Abstract

Laser-induced plasma evolution in fused silica through multipulse laser ablation was studied using pump-probe technology. Filament splitting was observed in the early stage of plasma evolution (before ~300 fs). This phenomenon can be attributed to competition between laser divergent propagation induced by a pre-pulse-induced crater and the nonlinear self-focusing effect. This effect was validated through simulation results. With the increasing pulse number, the appearance of filament peak electron density was postponed. Furthermore, a second peak in the filament and peak position separation were observed because of an optical path difference between the lasers propagating from the crater center and edge. The experimental results revealed the influence of a prepulse-induced structure on the energy distribution of subsequent pulses, which are essential for understanding the mechanism of laser–material interactions, particularly in ultrafast multiple-pulse laser ablation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses

Mingying Sun, Urs Eppelt, Simone Russ, Claudia Hartmann, Christof Siebert, Jianqiang Zhu, and Wolfgang Schulz
Opt. Express 21(7) 7858-7867 (2013)

Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica

Qingsong Wang, Lan Jiang, Jingya Sun, Changji Pan, Weina Han, Guoyan Wang, Hao Zhang, Costas P. Grigoropoulos, and Yongfeng Lu
Photon. Res. 5(5) 488-493 (2017)

Spatial evolution of multiple filaments in air induced by femtosecond laser pulses

Zuo-Qiang Hao, Jie Zhang, Xin Lu, Ting-Ting Xi, Yu-Tong Li, Xiao-Hui Yuan, Zhi-Yuan Zheng, Zhao-Hua Wang, Wei-Jun Ling, and Zhi-Yi Wei
Opt. Express 14(2) 773-778 (2006)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
    [Crossref]
  2. J. D. Steinmeyer, C. L. Gilleland, C. Pardo-Martin, M. Angel, C. B. Rohde, M. A. Scott, and M. F. Yanik, “Construction of a femtosecond laser microsurgery system,” Nat. Protoc. 5(3), 395–407 (2010).
    [Crossref] [PubMed]
  3. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
    [Crossref]
  4. S. X. Wang, H. H. Yu, and H. J. Zhang, “Band-gap modulation of two-dimensional saturable absorbers for solid-state lasers,” Photon. Res. 3(2), A10–A20 (2015).
    [Crossref]
  5. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
    [Crossref] [PubMed]
  6. J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 197–198 (2002).
    [Crossref]
  7. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
    [Crossref] [PubMed]
  8. F. Potemkin, E. Mareev, Y. Bezsudnova, V. Platonenko, B. Bravy, and V. Gordienko, “Controlled energy deposition and void-like modification inside transparent solids by two-color tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 110(16), 163903 (2017).
    [Crossref]
  9. G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structure,” Phys. Rev. B Condens. Matter Mater. Phys. 92(4), 041405 (2015).
    [Crossref]
  10. S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
    [Crossref] [PubMed]
  11. C. Liao, K. Fan, R. L. Xu, H. C. Zhang, C. G. Lu, Y. P. Cui, and J. Y. Zhang, “Laser-annealing-made amplified spontaneous emission of ‘giant’ CdSe/CdS core/shell nanocrystals transferred from bulk-like shell to quantum-confined core,” Photon. Res. 3(5), 200–205 (2015).
    [Crossref]
  12. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
    [Crossref] [PubMed]
  13. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  14. L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
    [Crossref] [PubMed]
  15. J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14(3), 1329–1338 (2006).
    [Crossref] [PubMed]
  16. F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
    [Crossref] [PubMed]
  17. Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, H. Zhang, C. P. Grigoropoulos, and Y. F. Lu, “Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica,” Photon. Res. 5(5), 488–493 (2017).
    [Crossref]
  18. Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
    [Crossref]
  19. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
    [Crossref]
  20. L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
    [Crossref] [PubMed]
  21. M. Sun, U. Eppelt, S. Russ, C. Hartmann, C. Siebert, J. Zhu, and W. Schulz, “Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses,” Opt. Express 21(7), 7858–7867 (2013).
    [Crossref] [PubMed]
  22. Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
    [Crossref]
  23. C. J. Pan, L. Jiang, Q. S. Wang, J. Y. Sun, G. Y. Wang, and Y. F. Lu, “Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique,” Appl. Phys. Lett. 112(19), 191101 (2018).
    [Crossref]
  24. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30(3), 320–322 (2005).
    [Crossref] [PubMed]
  25. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
    [Crossref]
  26. O. Kosareva, J.-F. Daigle, N. Panov, T. Wang, S. Hosseini, S. Yuan, G. Roy, V. Makarov, and S. Leang Chin, “Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing?” Opt. Lett. 36(7), 1035–1037 (2011).
    [Crossref] [PubMed]
  27. X. Mao, S. S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
    [Crossref]
  28. C. J. Pan, L. Jiang, J. Y. Sun, Q. S. Wang, F. F. Wang, and Y. F. Lu, “The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses,” Jpn. J. Appl. Phys. 58(3), 030901 (2019).
    [Crossref]
  29. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
    [Crossref] [PubMed]

2019 (1)

C. J. Pan, L. Jiang, J. Y. Sun, Q. S. Wang, F. F. Wang, and Y. F. Lu, “The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses,” Jpn. J. Appl. Phys. 58(3), 030901 (2019).
[Crossref]

2018 (4)

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref] [PubMed]

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

C. J. Pan, L. Jiang, Q. S. Wang, J. Y. Sun, G. Y. Wang, and Y. F. Lu, “Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique,” Appl. Phys. Lett. 112(19), 191101 (2018).
[Crossref]

2017 (3)

F. Potemkin, E. Mareev, Y. Bezsudnova, V. Platonenko, B. Bravy, and V. Gordienko, “Controlled energy deposition and void-like modification inside transparent solids by two-color tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 110(16), 163903 (2017).
[Crossref]

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, H. Zhang, C. P. Grigoropoulos, and Y. F. Lu, “Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica,” Photon. Res. 5(5), 488–493 (2017).
[Crossref]

2016 (2)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

2015 (5)

2013 (1)

2011 (1)

2010 (1)

J. D. Steinmeyer, C. L. Gilleland, C. Pardo-Martin, M. Angel, C. B. Rohde, M. A. Scott, and M. F. Yanik, “Construction of a femtosecond laser microsurgery system,” Nat. Protoc. 5(3), 395–407 (2010).
[Crossref] [PubMed]

2009 (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

2008 (1)

W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

2006 (2)

J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14(3), 1329–1338 (2006).
[Crossref] [PubMed]

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

2005 (2)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30(3), 320–322 (2005).
[Crossref] [PubMed]

2003 (1)

X. Mao, S. S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
[Crossref]

2002 (2)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 197–198 (2002).
[Crossref]

2000 (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

Akçaalan, Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Angel, M.

J. D. Steinmeyer, C. L. Gilleland, C. Pardo-Martin, M. Angel, C. B. Rohde, M. A. Scott, and M. F. Yanik, “Construction of a femtosecond laser microsurgery system,” Nat. Protoc. 5(3), 395–407 (2010).
[Crossref] [PubMed]

Arnold, W. H.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 197–198 (2002).
[Crossref]

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Aslam, U.

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref] [PubMed]

Bauer, F.

Bauer, T.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 197–198 (2002).
[Crossref]

Bezsudnova, Y.

F. Potemkin, E. Mareev, Y. Bezsudnova, V. Platonenko, B. Bravy, and V. Gordienko, “Controlled energy deposition and void-like modification inside transparent solids by two-color tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 110(16), 163903 (2017).
[Crossref]

Boerigter, C.

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref] [PubMed]

Boneberg, J.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Bravy, B.

F. Potemkin, E. Mareev, Y. Bezsudnova, V. Platonenko, B. Bravy, and V. Gordienko, “Controlled energy deposition and void-like modification inside transparent solids by two-color tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 110(16), 163903 (2017).
[Crossref]

Buividas, R.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Cao, X. W.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Çetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Chen, Q. D.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Cui, T. H.

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref] [PubMed]

Cui, Y. P.

Daigle, J.-F.

Elahi, P.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Eppelt, U.

Fallnich, C.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 197–198 (2002).
[Crossref]

Fan, K.

Fotakis, C.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structure,” Phys. Rev. B Condens. Matter Mater. Phys. 92(4), 041405 (2015).
[Crossref]

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Fukasawa, Y.

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

Gilleland, C. L.

J. D. Steinmeyer, C. L. Gilleland, C. Pardo-Martin, M. Angel, C. B. Rohde, M. A. Scott, and M. F. Yanik, “Construction of a femtosecond laser microsurgery system,” Nat. Protoc. 5(3), 395–407 (2010).
[Crossref] [PubMed]

Gong, Q.

Gordienko, V.

F. Potemkin, E. Mareev, Y. Bezsudnova, V. Platonenko, B. Bravy, and V. Gordienko, “Controlled energy deposition and void-like modification inside transparent solids by two-color tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 110(16), 163903 (2017).
[Crossref]

Grigoropoulos, C. P.

Han, W. N.

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, H. Zhang, C. P. Grigoropoulos, and Y. F. Lu, “Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica,” Photon. Res. 5(5), 488–493 (2017).
[Crossref]

Hartmann, C.

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Holzwarth, R.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Hosseini, S.

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Ilday, F. Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Ito, Y.

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

Jiang, H.

Jiang, L.

C. J. Pan, L. Jiang, J. Y. Sun, Q. S. Wang, F. F. Wang, and Y. F. Lu, “The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses,” Jpn. J. Appl. Phys. 58(3), 030901 (2019).
[Crossref]

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref] [PubMed]

C. J. Pan, L. Jiang, Q. S. Wang, J. Y. Sun, G. Y. Wang, and Y. F. Lu, “Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique,” Appl. Phys. Lett. 112(19), 191101 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, H. Zhang, C. P. Grigoropoulos, and Y. F. Lu, “Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica,” Photon. Res. 5(5), 488–493 (2017).
[Crossref]

Juodkazis, S.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Kalaycioglu, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Kasenbacher, A.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 197–198 (2002).
[Crossref]

Kazansky, P. G.

W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Kiedrowski, T.

Kizaki, T.

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

Kosareva, O.

Kotaidis, V.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Leang Chin, S.

Li, B.

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref] [PubMed]

Li, M.

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Liao, C.

Linic, S.

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref] [PubMed]

Liu, Y.

Lorenc, M.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Lu, C. G.

Lu, Y. F.

C. J. Pan, L. Jiang, J. Y. Sun, Q. S. Wang, F. F. Wang, and Y. F. Lu, “The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses,” Jpn. J. Appl. Phys. 58(3), 030901 (2019).
[Crossref]

C. J. Pan, L. Jiang, Q. S. Wang, J. Y. Sun, G. Y. Wang, and Y. F. Lu, “Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique,” Appl. Phys. Lett. 112(19), 191101 (2018).
[Crossref]

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref] [PubMed]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, H. Zhang, C. P. Grigoropoulos, and Y. F. Lu, “Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica,” Photon. Res. 5(5), 488–493 (2017).
[Crossref]

Makarov, V.

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Mao, S. S.

X. Mao, S. S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
[Crossref]

Mao, X.

X. Mao, S. S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
[Crossref]

Mareev, E.

F. Potemkin, E. Mareev, Y. Bezsudnova, V. Platonenko, B. Bravy, and V. Gordienko, “Controlled energy deposition and void-like modification inside transparent solids by two-color tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 110(16), 163903 (2017).
[Crossref]

Mazur, E.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

Méndez, C.

Michalowski, A.

Mitsuishi, M.

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Morabito, M.

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref] [PubMed]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Nagato, K.

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Nolte, S.

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Otsu, A.

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Pan, C. J.

C. J. Pan, L. Jiang, J. Y. Sun, Q. S. Wang, F. F. Wang, and Y. F. Lu, “The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses,” Jpn. J. Appl. Phys. 58(3), 030901 (2019).
[Crossref]

C. J. Pan, L. Jiang, Q. S. Wang, J. Y. Sun, G. Y. Wang, and Y. F. Lu, “Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique,” Appl. Phys. Lett. 112(19), 191101 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, H. Zhang, C. P. Grigoropoulos, and Y. F. Lu, “Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica,” Photon. Res. 5(5), 488–493 (2017).
[Crossref]

Panov, N.

Pardo-Martin, C.

J. D. Steinmeyer, C. L. Gilleland, C. Pardo-Martin, M. Angel, C. B. Rohde, M. A. Scott, and M. F. Yanik, “Construction of a femtosecond laser microsurgery system,” Nat. Protoc. 5(3), 395–407 (2010).
[Crossref] [PubMed]

Platonenko, V.

F. Potemkin, E. Mareev, Y. Bezsudnova, V. Platonenko, B. Bravy, and V. Gordienko, “Controlled energy deposition and void-like modification inside transparent solids by two-color tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 110(16), 163903 (2017).
[Crossref]

Plech, A.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Potemkin, F.

F. Potemkin, E. Mareev, Y. Bezsudnova, V. Platonenko, B. Bravy, and V. Gordienko, “Controlled energy deposition and void-like modification inside transparent solids by two-color tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 110(16), 163903 (2017).
[Crossref]

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Rohde, C. B.

J. D. Steinmeyer, C. L. Gilleland, C. Pardo-Martin, M. Angel, C. B. Rohde, M. A. Scott, and M. F. Yanik, “Construction of a femtosecond laser microsurgery system,” Nat. Protoc. 5(3), 395–407 (2010).
[Crossref] [PubMed]

Roso, L.

Roy, G.

Russ, S.

Russo, R. E.

X. Mao, S. S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
[Crossref]

Schulz, W.

Scott, M. A.

J. D. Steinmeyer, C. L. Gilleland, C. Pardo-Martin, M. Angel, C. B. Rohde, M. A. Scott, and M. F. Yanik, “Construction of a femtosecond laser microsurgery system,” Nat. Protoc. 5(3), 395–407 (2010).
[Crossref] [PubMed]

Serbin, J.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 197–198 (2002).
[Crossref]

Shinomoto, R.

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

Siebert, C.

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

Steinmeyer, J. D.

J. D. Steinmeyer, C. L. Gilleland, C. Pardo-Martin, M. Angel, C. B. Rohde, M. A. Scott, and M. F. Yanik, “Construction of a femtosecond laser microsurgery system,” Nat. Protoc. 5(3), 395–407 (2010).
[Crossref] [PubMed]

Stratakis, E.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structure,” Phys. Rev. B Condens. Matter Mater. Phys. 92(4), 041405 (2015).
[Crossref]

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Sugita, N.

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

Sun, H. B.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Sun, J. Y.

C. J. Pan, L. Jiang, J. Y. Sun, Q. S. Wang, F. F. Wang, and Y. F. Lu, “The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses,” Jpn. J. Appl. Phys. 58(3), 030901 (2019).
[Crossref]

C. J. Pan, L. Jiang, Q. S. Wang, J. Y. Sun, G. Y. Wang, and Y. F. Lu, “Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique,” Appl. Phys. Lett. 112(19), 191101 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, H. Zhang, C. P. Grigoropoulos, and Y. F. Lu, “Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica,” Photon. Res. 5(5), 488–493 (2017).
[Crossref]

Sun, M.

Sun, Q.

Svirko, Y. P.

W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Tatsukoshi, K.

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

Tsibidis, G. D.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structure,” Phys. Rev. B Condens. Matter Mater. Phys. 92(4), 041405 (2015).
[Crossref]

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Vázquez de Aldana, J. R.

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

Wang, A. D.

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref] [PubMed]

Wang, F. F.

C. J. Pan, L. Jiang, J. Y. Sun, Q. S. Wang, F. F. Wang, and Y. F. Lu, “The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses,” Jpn. J. Appl. Phys. 58(3), 030901 (2019).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Wang, G. Y.

C. J. Pan, L. Jiang, Q. S. Wang, J. Y. Sun, G. Y. Wang, and Y. F. Lu, “Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique,” Appl. Phys. Lett. 112(19), 191101 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, H. Zhang, C. P. Grigoropoulos, and Y. F. Lu, “Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica,” Photon. Res. 5(5), 488–493 (2017).
[Crossref]

Wang, L.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Wang, Q. S.

C. J. Pan, L. Jiang, J. Y. Sun, Q. S. Wang, F. F. Wang, and Y. F. Lu, “The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses,” Jpn. J. Appl. Phys. 58(3), 030901 (2019).
[Crossref]

C. J. Pan, L. Jiang, Q. S. Wang, J. Y. Sun, G. Y. Wang, and Y. F. Lu, “Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique,” Appl. Phys. Lett. 112(19), 191101 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, H. Zhang, C. P. Grigoropoulos, and Y. F. Lu, “Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica,” Photon. Res. 5(5), 488–493 (2017).
[Crossref]

Wang, S. X.

Wang, T.

Wang, X.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Wu, Z.

Xu, R. L.

Yang, H.

Yang, W. J.

W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Yanik, M. F.

J. D. Steinmeyer, C. L. Gilleland, C. Pardo-Martin, M. Angel, C. B. Rohde, M. A. Scott, and M. F. Yanik, “Construction of a femtosecond laser microsurgery system,” Nat. Protoc. 5(3), 395–407 (2010).
[Crossref] [PubMed]

Yavas, S.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Yu, H. H.

Yuan, S.

Zhang, H.

Zhang, H. C.

Zhang, H. J.

Zhang, J. Y.

Zhang, K. H.

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Zhu, J.

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys. Lett. (3)

C. J. Pan, L. Jiang, Q. S. Wang, J. Y. Sun, G. Y. Wang, and Y. F. Lu, “Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique,” Appl. Phys. Lett. 112(19), 191101 (2018).
[Crossref]

F. Potemkin, E. Mareev, Y. Bezsudnova, V. Platonenko, B. Bravy, and V. Gordienko, “Controlled energy deposition and void-like modification inside transparent solids by two-color tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 110(16), 163903 (2017).
[Crossref]

X. Mao, S. S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, and M. Mitsuishi, “Mechanisms of damage formation in glass in the process of femtosecond laser drilling,” Appl. Phys., A Mater. Sci. Process. 124(2), 181 (2018).
[Crossref]

Appl. Surf. Sci. (1)

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond lasers as novel tool in dental surgery,” Appl. Surf. Sci. 197, 197–198 (2002).
[Crossref]

J. Biophotonics (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

C. J. Pan, L. Jiang, J. Y. Sun, Q. S. Wang, F. F. Wang, and Y. F. Lu, “The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses,” Jpn. J. Appl. Phys. 58(3), 030901 (2019).
[Crossref]

Light Sci. Appl. (3)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

L. Jiang, A. D. Wang, B. Li, T. H. Cui, and Y. F. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light Sci. Appl. 7(2), 17134 (2018).
[Crossref] [PubMed]

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Nat. Phys. (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Nat. Protoc. (1)

J. D. Steinmeyer, C. L. Gilleland, C. Pardo-Martin, M. Angel, C. B. Rohde, M. A. Scott, and M. F. Yanik, “Construction of a femtosecond laser microsurgery system,” Nat. Protoc. 5(3), 395–407 (2010).
[Crossref] [PubMed]

Nature (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Photon. Res. (3)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structure,” Phys. Rev. B Condens. Matter Mater. Phys. 92(4), 041405 (2015).
[Crossref]

Phys. Rev. Lett. (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Research (1)

Q. S. Wang, L. Jiang, J. Y. Sun, C. J. Pan, W. N. Han, G. Y. Wang, F. F. Wang, K. H. Zhang, M. Li, and Y. F. Lu, “Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation,” Research 2018, 1 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the pump-probe imaging setup. M: mirror; BS: beam splitter; and ND: neutral density filter.
Fig. 2
Fig. 2 (a) Time-resolved transmission of femtosecond laser-induced plasma evolution caused by the first pulse (N = 1) and second pulse (N = 2) in fused silica with a fluence of 8.8 J/cm2 at 200 fs; (b) FDTD simulation of the laser field considering the Kerr effect in fused silica with the first and second pulses; the laser propagates in the direction of the x-axis, and the sample surface is x = 0; (c) AFM morphology of the crater caused by the first pulse, where “E” and “C” are the edge and the center area of the crater; and (d) and (e) spatial distribution map of electron density extracted from (a).
Fig. 3
Fig. 3 (a) Cross-section morphology generated by the first pulse with fluences of 5.3, 8.8, 17.7, and 35.4 J/cm2, and the slopes of the crater tangent line were k1 = −68.3, k2 = −76.2, k3 = −143.2, and k4 = −149.1; and (b) time-resolved transmission of femtosecond laser-induced plasma generated by the second pulse in fused silica with four fluences at 200 fs.
Fig. 4
Fig. 4 Time-resolved transmission of femtosecond laser-induced plasma in fused silica with the (a) first pulse (N = 1), (b) second pulse (N = 2), (c) fifth pulse (N = 5), and (d and e) peak electron density evolution of center filament at delay times from 300 to 1100 fs with a fluence of 17.7 J/cm2.
Fig. 5
Fig. 5 (a) Time-resolved transmission of femtosecond laser-induced plasma in fused silica with 10–300 pulses and (b) peak electron density evolution at 900 fs with a fluence of 17.7 J/cm2.

Metrics