994).
    [Crossref] [PubMed]
  40. G. M. Dai and V. N. Mahajan, “Zernike annular polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 24(1), 139–155 (2007).
    [Crossref] [PubMed]

2018 (1)

2015 (2)

A. R. Bayanna, R. E. Louis, S. Chatterjee, S. K. Mathew, and P. Venkatakrisnan, “Membrane-based deformable mirror: intrinsic aberrations and alignment issues,” Appl. Opt. 54(7), 1727–1736 (2015).
[Crossref]

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (3)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

M. A. Helmbrecht, M. He, and C. J. Kempf, “Development of high-order segmented MEMS deformable mirrors,” Proc. SPIE 825, 82530 (2012).

2010 (3)

2009 (2)

B. Fernández and J. Kubby, “Initial Performance Results for High-Aspect Ratio Gold MEMS Deformable Mirrors,” Proc. SPIE 7209, 72090O (2009).

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro. Nanolithogr. MEMS MOEMS 8(3), 031308 (2009).
[Crossref]

2008 (1)

G. J. Xu, A. Tsuboi, T. Ogawa, T. Ikeda, and M. Kutsuna, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

2007 (2)

M. W. Ao, P. Yang, Z. P. Yang, E. D. Li, C. H. Rao, and W. H. Jiang, “A method of aberration measurement and correction for entire beam path of ICF beam path,” Proc. SPIE 6823, 68230I (2007).
[Crossref]

G. M. Dai and V. N. Mahajan, “Zernike annular polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 24(1), 139–155 (2007).
[Crossref] [PubMed]

2006 (3)

B. P. Wallace, P. J. Hampton, C. H. Bradley, and R. Conan, “Evaluation of a MEMS deformable mirror for an adaptive optics test bench,” Opt. Express 14(22), 10132–10138 (2006).
[Crossref] [PubMed]

H. T. Eyyuboğlu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
[Crossref]

W. P. Latham, “Shaping of annular laser intensity profiles and their thermal effects for optical trepanning,” Opt. Eng. 45(1), 014301 (2006).
[Crossref]

2004 (2)

2000 (1)

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

1999 (4)

1994 (1)

1992 (1)

M. A. Ealey and J. A. Wellman, “Deformable Mirrors: Design Fundamentals, Key Performance Specifications, and Parametric Trades,” Proc. SPIE 1543, 36–52 (1992).
[Crossref]

1991 (1)

1989 (1)

L. J. Hornbeck, “Deformable mirror spatial light modulators,” Proc. SPIE 1150, 1150 (1989).

Abdeli, K.

Altay, S.

H. T. Eyyuboğlu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
[Crossref]

Ao, M. W.

M. W. Ao, P. Yang, Z. P. Yang, E. D. Li, C. H. Rao, and W. H. Jiang, “A method of aberration measurement and correction for entire beam path of ICF beam path,” Proc. SPIE 6823, 68230I (2007).
[Crossref]

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Bartsch, D. U.

Bayanna, A. R.

Baykal, Y.

H. T. Eyyuboğlu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
[Crossref]

Bierden, P.

A. Diouf, M. Gingras, J. B. Stewart, T. G. Bifano, S. Cornelissen, and P. Bierden, “Fabrication of single crystalline MEMS DM using anodic wafer bonding,” Proc. SPIE, 68880U (2008).

Bierden, P. A.

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro. Nanolithogr. MEMS MOEMS 8(3), 031308 (2009).
[Crossref]

Bifano, T. G.

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro. Nanolithogr. MEMS MOEMS 8(3), 031308 (2009).
[Crossref]

A. Diouf, M. Gingras, J. B. Stewart, T. G. Bifano, S. Cornelissen, and P. Bierden, “Fabrication of single crystalline MEMS DM using anodic wafer bonding,” Proc. SPIE, 68880U (2008).

Bradley, C. H.

Burger, L.

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

Cao, Z.

Chaloupka, J. L.

J. L. Chaloupka and D. D. Meyerhofer, “Observation of Electron Trapping in an Intense Laser Beam,” Phys. Rev. Lett. 83(22), 4538–4541 (1999).
[Crossref]

Chatterjee, S.

Chow, W. W.

Ciofini, M.

Conan, R.

Cornelissen, S.

A. Diouf, M. Gingras, J. B. Stewart, T. G. Bifano, S. Cornelissen, and P. Bierden, “Fabrication of single crystalline MEMS DM using anodic wafer bonding,” Proc. SPIE, 68880U (2008).

Cornelissen, S. A.

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro. Nanolithogr. MEMS MOEMS 8(3), 031308 (2009).
[Crossref]

Dai, G. M.

Diouf, A.

A. Diouf, M. Gingras, J. B. Stewart, T. G. Bifano, S. Cornelissen, and P. Bierden, “Fabrication of single crystalline MEMS DM using anodic wafer bonding,” Proc. SPIE, 68880U (2008).

Dong, L.

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Ealey, M.

M. Ealey, “High Density Deformable Mirrors to Enable Coronagraphic Planet Detection,” Proc. SPIE, 5166 (2004).

Ealey, M. A.

M. A. Ealey and J. A. Wellman, “Deformable Mirrors: Design Fundamentals, Key Performance Specifications, and Parametric Trades,” Proc. SPIE 1543, 36–52 (1992).
[Crossref]

Eppich, B.

Eyyuboglu, H. T.

H. T. Eyyuboğlu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
[Crossref]

Fainman, Y.

Feng, Z.

Fernández, B.

B. Fernández and J. Kubby, “Initial Performance Results for High-Aspect Ratio Gold MEMS Deformable Mirrors,” Proc. SPIE 7209, 72090O (2009).

Forbes, A.

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

Freeman, W. R.

Fuchs, J.

Gahagan, K. T.

Gingras, M.

A. Diouf, M. Gingras, J. B. Stewart, T. G. Bifano, S. Cornelissen, and P. Bierden, “Fabrication of single crystalline MEMS DM using anodic wafer bonding,” Proc. SPIE, 68880U (2008).

Gong, M.

Guesalaga, A.

Guo, Y.

Guzmán, D.

Haefner, C.

Hampton, P. J.

He, M.

M. A. Helmbrecht, M. He, and C. J. Kempf, “Development of high-order segmented MEMS deformable mirrors,” Proc. SPIE 825, 82530 (2012).

Helmbrecht, M. A.

M. A. Helmbrecht, M. He, and C. J. Kempf, “Development of high-order segmented MEMS deformable mirrors,” Proc. SPIE 825, 82530 (2012).

Hornbeck, L. J.

L. J. Hornbeck, “Deformable mirror spatial light modulators,” Proc. SPIE 1150, 1150 (1989).

Hu, L.

Huang, L.

Ikeda, T.

G. J. Xu, A. Tsuboi, T. Ogawa, T. Ikeda, and M. Kutsuna, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

Jiang, W.

Jiang, W. H.

M. W. Ao, P. Yang, Z. P. Yang, E. D. Li, C. H. Rao, and W. H. Jiang, “A method of aberration measurement and correction for entire beam path of ICF beam path,” Proc. SPIE 6823, 68230I (2007).
[Crossref]

Juez, F. J. D. C.

Kamanina, N. V.

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

Kempf, C. J.

M. A. Helmbrecht, M. He, and C. J. Kempf, “Development of high-order segmented MEMS deformable mirrors,” Proc. SPIE 825, 82530 (2012).

Kognovitsky, S. O.

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

Kozhevnikov, N. M.

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

Kubby, J.

B. Fernández and J. Kubby, “Initial Performance Results for High-Aspect Ratio Gold MEMS Deformable Mirrors,” Proc. SPIE 7209, 72090O (2009).

Kutsuna, M.

G. J. Xu, A. Tsuboi, T. Ogawa, T. Ikeda, and M. Kutsuna, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

Lam, C. V.

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro. Nanolithogr. MEMS MOEMS 8(3), 031308 (2009).
[Crossref]

Lapucci, A.

Lasheras, F. S.

Latham, W. P.

W. P. Latham, “Shaping of annular laser intensity profiles and their thermal effects for optical trepanning,” Opt. Eng. 45(1), 014301 (2006).
[Crossref]

Lei, X.

Li, D.

Li, E. D.

M. W. Ao, P. Yang, Z. P. Yang, E. D. Li, C. H. Rao, and W. H. Jiang, “A method of aberration measurement and correction for entire beam path of ICF beam path,” Proc. SPIE 6823, 68230I (2007).
[Crossref]

Li, X.

Li, Y.

Liang, X.

Litvin, I.

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

Liu, L.

Liu, Q.

Liu, W.

Liu, X.

Liu, Y.

Loktev, M.

G. Vdovin, M. Loktev, and A. Simonov, “Low-cost deformable mirrors: technologies and goals,” Proc. SPIE58940B (2005).

Louis, R. E.

Lu, J. S.

J. S. Lu and G. D. J. Su, “Optical zoom lens module using MEMS deformable mirrors for portable device,” Proc. SPIE848, 84880D (2012).

Ma, X.

Mahajan, V. N.

Mathew, S. K.

Meyerhofer, D. D.

J. L. Chaloupka and D. D. Meyerhofer, “Observation of Electron Trapping in an Intense Laser Beam,” Phys. Rev. Lett. 83(22), 4538–4541 (1999).
[Crossref]

Mu, Q.

Myers, R.

Ngcobo, S.

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

Ning, Y.

Ogawa, T.

G. J. Xu, A. Tsuboi, T. Ogawa, T. Ikeda, and M. Kutsuna, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

Pépin, H.

Rao, C. H.

M. W. Ao, P. Yang, Z. P. Yang, E. D. Li, C. H. Rao, and W. H. Jiang, “A method of aberration measurement and correction for entire beam path of ICF beam path,” Proc. SPIE 6823, 68230I (2007).
[Crossref]

Rausch, P.

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

Shao, C.

Simonov, A.

G. Vdovin, M. Loktev, and A. Simonov, “Low-cost deformable mirrors: technologies and goals,” Proc. SPIE58940B (2005).

Stewart, J. B.

A. Diouf, M. Gingras, J. B. Stewart, T. G. Bifano, S. Cornelissen, and P. Bierden, “Fabrication of single crystalline MEMS DM using anodic wafer bonding,” Proc. SPIE, 68880U (2008).

Su, G. D. J.

J. S. Lu and G. D. J. Su, “Optical zoom lens module using MEMS deformable mirrors for portable device,” Proc. SPIE848, 84880D (2012).

Sun, C.

Sun, L.

Sun, P. C.

Swantner, W.

Swartzlander, G. A.

Tang, X.

Thomas, S.

A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE, 580 (2004).

Tokovinin, A.

A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE, 580 (2004).

Tsuboi, A.

G. J. Xu, A. Tsuboi, T. Ogawa, T. Ikeda, and M. Kutsuna, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

Vasilenko, N. A.

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

Vdovin, G.

G. Vdovin, M. Loktev, and A. Simonov, “Low-cost deformable mirrors: technologies and goals,” Proc. SPIE58940B (2005).

A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE, 580 (2004).

Venkatakrisnan, P.

Verpoort, S.

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49(31), G37–G46 (2010).
[Crossref]

Wallace, B. P.

Wang, C.

Wang, J.

Wang, X.

Wattellier, B.

Weber, H.

Wellman, J. A.

M. A. Ealey and J. A. Wellman, “Deformable Mirrors: Design Fundamentals, Key Performance Specifications, and Parametric Trades,” Proc. SPIE 1543, 36–52 (1992).
[Crossref]

Wittrock, U.

Xu, B.

Xu, G. J.

G. J. Xu, A. Tsuboi, T. Ogawa, T. Ikeda, and M. Kutsuna, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

Xuan, L.

Xue, Q.

Yan, H.

Yan, P.

Yang, P.

Yang, Z. P.

M. W. Ao, P. Yang, Z. P. Yang, E. D. Li, C. H. Rao, and W. H. Jiang, “A method of aberration measurement and correction for entire beam path of ICF beam path,” Proc. SPIE 6823, 68230I (2007).
[Crossref]

Yao, K.

Zheng, Y.

Zhu, L.

Zou, J. P.

Appl. Opt. (5)

J. Laser Appl. (1)

G. J. Xu, A. Tsuboi, T. Ogawa, T. Ikeda, and M. Kutsuna, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

J. Micro. Nanolithogr. MEMS MOEMS (1)

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro. Nanolithogr. MEMS MOEMS 8(3), 031308 (2009).
[Crossref]

J. Opt. (1)

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Opt. Commun. (1)

H. T. Eyyuboğlu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
[Crossref]

Opt. Eng. (1)

W. P. Latham, “Shaping of annular laser intensity profiles and their thermal effects for optical trepanning,” Opt. Eng. 45(1), 014301 (2006).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J. L. Chaloupka and D. D. Meyerhofer, “Observation of Electron Trapping in an Intense Laser Beam,” Phys. Rev. Lett. 83(22), 4538–4541 (1999).
[Crossref]

Proc. SPIE (7)

M. W. Ao, P. Yang, Z. P. Yang, E. D. Li, C. H. Rao, and W. H. Jiang, “A method of aberration measurement and correction for entire beam path of ICF beam path,” Proc. SPIE 6823, 68230I (2007).
[Crossref]

M. A. Ealey and J. A. Wellman, “Deformable Mirrors: Design Fundamentals, Key Performance Specifications, and Parametric Trades,” Proc. SPIE 1543, 36–52 (1992).
[Crossref]

L. J. Hornbeck, “Deformable mirror spatial light modulators,” Proc. SPIE 1150, 1150 (1989).

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

M. A. Helmbrecht, M. He, and C. J. Kempf, “Development of high-order segmented MEMS deformable mirrors,” Proc. SPIE 825, 82530 (2012).

B. Fernández and J. Kubby, “Initial Performance Results for High-Aspect Ratio Gold MEMS Deformable Mirrors,” Proc. SPIE 7209, 72090O (2009).

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

Other (10)

J. S. Lu and G. D. J. Su, “Optical zoom lens module using MEMS deformable mirrors for portable device,” Proc. SPIE848, 84880D (2012).

G. Vdovin, M. Loktev, and A. Simonov, “Low-cost deformable mirrors: technologies and goals,” Proc. SPIE58940B (2005).

A. Diouf, M. Gingras, J. B. Stewart, T. G. Bifano, S. Cornelissen, and P. Bierden, “Fabrication of single crystalline MEMS DM using anodic wafer bonding,” Proc. SPIE, 68880U (2008).

A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE, 580 (2004).

J. C. Sinquin, J. M. Lurcon, and P. Morin, “Piezo Array Deformable Mirrors and new associated technologies: Spherical Shape and Tip/Tilt Mount,” OSA. AOThD3 (2009).

M. Ealey, “High Density Deformable Mirrors to Enable Coronagraphic Planet Detection,” Proc. SPIE, 5166 (2004).

M. Tabatabaian, COMSOL for Engineers (Mercury Learning & Information, 2014).

R. W. Pryor, Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, 2011).

V. Mathur, S. R. Vangala, X. F. Qian, and W. D. Goodhue, “All optically driven MEMS deformable mirrors via direct cascading with wafer bonded GaAs/GaP PIN photodetectors,” IEEE/LEOS 156–157 (2009).

S. Tamura, M. Yamakawa, Y. Takashima, and K. Ogura, “Instability of Thin-Walled Annular Beam in Dielectric-Loaded Cylindrical Waveguide,” Proc. ITC/ISHW P1–011 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Cross section of the ALB; (b) Very limited effective actuators are covered by the ALB.
Fig. 2
Fig. 2 (a) Diagram of the novel AO unit based on the TDM. (b) Cross section of the beam transformation and control system (TCS).
Fig. 3
Fig. 3 The XOY-section diagram (a) and the ρOZ-section diagram (b) of the ALB wavefront transformation from plane to inner cylindrical surface. (c) is the ray propagation process in the prism P1.
Fig. 4
Fig. 4 Simplified structure of the TDM. (a) is the 3D views; (b) and (d) are the circumferential and radial cross sections, respectively; (c) shows the partial enlarged drawing of the (b)/(d). (e) is the distribution of the actuators (in white) on the TDM.
Fig. 5
Fig. 5 (a) is unfolded view of the inner cylindrical surface of the TDM (in blue) and the inner cylindrical wavefront (in pink); (d) is the equivalent effective actuators on the ALB. (b) and (c) are the partial enlarged views of the red dash areas marked in (a) and (d), respectively.
Fig. 6
Fig. 6 (a)-(f) are the IF-ICS corresponding to the No.1-6 actuators in Fig. 5(e); (g) is the circumferential section of the IFs-ICS shown in (a)-(f); (h) and (i) are the partial enlarged views along the generatrix direction of (a) and (c), respectively.
Fig. 7
Fig. 7 (a)-(f) are the IFs-AW corresponding to the No.1-6 actuators in Fig. 6(c). The 2nd and 4th columns depict the partial enlarged views of the 1st and 3rd columns.
Fig. 8
Fig. 8 Zernike annular aberrations from Z2 to Z15
Fig. 9
Fig. 9 The compensation residues of the first-type Zernike annular aberrations.
Fig. 10
Fig. 10 The compensation residues of the second-type Zernike annular aberrations.
Fig. 11
Fig. 11 (a) is PV values of the correction residues. (b) and (c) are the normalized correction residues of the first type and the second type Zernike aberrations, respectively.
Fig. 12
Fig. 12 The influence of the angle β on (a) the angle α, (b) the radial magnification Γ r and (c) the circumferential magnification Γ c at r m = 23mm and d = 157mm.

Tables (3)

Tables Icon

Table 1 The parameters of the designed TDM prototype

Tables Icon

Table 2 Material parameters in the finite element simulation

Tables Icon

Table 3 The moderating effects of the α and the distance d

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

R D = r m +(d r m cotβ)tanα
α= θ 1 θ 2 =arcsin[ n 1 sin( π 2 β)]( π 2 β)
z A ' = r A /tanβ
d A =( R D r A )/tanα
z o = d A + z A ' = R D tanβ r A (tanβtanα) tanαtanβ
{ x A = r A cosγ, y A = r A sinγ x o = R D cosγ, y o = R D sinγ
{ x o = R D x A / x A 2 + y A 2 y o = R D y A / x A 2 + y A 2 z o = R D tanβ x A 2 + y A 2 (tanβtanα) tanαtanβ
{ r D = ( R D tanβ z o ' tanβtanα)/ (tanβtanα) x D = x o ' r D / R D y D = y o ' r D / R D
{ Γ c = C TDM / C ALB Γ r =L/Δr
{ Γ c =1+(d/ r m cotβ)tanα Γ r =cotαcotβ
L= Γ r Δr
{ r Di = R D tanβ(d+H/2 )tanαtanβ tanβtanα r Do = R D tanβ(dH/2 )tanαtanβ tanβtanα
h r =h/ Γ r
{ h ck = γ o r ck r ck = r i +(6k) h r
Δ ω ' =Δωcos(π/2 α)=Δωsin(α)
{ N r =1+L/h=1+ Γ r Δr/h1+Δrcotα/h N c =2π R D /h=2π Γ c r m /h2π( r m +dtanα)/h

Metrics