Abstract

We propose a multi-pass approach to reduce cone-beam artifacts in a circular orbit cone-beam computed tomography (CT) system. Employing a large 2D detector array reduces the scan time but produces cone-beam artifacts in the Feldkamp, Davis, and Kress (FDK) reconstruction because of insufficient sampling for exact reconstruction. While the two-pass algorithm proposed by Hsieh is effective at reducing cone-beam artifacts, the correction performance is degraded when the bone density is moderate and the cone angle is large. In this work, we treated the cone-beam artifacts generated from bone and soft tissue as if they were from less dense bone objects and corrected them iteratively. The proposed method was validated using a numerical Defrise phantom, XCAT phantom data, and experimental data from a pediatric phantom followed by image quality assessment for FDK, the two-pass algorithm, the proposed method, and the total variation minimization-based iterative reconstruction (TV-IR). The results show that the proposed method was superior to the two-pass algorithm in cone-beam artifact reduction and effectively reduced the overcorrection by the two-pass algorithm near bone regions. It can also be observed that the proposed method produced better correction performance with fewer iterations than the TV-IR algorithm. A qualitative evaluation with mean-squared error, structural similarity, and structural dissimilarity demonstrated the effectiveness of the proposed method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Raw data normalization for a multi source inverse geometry CT system

Jongduk Baek, Bruno De Man, Daniel Harrison, and Norbert J. Pelc
Opt. Express 23(6) 7514-7526 (2015)

Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula

Zikuan Chen, Vince D. Calhoun, and Shengjiang Chang
Appl. Opt. 47(32) 6033-6039 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. Baba, Y. Konno, K. Ueda, and S. Ikeda, “Comparison of flat-panel detector and image-intensifier detector for cone-beam ct,” Comput. Med. Imaging Graph. 26, 153–158 (2002).
    [Crossref] [PubMed]
  2. J. Siewerdsen, D. Moseley, S. Burch, S. Bisland, A. Bogaards, B. Wilson, and D. Jaffray, “Volume ct with a flat-panel detector on a mobile, isocentric c-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241–254 (2005).
    [Crossref] [PubMed]
  3. R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
    [Crossref] [PubMed]
  4. W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol. 51, R29 (2006).
    [Crossref]
  5. D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53, 1337–1349 (2002).
    [Crossref] [PubMed]
  6. M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
    [Crossref] [PubMed]
  7. T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
    [Crossref] [PubMed]
  8. S. Patel, A. Dawood, T. P. Ford, and E. Whaites, “The potential applications of cone beam computed tomography in the management of endodontic problems,” Int. Endod. J. 40, 818–830 (2007).
    [Crossref] [PubMed]
  9. D. A. Tyndall and S. Rathore, “Cone-beam ct diagnostic applications: caries, periodontal bone assessment, and endodontic applications,” Dental Clin. North Am. 52, 825–841 (2008).
    [Crossref]
  10. B. Hassan, P. van der Stelt, and G. Sanderink, “Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position,” Eur. J. Orthod. 31, 129–134 (2008).
    [Crossref] [PubMed]
  11. A. C. Kak, M. Slaney, and G. Wang, “Principles of computerized tomographic imaging,” Med. Phys. 29, 107 (2002).
    [Crossref]
  12. L. A. Feldkamp, L. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1, 612–619 (1984).
    [Crossref]
  13. M. Grass, T. Köhler, and R. Proksa, “3d cone-beam ct reconstruction for circular trajectories,” Phys. Med. Biol. 45, 329 (2000).
    [Crossref]
  14. Z. Chen, V. D. Calhoun, and S. Chang, “Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula,” Appl. Opt. 47, 6033–6039 (2008).
    [Crossref] [PubMed]
  15. C. Maaß, F. Dennerlein, F. Noo, and M. Kachelrieß, “Comparing short scan ct reconstruction algorithms regarding cone-beam artifact performance,” in IEEE Nuclear Science Symposuim & Medical Imaging Conference, (IEEE, 2010), pp. 2188–2193.
    [Crossref]
  16. J. Hsieh, “Two-pass algorithm for cone-beam reconstruction,” in Medical Imaging 2000: Image Processing, vol. 3979 (International Society for Optics and Photonics, 2000), pp. 533–541.
    [Crossref]
  17. J. Hsieh, “A practical cone beam artifact correction algorithm,” in 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No. 00CH37149), vol. 2 (IEEE, 2000), pp. 15–71.
  18. P. Forthmann, M. Grass, and R. Proksa, “Adaptive two-pass cone-beam artifact correction using a fov-preserving two-source geometry: A simulation study,” Med. Phys. 36, 4440–4450 (2009).
    [Crossref] [PubMed]
  19. J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
    [Crossref] [PubMed]
  20. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).
    [Crossref]
  21. A. Loza, L. Mihaylova, N. Canagarajah, and D. Bull, “Structural similarity-based object tracking in video sequences,” in 2006 9th International Conference on Information Fusion, (IEEE, 2006), pp. 1–6.
  22. K. K. V. Toh, H. Ibrahim, and M. N. Mahyuddin, “Salt-and-pepper noise detection and reduction using fuzzy switching median filter,” IEEE Trans. Cons. Electron. 54, 1956–1961 (2008).
    [Crossref]
  23. W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. Tsui, “Realistic ct simulation using the 4d xcat phantom,” Med. Phys. 35, 3800–3808 (2008).
    [Crossref] [PubMed]
  24. H. Gao, “Fast parallel algorithms for the x-ray transform and its adjoint,” Med. Phys. 39, 7110–7120 (2012).
    [Crossref] [PubMed]
  25. K. Yang, A. L. Kwan, S.-Y. Huang, N. J. Packard, and J. M. Boone, “Noise power properties of a cone-beam ct system for breast cancer detection,” Med. Phys. 35, 5317–5327 (2008).
    [Crossref]
  26. E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777 (2008).
    [Crossref]

2012 (2)

J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
[Crossref] [PubMed]

H. Gao, “Fast parallel algorithms for the x-ray transform and its adjoint,” Med. Phys. 39, 7110–7120 (2012).
[Crossref] [PubMed]

2009 (1)

P. Forthmann, M. Grass, and R. Proksa, “Adaptive two-pass cone-beam artifact correction using a fov-preserving two-source geometry: A simulation study,” Med. Phys. 36, 4440–4450 (2009).
[Crossref] [PubMed]

2008 (8)

Z. Chen, V. D. Calhoun, and S. Chang, “Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula,” Appl. Opt. 47, 6033–6039 (2008).
[Crossref] [PubMed]

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

D. A. Tyndall and S. Rathore, “Cone-beam ct diagnostic applications: caries, periodontal bone assessment, and endodontic applications,” Dental Clin. North Am. 52, 825–841 (2008).
[Crossref]

B. Hassan, P. van der Stelt, and G. Sanderink, “Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position,” Eur. J. Orthod. 31, 129–134 (2008).
[Crossref] [PubMed]

K. Yang, A. L. Kwan, S.-Y. Huang, N. J. Packard, and J. M. Boone, “Noise power properties of a cone-beam ct system for breast cancer detection,” Med. Phys. 35, 5317–5327 (2008).
[Crossref]

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777 (2008).
[Crossref]

K. K. V. Toh, H. Ibrahim, and M. N. Mahyuddin, “Salt-and-pepper noise detection and reduction using fuzzy switching median filter,” IEEE Trans. Cons. Electron. 54, 1956–1961 (2008).
[Crossref]

W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. Tsui, “Realistic ct simulation using the 4d xcat phantom,” Med. Phys. 35, 3800–3808 (2008).
[Crossref] [PubMed]

2007 (1)

S. Patel, A. Dawood, T. P. Ford, and E. Whaites, “The potential applications of cone beam computed tomography in the management of endodontic problems,” Int. Endod. J. 40, 818–830 (2007).
[Crossref] [PubMed]

2006 (1)

W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol. 51, R29 (2006).
[Crossref]

2005 (2)

J. Siewerdsen, D. Moseley, S. Burch, S. Bisland, A. Bogaards, B. Wilson, and D. Jaffray, “Volume ct with a flat-panel detector on a mobile, isocentric c-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241–254 (2005).
[Crossref] [PubMed]

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

2004 (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).
[Crossref]

2002 (4)

T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
[Crossref] [PubMed]

R. Baba, Y. Konno, K. Ueda, and S. Ikeda, “Comparison of flat-panel detector and image-intensifier detector for cone-beam ct,” Comput. Med. Imaging Graph. 26, 153–158 (2002).
[Crossref] [PubMed]

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53, 1337–1349 (2002).
[Crossref] [PubMed]

A. C. Kak, M. Slaney, and G. Wang, “Principles of computerized tomographic imaging,” Med. Phys. 29, 107 (2002).
[Crossref]

2000 (1)

M. Grass, T. Köhler, and R. Proksa, “3d cone-beam ct reconstruction for circular trajectories,” Phys. Med. Biol. 45, 329 (2000).
[Crossref]

1984 (1)

Baba, R.

R. Baba, Y. Konno, K. Ueda, and S. Ikeda, “Comparison of flat-panel detector and image-intensifier detector for cone-beam ct,” Comput. Med. Imaging Graph. 26, 153–158 (2002).
[Crossref] [PubMed]

Bartling, S. H.

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

Beck, T. J.

W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. Tsui, “Realistic ct simulation using the 4d xcat phantom,” Med. Phys. 35, 3800–3808 (2008).
[Crossref] [PubMed]

Becker, C.

T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
[Crossref] [PubMed]

Bisland, S.

J. Siewerdsen, D. Moseley, S. Burch, S. Bisland, A. Bogaards, B. Wilson, and D. Jaffray, “Volume ct with a flat-panel detector on a mobile, isocentric c-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241–254 (2005).
[Crossref] [PubMed]

Bogaards, A.

J. Siewerdsen, D. Moseley, S. Burch, S. Bisland, A. Bogaards, B. Wilson, and D. Jaffray, “Volume ct with a flat-panel detector on a mobile, isocentric c-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241–254 (2005).
[Crossref] [PubMed]

Boone, J. M.

K. Yang, A. L. Kwan, S.-Y. Huang, N. J. Packard, and J. M. Boone, “Noise power properties of a cone-beam ct system for breast cancer detection,” Med. Phys. 35, 5317–5327 (2008).
[Crossref]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).
[Crossref]

Brady, T. J.

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

Bull, D.

A. Loza, L. Mihaylova, N. Canagarajah, and D. Bull, “Structural similarity-based object tracking in video sequences,” in 2006 9th International Conference on Information Fusion, (IEEE, 2006), pp. 1–6.

Burch, S.

J. Siewerdsen, D. Moseley, S. Burch, S. Bisland, A. Bogaards, B. Wilson, and D. Jaffray, “Volume ct with a flat-panel detector on a mobile, isocentric c-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241–254 (2005).
[Crossref] [PubMed]

Calhoun, V. D.

Canagarajah, N.

A. Loza, L. Mihaylova, N. Canagarajah, and D. Bull, “Structural similarity-based object tracking in video sequences,” in 2006 9th International Conference on Information Fusion, (IEEE, 2006), pp. 1–6.

Chang, S.

Chen, P. Y.

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

Chen, Z.

Cheung, A. C.

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

Davis, L.

Dawood, A.

S. Patel, A. Dawood, T. P. Ford, and E. Whaites, “The potential applications of cone beam computed tomography in the management of endodontic problems,” Int. Endod. J. 40, 818–830 (2007).
[Crossref] [PubMed]

Dennerlein, F.

C. Maaß, F. Dennerlein, F. Noo, and M. Kachelrieß, “Comparing short scan ct reconstruction algorithms regarding cone-beam artifact performance,” in IEEE Nuclear Science Symposuim & Medical Imaging Conference, (IEEE, 2010), pp. 2188–2193.
[Crossref]

Feldkamp, L. A.

Flohr, T.

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
[Crossref] [PubMed]

Ford, T. P.

S. Patel, A. Dawood, T. P. Ford, and E. Whaites, “The potential applications of cone beam computed tomography in the management of endodontic problems,” Int. Endod. J. 40, 818–830 (2007).
[Crossref] [PubMed]

Forthmann, P.

P. Forthmann, M. Grass, and R. Proksa, “Adaptive two-pass cone-beam artifact correction using a fov-preserving two-source geometry: A simulation study,” Med. Phys. 36, 4440–4450 (2009).
[Crossref] [PubMed]

Frey, E. C.

W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. Tsui, “Realistic ct simulation using the 4d xcat phantom,” Med. Phys. 35, 3800–3808 (2008).
[Crossref] [PubMed]

Gao, H.

H. Gao, “Fast parallel algorithms for the x-ray transform and its adjoint,” Med. Phys. 39, 7110–7120 (2012).
[Crossref] [PubMed]

Grasruck, M.

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

Grass, M.

P. Forthmann, M. Grass, and R. Proksa, “Adaptive two-pass cone-beam artifact correction using a fov-preserving two-source geometry: A simulation study,” Med. Phys. 36, 4440–4450 (2009).
[Crossref] [PubMed]

M. Grass, T. Köhler, and R. Proksa, “3d cone-beam ct reconstruction for circular trajectories,” Phys. Med. Biol. 45, 329 (2000).
[Crossref]

Gupta, R.

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

Hassan, B.

B. Hassan, P. van der Stelt, and G. Sanderink, “Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position,” Eur. J. Orthod. 31, 129–134 (2008).
[Crossref] [PubMed]

Hsieh, J.

J. Hsieh, “A practical cone beam artifact correction algorithm,” in 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No. 00CH37149), vol. 2 (IEEE, 2000), pp. 15–71.

J. Hsieh, “Two-pass algorithm for cone-beam reconstruction,” in Medical Imaging 2000: Image Processing, vol. 3979 (International Society for Optics and Photonics, 2000), pp. 533–541.
[Crossref]

Huang, S.-Y.

K. Yang, A. L. Kwan, S.-Y. Huang, N. J. Packard, and J. M. Boone, “Noise power properties of a cone-beam ct system for breast cancer detection,” Med. Phys. 35, 5317–5327 (2008).
[Crossref]

Hugo, G.

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

Ibrahim, H.

K. K. V. Toh, H. Ibrahim, and M. N. Mahyuddin, “Salt-and-pepper noise detection and reduction using fuzzy switching median filter,” IEEE Trans. Cons. Electron. 54, 1956–1961 (2008).
[Crossref]

Ikeda, S.

R. Baba, Y. Konno, K. Ueda, and S. Ikeda, “Comparison of flat-panel detector and image-intensifier detector for cone-beam ct,” Comput. Med. Imaging Graph. 26, 153–158 (2002).
[Crossref] [PubMed]

Jaffray, D.

J. Siewerdsen, D. Moseley, S. Burch, S. Bisland, A. Bogaards, B. Wilson, and D. Jaffray, “Volume ct with a flat-panel detector on a mobile, isocentric c-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241–254 (2005).
[Crossref] [PubMed]

Jaffray, D. A.

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53, 1337–1349 (2002).
[Crossref] [PubMed]

Kachelrieß, M.

C. Maaß, F. Dennerlein, F. Noo, and M. Kachelrieß, “Comparing short scan ct reconstruction algorithms regarding cone-beam artifact performance,” in IEEE Nuclear Science Symposuim & Medical Imaging Conference, (IEEE, 2010), pp. 2188–2193.
[Crossref]

Kak, A. C.

A. C. Kak, M. Slaney, and G. Wang, “Principles of computerized tomographic imaging,” Med. Phys. 29, 107 (2002).
[Crossref]

Kalender, W. A.

W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol. 51, R29 (2006).
[Crossref]

Kim, H. K.

J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
[Crossref] [PubMed]

Kim, J. S.

J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
[Crossref] [PubMed]

Kim, L. H.

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

Köhler, T.

M. Grass, T. Köhler, and R. Proksa, “3d cone-beam ct reconstruction for circular trajectories,” Phys. Med. Biol. 45, 329 (2000).
[Crossref]

Konno, Y.

R. Baba, Y. Konno, K. Ueda, and S. Ikeda, “Comparison of flat-panel detector and image-intensifier detector for cone-beam ct,” Comput. Med. Imaging Graph. 26, 153–158 (2002).
[Crossref] [PubMed]

Kopp, A.

T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
[Crossref] [PubMed]

Kress, J. W.

Kwan, A. L.

K. Yang, A. L. Kwan, S.-Y. Huang, N. J. Packard, and J. M. Boone, “Noise power properties of a cone-beam ct system for breast cancer detection,” Med. Phys. 35, 5317–5327 (2008).
[Crossref]

Leidecker, C.

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

Létourneau, D.

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

Lisauskas, J.

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

Liu, Z.

J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
[Crossref] [PubMed]

Lockman, D.

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

Loza, A.

A. Loza, L. Mihaylova, N. Canagarajah, and D. Bull, “Structural similarity-based object tracking in video sequences,” in 2006 9th International Conference on Information Fusion, (IEEE, 2006), pp. 1–6.

Maaß, C.

C. Maaß, F. Dennerlein, F. Noo, and M. Kachelrieß, “Comparing short scan ct reconstruction algorithms regarding cone-beam artifact performance,” in IEEE Nuclear Science Symposuim & Medical Imaging Conference, (IEEE, 2010), pp. 2188–2193.
[Crossref]

Mahesh, M.

W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. Tsui, “Realistic ct simulation using the 4d xcat phantom,” Med. Phys. 35, 3800–3808 (2008).
[Crossref] [PubMed]

Mahyuddin, M. N.

K. K. V. Toh, H. Ibrahim, and M. N. Mahyuddin, “Salt-and-pepper noise detection and reduction using fuzzy switching median filter,” IEEE Trans. Cons. Electron. 54, 1956–1961 (2008).
[Crossref]

Martinez, A.

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

Martinez, A. A.

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53, 1337–1349 (2002).
[Crossref] [PubMed]

Mihaylova, L.

A. Loza, L. Mihaylova, N. Canagarajah, and D. Bull, “Structural similarity-based object tracking in video sequences,” in 2006 9th International Conference on Information Fusion, (IEEE, 2006), pp. 1–6.

Moseley, D.

J. Siewerdsen, D. Moseley, S. Burch, S. Bisland, A. Bogaards, B. Wilson, and D. Jaffray, “Volume ct with a flat-panel detector on a mobile, isocentric c-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241–254 (2005).
[Crossref] [PubMed]

Noo, F.

C. Maaß, F. Dennerlein, F. Noo, and M. Kachelrieß, “Comparing short scan ct reconstruction algorithms regarding cone-beam artifact performance,” in IEEE Nuclear Science Symposuim & Medical Imaging Conference, (IEEE, 2010), pp. 2188–2193.
[Crossref]

Ohnesorge, B.

T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
[Crossref] [PubMed]

Oldham, M.

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

Packard, N. J.

K. Yang, A. L. Kwan, S.-Y. Huang, N. J. Packard, and J. M. Boone, “Noise power properties of a cone-beam ct system for breast cancer detection,” Med. Phys. 35, 5317–5327 (2008).
[Crossref]

Pan, X.

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777 (2008).
[Crossref]

Park, J. C.

J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
[Crossref] [PubMed]

Park, S. H.

J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
[Crossref] [PubMed]

Patel, S.

S. Patel, A. Dawood, T. P. Ford, and E. Whaites, “The potential applications of cone beam computed tomography in the management of endodontic problems,” Int. Endod. J. 40, 818–830 (2007).
[Crossref] [PubMed]

Prokop, M.

T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
[Crossref] [PubMed]

Proksa, R.

P. Forthmann, M. Grass, and R. Proksa, “Adaptive two-pass cone-beam artifact correction using a fov-preserving two-source geometry: A simulation study,” Med. Phys. 36, 4440–4450 (2009).
[Crossref] [PubMed]

M. Grass, T. Köhler, and R. Proksa, “3d cone-beam ct reconstruction for circular trajectories,” Phys. Med. Biol. 45, 329 (2000).
[Crossref]

Rathore, S.

D. A. Tyndall and S. Rathore, “Cone-beam ct diagnostic applications: caries, periodontal bone assessment, and endodontic applications,” Dental Clin. North Am. 52, 825–841 (2008).
[Crossref]

Sanderink, G.

B. Hassan, P. van der Stelt, and G. Sanderink, “Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position,” Eur. J. Orthod. 31, 129–134 (2008).
[Crossref] [PubMed]

Schaller, S.

T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
[Crossref] [PubMed]

Schmidt, B.

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

Schoepf, U.

T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
[Crossref] [PubMed]

Segars, W. P.

W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. Tsui, “Realistic ct simulation using the 4d xcat phantom,” Med. Phys. 35, 3800–3808 (2008).
[Crossref] [PubMed]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).
[Crossref]

Sidky, E. Y.

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777 (2008).
[Crossref]

Siewerdsen, J.

J. Siewerdsen, D. Moseley, S. Burch, S. Bisland, A. Bogaards, B. Wilson, and D. Jaffray, “Volume ct with a flat-panel detector on a mobile, isocentric c-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241–254 (2005).
[Crossref] [PubMed]

Siewerdsen, J. H.

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53, 1337–1349 (2002).
[Crossref] [PubMed]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).
[Crossref]

Slaney, M.

A. C. Kak, M. Slaney, and G. Wang, “Principles of computerized tomographic imaging,” Med. Phys. 29, 107 (2002).
[Crossref]

Song, B.

J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
[Crossref] [PubMed]

Song, W. Y.

J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
[Crossref] [PubMed]

Suh, T. S.

J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
[Crossref] [PubMed]

Toh, K. K. V.

K. K. V. Toh, H. Ibrahim, and M. N. Mahyuddin, “Salt-and-pepper noise detection and reduction using fuzzy switching median filter,” IEEE Trans. Cons. Electron. 54, 1956–1961 (2008).
[Crossref]

Tsui, B. M.

W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. Tsui, “Realistic ct simulation using the 4d xcat phantom,” Med. Phys. 35, 3800–3808 (2008).
[Crossref] [PubMed]

Tyndall, D. A.

D. A. Tyndall and S. Rathore, “Cone-beam ct diagnostic applications: caries, periodontal bone assessment, and endodontic applications,” Dental Clin. North Am. 52, 825–841 (2008).
[Crossref]

Ueda, K.

R. Baba, Y. Konno, K. Ueda, and S. Ikeda, “Comparison of flat-panel detector and image-intensifier detector for cone-beam ct,” Comput. Med. Imaging Graph. 26, 153–158 (2002).
[Crossref] [PubMed]

van der Stelt, P.

B. Hassan, P. van der Stelt, and G. Sanderink, “Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position,” Eur. J. Orthod. 31, 129–134 (2008).
[Crossref] [PubMed]

Wang, G.

A. C. Kak, M. Slaney, and G. Wang, “Principles of computerized tomographic imaging,” Med. Phys. 29, 107 (2002).
[Crossref]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).
[Crossref]

Watt, L.

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

Whaites, E.

S. Patel, A. Dawood, T. P. Ford, and E. Whaites, “The potential applications of cone beam computed tomography in the management of endodontic problems,” Int. Endod. J. 40, 818–830 (2007).
[Crossref] [PubMed]

White, R.

T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
[Crossref] [PubMed]

Wilson, B.

J. Siewerdsen, D. Moseley, S. Burch, S. Bisland, A. Bogaards, B. Wilson, and D. Jaffray, “Volume ct with a flat-panel detector on a mobile, isocentric c-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241–254 (2005).
[Crossref] [PubMed]

Wong, J. W.

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53, 1337–1349 (2002).
[Crossref] [PubMed]

Yan, D.

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

Yang, K.

K. Yang, A. L. Kwan, S.-Y. Huang, N. J. Packard, and J. M. Boone, “Noise power properties of a cone-beam ct system for breast cancer detection,” Med. Phys. 35, 5317–5327 (2008).
[Crossref]

Appl. Opt. (1)

Comput. Med. Imaging Graph. (1)

R. Baba, Y. Konno, K. Ueda, and S. Ikeda, “Comparison of flat-panel detector and image-intensifier detector for cone-beam ct,” Comput. Med. Imaging Graph. 26, 153–158 (2002).
[Crossref] [PubMed]

Dental Clin. North Am. (1)

D. A. Tyndall and S. Rathore, “Cone-beam ct diagnostic applications: caries, periodontal bone assessment, and endodontic applications,” Dental Clin. North Am. 52, 825–841 (2008).
[Crossref]

Eur. J. Orthod. (1)

B. Hassan, P. van der Stelt, and G. Sanderink, “Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position,” Eur. J. Orthod. 31, 129–134 (2008).
[Crossref] [PubMed]

Eur. Radiol. (1)

T. Flohr, M. Prokop, C. Becker, U. Schoepf, A. Kopp, R. White, S. Schaller, and B. Ohnesorge, “A retrospectively ecg-gated multislice spiral ct scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage,” Eur. Radiol. 12, 1497–1503 (2002).
[Crossref] [PubMed]

IEEE Trans. Cons. Electron. (1)

K. K. V. Toh, H. Ibrahim, and M. N. Mahyuddin, “Salt-and-pepper noise detection and reduction using fuzzy switching median filter,” IEEE Trans. Cons. Electron. 54, 1956–1961 (2008).
[Crossref]

IEEE Trans. Image Proc. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).
[Crossref]

Int. Endod. J. (1)

S. Patel, A. Dawood, T. P. Ford, and E. Whaites, “The potential applications of cone beam computed tomography in the management of endodontic problems,” Int. Endod. J. 40, 818–830 (2007).
[Crossref] [PubMed]

Int. J. Radiat. Oncol. Biol. Phys. (1)

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53, 1337–1349 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (7)

J. Siewerdsen, D. Moseley, S. Burch, S. Bisland, A. Bogaards, B. Wilson, and D. Jaffray, “Volume ct with a flat-panel detector on a mobile, isocentric c-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241–254 (2005).
[Crossref] [PubMed]

A. C. Kak, M. Slaney, and G. Wang, “Principles of computerized tomographic imaging,” Med. Phys. 29, 107 (2002).
[Crossref]

P. Forthmann, M. Grass, and R. Proksa, “Adaptive two-pass cone-beam artifact correction using a fov-preserving two-source geometry: A simulation study,” Med. Phys. 36, 4440–4450 (2009).
[Crossref] [PubMed]

J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and W. Y. Song, “Fast compressed sensing-based cbct reconstruction using barzilai-borwein formulation for application to on-line igrt,” Med. Phys. 39, 1207–1217 (2012).
[Crossref] [PubMed]

W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. Tsui, “Realistic ct simulation using the 4d xcat phantom,” Med. Phys. 35, 3800–3808 (2008).
[Crossref] [PubMed]

H. Gao, “Fast parallel algorithms for the x-ray transform and its adjoint,” Med. Phys. 39, 7110–7120 (2012).
[Crossref] [PubMed]

K. Yang, A. L. Kwan, S.-Y. Huang, N. J. Packard, and J. M. Boone, “Noise power properties of a cone-beam ct system for breast cancer detection,” Med. Phys. 35, 5317–5327 (2008).
[Crossref]

Phys. Med. Biol. (3)

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777 (2008).
[Crossref]

M. Grass, T. Köhler, and R. Proksa, “3d cone-beam ct reconstruction for circular trajectories,” Phys. Med. Biol. 45, 329 (2000).
[Crossref]

W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol. 51, R29 (2006).
[Crossref]

Radiographics (1)

R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker, B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental principles, technology, and applications,” Radiographics 28, 2009–2022 (2008).
[Crossref] [PubMed]

Radiother. Oncol. (1)

M. Oldham, D. Létourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-ct guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271E1 (2005).
[Crossref] [PubMed]

Other (4)

C. Maaß, F. Dennerlein, F. Noo, and M. Kachelrieß, “Comparing short scan ct reconstruction algorithms regarding cone-beam artifact performance,” in IEEE Nuclear Science Symposuim & Medical Imaging Conference, (IEEE, 2010), pp. 2188–2193.
[Crossref]

J. Hsieh, “Two-pass algorithm for cone-beam reconstruction,” in Medical Imaging 2000: Image Processing, vol. 3979 (International Society for Optics and Photonics, 2000), pp. 533–541.
[Crossref]

J. Hsieh, “A practical cone beam artifact correction algorithm,” in 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No. 00CH37149), vol. 2 (IEEE, 2000), pp. 15–71.

A. Loza, L. Mihaylova, N. Canagarajah, and D. Bull, “Structural similarity-based object tracking in video sequences,” in 2006 9th International Conference on Information Fusion, (IEEE, 2006), pp. 1–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Noiseless simulation using the two-pass algorithm with a Defrise phantom containing moderate-density (upper row) and high-density (lower row) bone material: coronal slices of (a) the Defrise phantom and (b) FDK reconstruction, and (c) a corrected image using the two-pass algorithm. The maximum cone angle of the region indicated by the yellow (green) box was 9 ° (4.5 °) and the display window was [0.05 0.45] cm−1.
Fig. 2
Fig. 2 Decomposition of the cone-beam artifacts into (a) bone- and soft-tissue-induced artifacts, and (b) less-dense bone-induced artifacts. Units are in cm−1 and the display window was [0.05 0.45].
Fig. 3
Fig. 3 A schematic diagram of the proposed method.
Fig. 4
Fig. 4 The normalized mean-squared error (NMSE) of five Defrise phantoms with different bone densities as a function of threshold percentage.
Fig. 5
Fig. 5 (a) Axial and (b) coronal slices of the Defrise phantom. Units are in cm−1 and the display window was [0.1 0.3].
Fig. 6
Fig. 6 (a) Coronal and (b) sagittal slices of the XCAT phantom at 60 keV. Units are in cm−1 and the display window was [0.1 0.3].
Fig. 7
Fig. 7 The simulation geometry of the CBCT system.
Fig. 8
Fig. 8 The bench-top CBCT system with an anti-scatter grid and a pediatric phantom.
Fig. 9
Fig. 9 Coronal slices of the Defrise phantom: (a) the reference and (b) FDK images, and corrected images using (c) the two-pass algorithm, the proposed algorithm after (d) the 1st iteration and (e) the 5th iteration and (f) the TV-IR algorithm. Units are in cm−1 and the display window was [0.1 0.3].
Fig. 10
Fig. 10 MSE value of ferrors,τ(i) for the Defrise phantom as a function of iteration number.
Fig. 11
Fig. 11 Central vertical profiles of the reference image, the original FDK image, and the corrected images using the two-pass algorithm and the proposed method, and the TV-IR algorithm for the Defrise phantom.
Fig. 12
Fig. 12 Coronal (upper) and sagittal (lower) aspects of the XCAT phantom: (a) the reference and (b) FDK images, and corrected images using (c) the two-pass algorithm and the proposed algorithm after (d) the 1st iteration and (e) the 4th iteration and (f) the TV-IR algorithm. Units are in cm−1 and the display window was [0.1 0.3].
Fig. 13
Fig. 13 MSE value of ferrors,τ(i) for the XCAT phantom as a function of iteration number.
Fig. 14
Fig. 14 Vertical profiles of the XCAT phantom image, the original FDK image, and corrected images using the two-pass algorithm and the proposed method, and the TV-IR algorithm: (a) coronal and (b) sagittal slices.
Fig. 15
Fig. 15 Coronal (upper) and sagittal (lower) aspects of the pediatric phantom: (a) FDK images and corrected images using (b) the two-pass algorithm and the proposed algorithm after (c) the 1st iteration and (d) the 5th iteration and (f) the TV-IR algorithm. Units are in cm−1 and the display window was [0.1 0.3].
Fig. 16
Fig. 16 MSE value of ferrors,τ(i) for the pediatric phantom as a function of iteration number.
Fig. 17
Fig. 17 Vertical profiles of the original FDK image and corrected images using the two-pass algorithm and the proposed method and the TV-IR algorithm for (a) coronal and (b) sagittal slices of the experimental pediatric phantom.
Fig. 18
Fig. 18 Coronal (upper) and zoomed in image (lower) of the XCAT phantom: (a) the reference image and (b) FDK image, and corrected images using the two-pass algorithm after (c) the 1st and (d) the 4th iteration. Units are in cm−1 and the display window was [0.1 0.3].

Tables (8)

Tables Icon

Table 1 Phantom Geometry

Tables Icon

Table 2 Simulation Parameters

Tables Icon

Table 3 Experimental Parameters

Tables Icon

Table 4 MSE of Defrise Phantom Results

Tables Icon

Table 5 SSIM of Defrise Phantom Results

Tables Icon

Table 6 MSE of XCAT phantom results

Tables Icon

Table 7 SSIM of XCAT Phantom Results

Tables Icon

Table 8 DSSIM of Pediatric Phantom Results

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

min f Ψ ( f ) = Af p 2 2 + λ R ( f )
R ( f i , j , k ) = i , j , k ( f i + 1 , j , k f i , j , k ) 2 + ( f i , j + 1 , k f i , j , k ) 2 + ( f i , j , k + 1 f i , j , k ) 2
MSE = 1 N k = 1 N ( f ( k ) f ref ( k ) ) 2
SSIM ( A , B ) = ( 2 μ A μ B + C 1 ) ( 2 σ A B + C 2 ) ( μ A 2 + μ B 2 + C 1 ) ( σ A 2 + σ B 2 + C 2 )
DSSIM ( A , B ) = 1 SSIM ( A , B ) 2

Metrics