Abstract

Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that can allow tailoring nanoelectronics and nanophotonics devices. However, there is an issue about the formation mechanism of LIPSS, and the current research mainly focuses on the formation process of the individual structures, such as the low spatial frequency LIPSS (LSFL), sub-wavelength structures, and laser-induced periodic annular surface structures (LIPASS). A whole process formation picture of the series of these periodic structures is still missing. In this study, a pump-probing setup is applied to ensure the real-time and in situ monitoring of surface modification under different pulse numbers. LSFL firstly appears on the surface after two laser shots, and then, laser-induced orthogonal periodic structures (LIOPS) become the dominant morphology after five laser shots, which result from the local field enhancement of the surface ripples. As the laser shots increase, the LSFL split leads to the formation of nanopillars, and the formation of the nanopillars under the surface LSFL (after ten laser shots) is due to the transition between the LSFL and HSFL with an orientation parallel to the laser polarization. A dip surrounded by annular periodic fringes after 50 laser shots is observed, which is due to the interference of the incident laser field and the reflected laser field on the crater surface. Finally, a direct writing technique for fabrication of nano-gratings is also reported.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium

Chandra S.R. Nathala, Ali Ajami, Andrey A. Ionin, Sergey I. Kudryashov, Sergey V Makarov, Thomas Ganz, Andreas Assion, and Wolfgang Husinsky
Opt. Express 23(5) 5915-5929 (2015)

Laser induced periodic surface structure formation in germanium by strong field mid IR laser solid interaction at oblique incidence

Drake R. Austin, Kyle R. P. Kafka, Simeon Trendafilov, Gennady Shvets, Hui Li, Allen Y. Yi, Urszula B. Szafruga, Zhou Wang, Yu Hang Lai, Cosmin I. Blaga, Louis F. DiMauro, and Enam A. Chowdhury
Opt. Express 23(15) 19522-19534 (2015)

Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation

S. H. Messaddeq, R. Vallée, P. Soucy, M. Bernier, M. El-Amraoui, and Y. Messaddeq
Opt. Express 20(28) 29882-29889 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
    [Crossref] [PubMed]
  2. D. Z. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
    [Crossref]
  3. A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
    [Crossref]
  4. S. Gräf, C. Kunz, and F. A. Müller, “Formation and properties of laser-induced periodic surface structures on different glasses,” Materials (Basel) 10(8), 933 (2017).
    [Crossref] [PubMed]
  5. J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
    [Crossref]
  6. R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
    [Crossref] [PubMed]
  7. M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
    [Crossref] [PubMed]
  8. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J Opt a-Pure Appl Op 11, 1 (2009).
  9. M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
    [Crossref]
  10. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  11. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B Condens. Matter 26(10), 5366–5381 (1982).
    [Crossref]
  12. F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
    [Crossref]
  13. P. Rudolph and W. Kautek, “Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation,” Thin Solid Films 453-454, 537–541 (2004).
    [Crossref]
  14. Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
    [Crossref]
  15. S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
    [Crossref]
  16. X. Jia, T. Q. Jia, N. N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
    [Crossref]
  17. R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
    [Crossref]
  18. D. F. Qi, D. Paeng, J. Yeo, E. Kim, L. T. Wang, S. Y. Chen, and C. P. Grigoropoulos, “Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation,” Appl. Phys. Lett. 108(21), 211602 (2016).
    [Crossref]
  19. C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater. Sci. 93, 1–44 (2018).
    [Crossref]
  20. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  21. P. Toupin, L. Brilland, G. Renversez, and J. Troles, “All-solid all-chalcogenide microstructured optical fiber,” Opt. Express 21(12), 14643–14648 (2013).
    [Crossref] [PubMed]
  22. Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
    [Crossref]
  23. M. Asobe, K. i. Suzuki, T. Kanamori, and K. i. Kubodera, “Nonlinear refractive index measurement in chalcogenide‐glass fibers by self‐phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
    [Crossref]
  24. J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
    [Crossref]
  25. M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
    [Crossref]
  26. H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).
  27. X. S. Shi, L. Jiang, X. Li, K. H. Zhang, D. Yu, Y. W. Yu, and Y. F. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
    [Crossref]
  28. X. Ji, L. Jiang, X. W. Li, W. N. Han, Y. Liu, A. D. Wang, and Y. F. Lu, “Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation,” Appl. Surf. Sci. 326, 216–221 (2015).
    [Crossref]
  29. G. Miyaji, W. Kobayashi, and K. Miyazaki, “Femtosecond-laser-induced nanostructure formation and surface modification of diamond-like carbon film,” Electrochim. Acta 53(1), 167–170 (2007).
    [Crossref]
  30. J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
    [Crossref]
  31. J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic color enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
    [Crossref]
  32. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  33. L. Wang, B.-B. Xu, X.-W. Cao, Q.-K. Li, W.-J. Tian, Q.-D. Chen, S. Juodkazis, and H.-B. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637 (2017).
    [Crossref]
  34. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
    [Crossref]
  35. J. Song, W. J. Tao, M. Gong, J. Y. Ye, Y. Dai, G. H. Ma, and J. R. Qiu, “The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism,” Appl Phys A-Mater. 122, 1 (2016).
  36. J. Long, P. Fan, M. Zhong, H. Zhang, Y. Xie, and C. Lin, “Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures,” Appl. Surf. Sci. 311, 461–467 (2014).
  37. M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
    [Crossref]

2019 (1)

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

2018 (3)

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic color enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater. Sci. 93, 1–44 (2018).
[Crossref]

M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
[Crossref]

2017 (2)

S. Gräf, C. Kunz, and F. A. Müller, “Formation and properties of laser-induced periodic surface structures on different glasses,” Materials (Basel) 10(8), 933 (2017).
[Crossref] [PubMed]

L. Wang, B.-B. Xu, X.-W. Cao, Q.-K. Li, W.-J. Tian, Q.-D. Chen, S. Juodkazis, and H.-B. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637 (2017).
[Crossref]

2016 (6)

J. Song, W. J. Tao, M. Gong, J. Y. Ye, Y. Dai, G. H. Ma, and J. R. Qiu, “The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism,” Appl Phys A-Mater. 122, 1 (2016).

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

D. Z. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

D. F. Qi, D. Paeng, J. Yeo, E. Kim, L. T. Wang, S. Y. Chen, and C. P. Grigoropoulos, “Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation,” Appl. Phys. Lett. 108(21), 211602 (2016).
[Crossref]

2015 (1)

X. Ji, L. Jiang, X. W. Li, W. N. Han, Y. Liu, A. D. Wang, and Y. F. Lu, “Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation,” Appl. Surf. Sci. 326, 216–221 (2015).
[Crossref]

2014 (3)

X. S. Shi, L. Jiang, X. Li, K. H. Zhang, D. Yu, Y. W. Yu, and Y. F. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

J. Long, P. Fan, M. Zhong, H. Zhang, Y. Xie, and C. Lin, “Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures,” Appl. Surf. Sci. 311, 461–467 (2014).

X. Jia, T. Q. Jia, N. N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

2013 (5)

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

P. Toupin, L. Brilland, G. Renversez, and J. Troles, “All-solid all-chalcogenide microstructured optical fiber,” Opt. Express 21(12), 14643–14648 (2013).
[Crossref] [PubMed]

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

2012 (2)

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

2011 (3)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
[Crossref]

2009 (2)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J Opt a-Pure Appl Op 11, 1 (2009).

2007 (2)

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

G. Miyaji, W. Kobayashi, and K. Miyazaki, “Femtosecond-laser-induced nanostructure formation and surface modification of diamond-like carbon film,” Electrochim. Acta 53(1), 167–170 (2007).
[Crossref]

2004 (1)

P. Rudolph and W. Kautek, “Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation,” Thin Solid Films 453-454, 537–541 (2004).
[Crossref]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2002 (1)

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

2000 (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

1999 (1)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

1992 (1)

M. Asobe, K. i. Suzuki, T. Kanamori, and K. i. Kubodera, “Nonlinear refractive index measurement in chalcogenide‐glass fibers by self‐phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

1982 (1)

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B Condens. Matter 26(10), 5366–5381 (1982).
[Crossref]

Adams, D. P.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Agarwal, A.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Asobe, M.

M. Asobe, K. i. Suzuki, T. Kanamori, and K. i. Kubodera, “Nonlinear refractive index measurement in chalcogenide‐glass fibers by self‐phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

Baxter, J.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic color enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Becla, P.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Beresna, M.

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Berini, P.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic color enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Bonse, J.

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
[Crossref]

Brelet, Y.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[Crossref]

Brilland, L.

Buividas, R.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Calà Lesina, A.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic color enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Cao, X.-W.

Chen, Q.-D.

Chen, S. Y.

D. F. Qi, D. Paeng, J. Yeo, E. Kim, L. T. Wang, S. Y. Chen, and C. P. Grigoropoulos, “Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation,” Appl. Phys. Lett. 108(21), 211602 (2016).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Costache, F.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

Dai, S.

C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater. Sci. 93, 1–44 (2018).
[Crossref]

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Dai, S. X.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
[Crossref]

Dai, Y.

J. Song, W. J. Tao, M. Gong, J. Y. Ye, Y. Dai, G. H. Ma, and J. R. Qiu, “The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism,” Appl Phys A-Mater. 122, 1 (2016).

Datsyuk, V.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J Opt a-Pure Appl Op 11, 1 (2009).

Deng, Y. K.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Fan, P.

J. Long, P. Fan, M. Zhong, H. Zhang, Y. Xie, and C. Lin, “Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures,” Appl. Surf. Sci. 311, 461–467 (2014).

Fauchet, P. M.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B Condens. Matter 26(10), 5366–5381 (1982).
[Crossref]

Feng, D. H.

X. Jia, T. Q. Jia, N. N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Forestier, B.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[Crossref]

Fuentes-Edfuf, Y.

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Gallmann, L.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Garcia-Lechuga, M.

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Gecevicius, M.

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Gong, M.

J. Song, W. J. Tao, M. Gong, J. Y. Ye, Y. Dai, G. H. Ma, and J. R. Qiu, “The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism,” Appl Phys A-Mater. 122, 1 (2016).

Gräf, S.

S. Gräf, C. Kunz, and F. A. Müller, “Formation and properties of laser-induced periodic surface structures on different glasses,” Materials (Basel) 10(8), 933 (2017).
[Crossref] [PubMed]

Grigoropoulos, C. P.

D. F. Qi, D. Paeng, J. Yeo, E. Kim, L. T. Wang, S. Y. Chen, and C. P. Grigoropoulos, “Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation,” Appl. Phys. Lett. 108(21), 211602 (2016).
[Crossref]

Guay, J.-M.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic color enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Guo, C. L.

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Guosheng, Z.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B Condens. Matter 26(10), 5366–5381 (1982).
[Crossref]

Han, W. N.

X. Ji, L. Jiang, X. W. Li, W. N. Han, Y. Liu, A. D. Wang, and Y. F. Lu, “Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation,” Appl. Surf. Sci. 326, 216–221 (2015).
[Crossref]

Han, Z.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

He, Z. B.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[Crossref]

Henyk, M.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hohm, S.

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Höhm, S.

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

Houard, A.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[Crossref]

Hu, J.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Huang, X.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Ji, X.

X. Ji, L. Jiang, X. W. Li, W. N. Han, Y. Liu, A. D. Wang, and Y. F. Lu, “Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation,” Appl. Surf. Sci. 326, 216–221 (2015).
[Crossref]

Jia, T. Q.

X. Jia, T. Q. Jia, N. N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Jia, X.

X. Jia, T. Q. Jia, N. N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Jiang, H. B.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[Crossref]

Jiang, L.

X. Ji, L. Jiang, X. W. Li, W. N. Han, Y. Liu, A. D. Wang, and Y. F. Lu, “Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation,” Appl. Surf. Sci. 326, 216–221 (2015).
[Crossref]

X. S. Shi, L. Jiang, X. Li, K. H. Zhang, D. Yu, Y. W. Yu, and Y. F. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

Juodkazis, S.

L. Wang, B.-B. Xu, X.-W. Cao, Q.-K. Li, W.-J. Tian, Q.-D. Chen, S. Juodkazis, and H.-B. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637 (2017).
[Crossref]

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Kanamori, T.

M. Asobe, K. i. Suzuki, T. Kanamori, and K. i. Kubodera, “Nonlinear refractive index measurement in chalcogenide‐glass fibers by self‐phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

Kautek, W.

P. Rudolph and W. Kautek, “Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation,” Thin Solid Films 453-454, 537–541 (2004).
[Crossref]

Kavokin, A. V.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Kazansky, P. G.

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Keller, U.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Killaire, G.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic color enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Kim, E.

D. F. Qi, D. Paeng, J. Yeo, E. Kim, L. T. Wang, S. Y. Chen, and C. P. Grigoropoulos, “Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation,” Appl. Phys. Lett. 108(21), 211602 (2016).
[Crossref]

Kimerling, L. C.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Kita, D.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Kobayashi, W.

G. Miyaji, W. Kobayashi, and K. Miyazaki, “Femtosecond-laser-induced nanostructure formation and surface modification of diamond-like carbon film,” Electrochim. Acta 53(1), 167–170 (2007).
[Crossref]

Kruger, J.

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
[Crossref]

Kubodera, K. i.

M. Asobe, K. i. Suzuki, T. Kanamori, and K. i. Kubodera, “Nonlinear refractive index measurement in chalcogenide‐glass fibers by self‐phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

Kudrius, T.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Kunz, C.

S. Gräf, C. Kunz, and F. A. Müller, “Formation and properties of laser-induced periodic surface structures on different glasses,” Materials (Basel) 10(8), 933 (2017).
[Crossref] [PubMed]

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J Opt a-Pure Appl Op 11, 1 (2009).

Li, G.

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Li, G. T.

M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
[Crossref]

Li, J.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Li, Q.-K.

Li, X.

X. S. Shi, L. Jiang, X. Li, K. H. Zhang, D. Yu, Y. W. Yu, and Y. F. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

Li, X. W.

X. Ji, L. Jiang, X. W. Li, W. N. Han, Y. Liu, A. D. Wang, and Y. F. Lu, “Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation,” Appl. Surf. Sci. 326, 216–221 (2015).
[Crossref]

Lin, C.

C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater. Sci. 93, 1–44 (2018).
[Crossref]

J. Long, P. Fan, M. Zhong, H. Zhang, Y. Xie, and C. Lin, “Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures,” Appl. Surf. Sci. 311, 461–467 (2014).

Liu, S.

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Liu, Y.

X. Ji, L. Jiang, X. W. Li, W. N. Han, Y. Liu, A. D. Wang, and Y. F. Lu, “Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation,” Appl. Surf. Sci. 326, 216–221 (2015).
[Crossref]

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[Crossref]

Long, J.

J. Long, P. Fan, M. Zhong, H. Zhang, Y. Xie, and C. Lin, “Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures,” Appl. Surf. Sci. 311, 461–467 (2014).

Lu, Y. F.

X. Ji, L. Jiang, X. W. Li, W. N. Han, Y. Liu, A. D. Wang, and Y. F. Lu, “Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation,” Appl. Surf. Sci. 326, 216–221 (2015).
[Crossref]

X. S. Shi, L. Jiang, X. Li, K. H. Zhang, D. Yu, Y. W. Yu, and Y. F. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Ma, G. H.

J. Song, W. J. Tao, M. Gong, J. Y. Ye, Y. Dai, G. H. Ma, and J. R. Qiu, “The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism,” Appl Phys A-Mater. 122, 1 (2016).

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Matuschek, N.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Miyaji, G.

G. Miyaji, W. Kobayashi, and K. Miyazaki, “Femtosecond-laser-induced nanostructure formation and surface modification of diamond-like carbon film,” Electrochim. Acta 53(1), 167–170 (2007).
[Crossref]

Miyazaki, K.

G. Miyaji, W. Kobayashi, and K. Miyazaki, “Femtosecond-laser-induced nanostructure formation and surface modification of diamond-like carbon film,” Electrochim. Acta 53(1), 167–170 (2007).
[Crossref]

Monmeyran, C.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Müller, F. A.

S. Gräf, C. Kunz, and F. A. Müller, “Formation and properties of laser-induced periodic surface structures on different glasses,” Materials (Basel) 10(8), 933 (2017).
[Crossref] [PubMed]

Murphy, R. D.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Osellame, R.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J Opt a-Pure Appl Op 11, 1 (2009).

Paeng, D.

D. F. Qi, D. Paeng, J. Yeo, E. Kim, L. T. Wang, S. Y. Chen, and C. P. Grigoropoulos, “Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation,” Appl. Phys. Lett. 108(21), 211602 (2016).
[Crossref]

Peng, N. N.

X. Jia, T. Q. Jia, N. N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Puerto, D.

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Qi, D. F.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

D. F. Qi, D. Paeng, J. Yeo, E. Kim, L. T. Wang, S. Y. Chen, and C. P. Grigoropoulos, “Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation,” Appl. Phys. Lett. 108(21), 211602 (2016).
[Crossref]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Qiu, J. R.

D. Z. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

J. Song, W. J. Tao, M. Gong, J. Y. Ye, Y. Dai, G. H. Ma, and J. R. Qiu, “The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism,” Appl Phys A-Mater. 122, 1 (2016).

Ramunno, L.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic color enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Reif, J.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

Renversez, G.

Richardson, K.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Rosa, L.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Rosenfeld, A.

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
[Crossref]

Rudolph, P.

P. Rudolph and W. Kautek, “Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation,” Thin Solid Films 453-454, 537–541 (2004).
[Crossref]

Rüssel, C.

C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater. Sci. 93, 1–44 (2018).
[Crossref]

Sharafudeen, K. N.

D. Z. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Shen, X.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

Shi, X. S.

X. S. Shi, L. Jiang, X. Li, K. H. Zhang, D. Yu, Y. W. Yu, and Y. F. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Siegel, J.

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Siegman, A. E.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B Condens. Matter 26(10), 5366–5381 (1982).
[Crossref]

Singh, V.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Slekys, G.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Sliupas, R.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

Solis, J.

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Song, B. A.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

Song, J.

J. Song, W. J. Tao, M. Gong, J. Y. Ye, Y. Dai, G. H. Ma, and J. R. Qiu, “The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism,” Appl Phys A-Mater. 122, 1 (2016).

Steinmeyer, G.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Su, P.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Sun, H.-B.

Sun, Y.

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Sun, Z. R.

X. Jia, T. Q. Jia, N. N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Sutter, D. H.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Suzuki, K. i.

M. Asobe, K. i. Suzuki, T. Kanamori, and K. i. Kubodera, “Nonlinear refractive index measurement in chalcogenide‐glass fibers by self‐phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

Tan, D. T. H.

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

Tan, D. Z.

D. Z. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Tang, J.

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Tao, W. J.

J. Song, W. J. Tao, M. Gong, J. Y. Ye, Y. Dai, G. H. Ma, and J. R. Qiu, “The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism,” Appl Phys A-Mater. 122, 1 (2016).

Taylor, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Tian, W.-J.

Torralva, B.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Toupin, P.

Troles, J.

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Wang, A. D.

X. Ji, L. Jiang, X. W. Li, W. N. Han, Y. Liu, A. D. Wang, and Y. F. Lu, “Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation,” Appl. Surf. Sci. 326, 216–221 (2015).
[Crossref]

Wang, H. Y.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

Wang, L.

Wang, L. T.

D. F. Qi, D. Paeng, J. Yeo, E. Kim, L. T. Wang, S. Y. Chen, and C. P. Grigoropoulos, “Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation,” Appl. Phys. Lett. 108(21), 211602 (2016).
[Crossref]

Wang, R. P.

M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
[Crossref]

Wang, X.

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Weck, A.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic color enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Wei, W. Y.

M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
[Crossref]

Xie, M.

M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
[Crossref]

Xie, Y.

J. Long, P. Fan, M. Zhong, H. Zhang, Y. Xie, and C. Lin, “Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures,” Appl. Surf. Sci. 311, 461–467 (2014).

Xu, B.-B.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, T. F.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

Xu, Y.

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Xu, Y. S.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Yalisove, S. M.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Yang, C. F.

M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
[Crossref]

Yang, Z.

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Ye, J. Y.

J. Song, W. J. Tao, M. Gong, J. Y. Ye, Y. Dai, G. H. Ma, and J. R. Qiu, “The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism,” Appl Phys A-Mater. 122, 1 (2016).

Yeo, J.

D. F. Qi, D. Paeng, J. Yeo, E. Kim, L. T. Wang, S. Y. Chen, and C. P. Grigoropoulos, “Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation,” Appl. Phys. Lett. 108(21), 211602 (2016).
[Crossref]

You, C. Y.

M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
[Crossref]

Yu, D.

X. S. Shi, L. Jiang, X. Li, K. H. Zhang, D. Yu, Y. W. Yu, and Y. F. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

Yu, L. W.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[Crossref]

Yu, X. H.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

Yu, Y. W.

X. S. Shi, L. Jiang, X. Li, K. H. Zhang, D. Yu, Y. W. Yu, and Y. F. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

Yue, Y. Z.

D. Z. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Zhang, H.

J. Long, P. Fan, M. Zhong, H. Zhang, Y. Xie, and C. Lin, “Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures,” Appl. Surf. Sci. 311, 461–467 (2014).

Zhang, K. H.

X. S. Shi, L. Jiang, X. Li, K. H. Zhang, D. Yu, Y. W. Yu, and Y. F. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

Zhang, P.

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Zhang, P. P.

M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
[Crossref]

Zhang, P. Q.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

Zhang, S. A.

X. Jia, T. Q. Jia, N. N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Zhang, X.

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

Zhang, X. W.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

Zhang, Y. W.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

Zhang, Z. F.

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zhong, M.

J. Long, P. Fan, M. Zhong, H. Zhang, Y. Xie, and C. Lin, “Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures,” Appl. Surf. Sci. 311, 461–467 (2014).

Zhu, Q.

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

ACS Photonics (1)

M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Adv. Opt. Mater. (1)

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic color enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Appl Phys A-Mater. (1)

J. Song, W. J. Tao, M. Gong, J. Y. Ye, Y. Dai, G. H. Ma, and J. R. Qiu, “The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism,” Appl Phys A-Mater. 122, 1 (2016).

Appl. Phys. Lett. (7)

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, and A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. C. Kimerling, J. Hu, K. Richardson, D. T. H. Tan, and A. Agarwal, “On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors,” Appl. Phys. Lett. 109(7), 071111 (2016).
[Crossref]

M. Asobe, K. i. Suzuki, T. Kanamori, and K. i. Kubodera, “Nonlinear refractive index measurement in chalcogenide‐glass fibers by self‐phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

D. F. Qi, D. Paeng, J. Yeo, E. Kim, L. T. Wang, S. Y. Chen, and C. P. Grigoropoulos, “Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation,” Appl. Phys. Lett. 108(21), 211602 (2016).
[Crossref]

Appl. Surf. Sci. (4)

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

J. Long, P. Fan, M. Zhong, H. Zhang, Y. Xie, and C. Lin, “Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures,” Appl. Surf. Sci. 311, 461–467 (2014).

J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
[Crossref]

X. Ji, L. Jiang, X. W. Li, W. N. Han, Y. Liu, A. D. Wang, and Y. F. Lu, “Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation,” Appl. Surf. Sci. 326, 216–221 (2015).
[Crossref]

Electrochim. Acta (1)

G. Miyaji, W. Kobayashi, and K. Miyazaki, “Femtosecond-laser-induced nanostructure formation and surface modification of diamond-like carbon film,” Electrochim. Acta 53(1), 167–170 (2007).
[Crossref]

J Opt a-Pure Appl Op (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J Opt a-Pure Appl Op 11, 1 (2009).

J. Appl. Phys. (3)

X. Jia, T. Q. Jia, N. N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

X. S. Shi, L. Jiang, X. Li, K. H. Zhang, D. Yu, Y. W. Yu, and Y. F. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

J. Laser Appl. (1)

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

J. Tang, S. Liu, Q. Zhu, Y. Sun, G. Li, Z. Yang, X. Zhang, X. Wang, P. Zhang, S. Dai, and Y. Xu, “As40S59Se1/As2S3 step index fiber for 1–5 μm supercontinuum generation,” J. Non-Cryst. Solids 450, 61–65 (2016).
[Crossref]

J. Phys. Chem. C (1)

M. Xie, S. X. Dai, C. Y. You, P. P. Zhang, C. F. Yang, W. Y. Wei, G. T. Li, and R. P. Wang, “Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge-Sb-Se chalcogenide glasses,” J. Phys. Chem. C 122(3), 1681–1687 (2018).
[Crossref]

Materials (Basel) (2)

H. Y. Wang, D. F. Qi, X. H. Yu, Y. W. Zhang, Z. F. Zhang, T. F. Xu, X. W. Zhang, S. X. Dai, X. Shen, B. A. Song, P. Q. Zhang, and Y. S. Xu, “In-situ and ex-situ characterization of femtosecond laser-induced ablation on As2S3 chalcogenide glasses and advanced grating structures fabrication,” Materials (Basel) 12, 72 (2019).

S. Gräf, C. Kunz, and F. A. Müller, “Formation and properties of laser-induced periodic surface structures on different glasses,” Materials (Basel) 10(8), 933 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Phys. Rev. B Condens. Matter (1)

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B Condens. Matter 26(10), 5366–5381 (1982).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Prog. Mater. Sci. (2)

C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater. Sci. 93, 1–44 (2018).
[Crossref]

D. Z. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Science (1)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Thin Solid Films (1)

P. Rudolph and W. Kautek, “Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation,” Thin Solid Films 453-454, 537–541 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the reflection pump-probing setup for the formation of laser-induced periodic surface structures (LIPSS) on As2S3, pump laser: femtosecond laser with the central wavelength of 800 nm, probing laser: CW laser with the central wavelength of 473nm. Experience results are presented by SEM and the upper right corner of each SEM figures are the schematic diagrams of each typical structure. (b) Schematic of sub-wavelength grating structures on As2S3 under the laser velocity speed of 4 mm/s.
Fig. 2
Fig. 2 Scanning electron microscopy (a-e), the magnified SEM images (f-j) depict the characteristic stages of the morphological evolution of As2S3 after different irradiation pulse shots: (a) 2, (b) 5, (c) 10, (d) 20, (e) 50 under fluence of 6.20mJ/cm2, respectively. The red arrow indicates the pump laser polarization direction.
Fig. 3
Fig. 3 Periods of LIPSS versus pulse accumulation at different laser fluences (5.16 mJ/cm2, 6.20 mJ/cm2 and 8.26 mJ/cm2). Representative SEM images are the different typical LIPSS structures (LSFL in red wireframe, HSFL in green wireframe, LIOPS in blue wireframe and Nanopillars in black wireframe). The red arrow indicates the pump laser polarization direction. All scale bars are 2µm.
Fig. 4
Fig. 4 Surface characteristics of LIPSS at 6.20 mJ/cm2 laser fluence irradiation with different laser shots. (a-d) SEM images, (e-h) AFM images and (i-l) depth and period of the LIPSS at 3, 5, 10 and 20 laser shots, respectively.
Fig. 5
Fig. 5 Reflection pump-probing signals of fs laser-induced periodic surface structures with different laser shots and the corresponding morphologies of surface periodic structures at different evolution stages. The scattered plots represent the evolution of the reflection signal with different laser shots, and the red curve represents the fs laser pulse with a pulse width of 150 fs.
Fig. 6
Fig. 6 (a) Schematic structure of the initially formed grooves on the As2S3. The calculated electric field distributions of the schematic structures (l = 4μm, w = 0.3μm, d = 0.4μm and h = 0.16μm) illuminated by horizontal laser polarization directions. (b) The calculated electric field distributions of the schematic structures.
Fig. 7
Fig. 7 (a) Reflection signal comparison of single-point laser induced LIPSS (black line) and the laser line-scanning induced morphology (red line), and the SEM images in the figure are the corresponding SEM images under certain laser scanning velocity. (b-d) The SEM, 3D-AFM and the corresponding cross-sectional profile of the continuous long ripples with the laser scanning velocity of 5 mm/s. The irradiation of the laser fluence is 5.16 mJ/cm2.

Metrics