Abstract

We propose and demonstrate the versatile fabrication of optical subwavelength microcavities by using imaging holography. As a demonstration, a peculiar square optical microcavity with a periodicity of 400 nm is imaged from a micrometer-scale diffractive optical element, attributing to the interference by the refocusing of the multiple diffractive beams. By spin-coating an active conjugated polymer onto the microcavity, highly directional laser emission with a low pumping threshold of 0.5 kW/cm2 is achieved. The effect of the film thickness on the lasing performance is also investigated. This imaging holography technique can enable convenient and easy fabrication of optical microcavities with subwavelength features, hence providing significant flexibility and richness on engineering the optical response of photonic nanostructures.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing light extraction efficiency of polymer light-emitting diodes with a 12-fold photonic quasi crystal

Jian Hung Lin, Wei Lang Chang, Hung-Yi Lin, Ta-Hsin Chou, Hung-Chih Kan, and Chia Chen Hsu
Opt. Express 21(19) 22090-22097 (2013)

Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals

Debashis Chanda, Ladan E. Abolghasemi, Moez Haque, Mi Li Ng, and Peter R. Herman
Opt. Express 16(20) 15402-15414 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
    [Crossref]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [Crossref]
  3. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  4. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
    [Crossref] [PubMed]
  5. A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
    [Crossref]
  6. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B Condens. Matter Mater. Phys. 75(20), 205437 (2007).
    [Crossref]
  7. M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
    [Crossref]
  8. Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
    [Crossref]
  9. C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
    [Crossref]
  10. G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
    [Crossref]
  11. G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
    [Crossref]
  12. T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
    [Crossref] [PubMed]
  13. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
    [Crossref]
  14. M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
    [Crossref]
  15. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
    [Crossref]
  16. D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
    [Crossref]
  17. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
    [Crossref]
  18. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
    [Crossref]
  19. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
    [Crossref] [PubMed]
  20. S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, and S.-B. Kim, “Photonic quasicrystal single-cell cavity mode,” Appl. Phys. Lett. 86(3), 031101 (2005).
    [Crossref]
  21. H. Altug and J. Vucković, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819–8828 (2005).
    [Crossref] [PubMed]
  22. J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
    [Crossref]
  23. M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21(18), 20964–20973 (2013).
    [Crossref] [PubMed]
  24. Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystal made of polymer-dispersed liquid crystals using a single prism,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007).
    [Crossref]
  25. G. P. Crawford, “Holographic photonic crystals,” Opt. Eng. 43(9), 1973–1987 (2004).
    [Crossref]
  26. S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
    [Crossref]
  27. M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
    [Crossref]
  28. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  29. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
    [Crossref]
  30. W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
    [Crossref]

2015 (1)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

2014 (1)

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

2013 (3)

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21(18), 20964–20973 (2013).
[Crossref] [PubMed]

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

2011 (3)

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

2010 (3)

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[Crossref]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

2009 (1)

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

2007 (4)

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystal made of polymer-dispersed liquid crystals using a single prism,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007).
[Crossref]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B Condens. Matter Mater. Phys. 75(20), 205437 (2007).
[Crossref]

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

2006 (3)

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
[Crossref]

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[Crossref]

2005 (3)

S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, and S.-B. Kim, “Photonic quasicrystal single-cell cavity mode,” Appl. Phys. Lett. 86(3), 031101 (2005).
[Crossref]

H. Altug and J. Vucković, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819–8828 (2005).
[Crossref] [PubMed]

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[Crossref]

2004 (3)

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

G. P. Crawford, “Holographic photonic crystals,” Opt. Eng. 43(9), 1973–1987 (2004).
[Crossref]

2003 (2)

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

1999 (1)

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Altug, H.

Andrew, P.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

Arakawa, Y.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Arie, A.

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Barlow, G. F.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[Crossref]

Barnes, W. L.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

Beere, H. E.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Benisty, H.

Bradley, D. D. C.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Cao, H.

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[Crossref]

Cao, Z. L.

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Carleton, A.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[Crossref]

Chang, R. P. H.

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[Crossref]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Crawford, G. P.

Dai, H. T.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

deMello, J. C.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

Diao, Z. H.

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Do, M. T.

Dodabalapur, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Dou, F.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Edagawa, K.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Faist, J.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Gärtner, C.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

Gather, M. C.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

Gorkhali, S. P.

Guimard, D.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Haug, V.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

He, L.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Heliotis, G.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Hill, M. T.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

Hohmann, J. K.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Huang, W. B.

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Hughes, S.

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B Condens. Matter Mater. Phys. 75(20), 205437 (2007).
[Crossref]

Hwang, I.-K.

S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, and S.-B. Kim, “Photonic quasicrystal single-cell cavity mode,” Appl. Phys. Lett. 86(3), 031101 (2005).
[Crossref]

Ishida, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Iwamoto, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Jeong, K.-Y.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

Ji, W.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Joannopoulos, J. D.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Karnutsch, C.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

Kim, S.-B.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, and S.-B. Kim, “Photonic quasicrystal single-cell cavity mode,” Appl. Phys. Lett. 86(3), 031101 (2005).
[Crossref]

Kim, S.-H.

S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, and S.-B. Kim, “Photonic quasicrystal single-cell cavity mode,” Appl. Phys. Lett. 86(3), 031101 (2005).
[Crossref]

Kim, S.-K.

S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, and S.-B. Kim, “Photonic quasicrystal single-cell cavity mode,” Appl. Phys. Lett. 86(3), 031101 (2005).
[Crossref]

Krauss, T. F.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[Crossref]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Lai, N. D.

Ledoux-Rak, I.

Lee, J.-H.

S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, and S.-B. Kim, “Photonic quasicrystal single-cell cavity mode,” Appl. Phys. Lett. 86(3), 031101 (2005).
[Crossref]

Lee, Y.-H.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, and S.-B. Kim, “Photonic quasicrystal single-cell cavity mode,” Appl. Phys. Lett. 86(3), 031101 (2005).
[Crossref]

Lemmer, U.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

Li, H. P.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Li, Q.

Liu, Y. G.

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Liu, Y. J.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystal made of polymer-dispersed liquid crystals using a single prism,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Luo, D.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Ma, J.

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Manga Rao, V. S. C.

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B Condens. Matter Mater. Phys. 75(20), 205437 (2007).
[Crossref]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Mi, J.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Nguyen, T. T. N.

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Nomura, M.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Notomi, M.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

Özdemir, S. K.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Park, H.-G.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

Pflumm, C.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

Qi, J.

Renner, M.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Ritchie, D. A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Samuel, I. D. W.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Scharrer, M.

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[Crossref]

Seo, M.-K.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Shore, K. A.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[Crossref]

Shum, P.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Sun, X. W.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystal made of polymer-dispersed liquid crystals using a single prism,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Suzuki, H.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

Tahraouhi, A.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[Crossref]

Tamamura, T.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

Tandaechanurat, A.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Turnbull, G. A.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Voloch, N.

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[Crossref]

von Freymann, G.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

H. Altug and J. Vucković, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819–8828 (2005).
[Crossref] [PubMed]

Waller, E. H.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Walther, C.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Wang, J.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

Weimann, T.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

Wiersma, D. S.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Wu, X.

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[Crossref]

Xia, R.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Xuan, L.

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Yamilov, A.

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[Crossref]

Yang, H. Z.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Yang, J.-K.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

Yang, L.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Yao, L. S.

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Zhai, T.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Zhang, X.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Zhang, X. H.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Adv. Funct. Mater. (1)

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Adv. Mater. (1)

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Appl. Phys. Express (1)

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Appl. Phys. Lett. (8)

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[Crossref]

S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, and S.-B. Kim, “Photonic quasicrystal single-cell cavity mode,” Appl. Phys. Lett. 86(3), 031101 (2005).
[Crossref]

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007).
[Crossref]

J. Appl. Phys. (1)

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystal made of polymer-dispersed liquid crystals using a single prism,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007).
[Crossref]

Laser Photonics Rev. (2)

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[Crossref]

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Nat. Photonics (5)

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Nature (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Opt. Eng. (1)

G. P. Crawford, “Holographic photonic crystals,” Opt. Eng. 43(9), 1973–1987 (2004).
[Crossref]

Opt. Express (2)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B Condens. Matter Mater. Phys. 75(20), 205437 (2007).
[Crossref]

Phys. Rev. Lett. (2)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of the experimental setup of the imaging holography. The magnified inset shows the microscopic image of the DOE used in this work.
Fig. 2
Fig. 2 (a) Schematic illustration of the preparation process of the square microcavity laser; (b) Optical setup for pumping and characterizing the microcavity laser.
Fig. 3
Fig. 3 SEM images of the square optical microcavity at different magnifications.
Fig. 4
Fig. 4 Emission spectra from the square microcavity laser excited at different pump intensities.
Fig. 5
Fig. 5 Intensity dependence on the polarization angle for the lasing peak at 618.8 nm (the red circles) and 621.4 nm (the green squares).
Fig. 6
Fig. 6 (a) Emission intensity as a function of pump intensity, and the inset shows the image of the directional laser emission normal to the sample surface; (b) Laser spot half-width as a function of the propagation distance. The inset shows a captured spot image.
Fig. 7
Fig. 7 Lasing performance of samples with different active film thicknesses: (a) emission spectra, (b) lasing threshold and wavelength.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2π λ sin(θ)=± 2π n eff λ ± m ' 2π Λ
sin(θ)=(±1± m ' ) n eff
t( x 0 , y 0 )= m= m=+ n= n=+ C m C n exp( j2π f m x 0 x 0 +j2π f n y 0 y 0 )
U( x,y )=C[ exp( j2π f x x+j2π f y y )+exp( j2π f x xj2π f y y ) ]
I( x,y )= | U( x,y ) | 2 = C 0 + C 1 [ exp( j4π f x x+j4π f y y )+exp( j4π f x xj4π f y y ) ]

Metrics