Abstract

We demonstrated an ultrabroadband supercontinuum (SC) generation with high coherence property in all-normal-dispersion (ANDi) Te-based chalcogenide tapered fiber. The fibers made of Ge20As20Se15Te45 core and Ge20As20Se20Te40 cladding glasses were fabricated via isolated stacked extrusion. The waist diameter and length can be accurately controlled by a homemade tapering platform. When the core diameter of the waist was ≤14 μm, the fiber showed an ANDi characteristic in the wavelength range of 1.7–14 μm. A coherent SC generation covered 1.7–12.7 μm was generated in a 7-cm-long tapered fiber, pumped at 5.5 μm. To the best of our knowledge, this is the first SC experimental demonstration in Te-based step-index tapered fiber and the broadest SC generation in chalcogenide tapered fiber when pumped in the normal dispersion regime so far.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber

Kai Jiao, Jinmei Yao, Zheming Zhao, Xiange Wang, Nian Si, Xunsi Wang, Peng Chen, Zugang Xue, Youmei Tian, Bin Zhang, Peiqing Zhang, Shixun Dai, Qiuhua Nie, and Rongping Wang
Opt. Express 27(3) 2036-2043 (2019)

Step-index fluoride fibers with all-normal dispersion for coherent mid-infrared supercontinuum generation

Yu Li, Longfei Wang, Meisong Liao, YinYao Liu, Xia Li, Wanjun Bi, Fei Yu, Long Zhang, Yiguang Jiang, Zaiyang Wang, Longfei Zhang, Chengfeng Yuan, and Lili Hu
J. Opt. Soc. Am. B 36(11) 2972-2980 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
    [Crossref] [PubMed]
  2. T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
    [Crossref]
  3. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref] [PubMed]
  4. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [Crossref] [PubMed]
  5. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett. 37(11), 2127–2129 (2012).
    [Crossref] [PubMed]
  6. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
    [Crossref]
  7. F. Wang, K. Wang, C. Yao, Z. Jia, S. Wang, C. Wu, G. Qin, Y. Ohishi, and W. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41(3), 634–637 (2016).
    [Crossref] [PubMed]
  8. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
    [Crossref] [PubMed]
  9. T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 2-15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
    [Crossref]
  10. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
    [Crossref] [PubMed]
  11. S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
    [Crossref]
  12. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
    [Crossref]
  13. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  14. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
    [Crossref] [PubMed]
  15. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref] [PubMed]
  16. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref] [PubMed]
  17. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
    [Crossref] [PubMed]
  18. J. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12(11), 2423–2428 (2004).
    [Crossref] [PubMed]
  19. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
    [Crossref]
  20. C. Huang, M. Liao, W. Bi, X. Li, L. Hu, L. Zhang, L. Wang, G. Qin, T. Xue, D. Chen, and W. Gao, “Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion,” Photon. Res. 6(6), 601–608 (2018).
    [Crossref]
  21. M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
    [Crossref]
  22. M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
    [Crossref] [PubMed]
  23. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [Crossref]
  24. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [Crossref] [PubMed]
  25. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
    [Crossref] [PubMed]
  26. A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
    [Crossref]
  27. A. Al-Kadry, L. Li, M. E. Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40(20), 4687–4690 (2015).
    [Crossref] [PubMed]
  28. Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
    [Crossref] [PubMed]
  29. A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
    [Crossref]
  30. Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
    [Crossref] [PubMed]
  31. S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014).
    [Crossref] [PubMed]
  32. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
    [Crossref]
  33. B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
    [Crossref]
  34. B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
    [Crossref]
  35. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  36. P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005).
    [Crossref] [PubMed]
  37. I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
    [Crossref] [PubMed]
  38. Q. Li, L. Liu, Z. Jia, G. Qin, Y. Ohishi, and W. Qin, “Increased red frequency shift in coherent mid-infrared supercontinuum generation from tellurite microstructured fibers,” J. Lightwave Technol. 35(21), 4740–4746 (2017).
    [Crossref]
  39. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  40. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
    [Crossref]

2018 (3)

2017 (8)

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
[Crossref] [PubMed]

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

Q. Li, L. Liu, Z. Jia, G. Qin, Y. Ohishi, and W. Qin, “Increased red frequency shift in coherent mid-infrared supercontinuum generation from tellurite microstructured fibers,” J. Lightwave Technol. 35(21), 4740–4746 (2017).
[Crossref]

2016 (7)

F. Wang, K. Wang, C. Yao, Z. Jia, S. Wang, C. Wu, G. Qin, Y. Ohishi, and W. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41(3), 634–637 (2016).
[Crossref] [PubMed]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
[Crossref] [PubMed]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

2015 (4)

2014 (3)

2012 (1)

2011 (3)

2010 (1)

2009 (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

2008 (1)

2007 (1)

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

2004 (1)

2002 (2)

2000 (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Abouraddy, A. F.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Agger, C. S.

Al-Kadry, A.

Amraoui, M. E.

Apolonski, A.

Badding, J. V.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Ballato, J.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Bang, O.

Bartelt, H.

Ben Salem, A.

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

Bi, W.

Bizheva, K.

Bosman, G. W.

Boussard-Plédel, C.

S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014).
[Crossref] [PubMed]

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Bureau, B.

S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014).
[Crossref] [PubMed]

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Chen, D.

Chen, F.

Cheng, T.

Cherif, R.

M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
[Crossref] [PubMed]

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Cimalla, P.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Coen, S.

Cordeiro, C. M. B.

Coulombier, Q.

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Cronin-Golomb, M.

Cui, S.

Dai, S.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

Danto, S.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Diouf, M.

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
[Crossref] [PubMed]

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Domachuk, P.

Drexler, W.

Duan, Z.

Dudley, J.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Engelsen, S. B.

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

Falk, P.

Farries, M.

Feehan, J. S.

Fercher, A. F.

Feurer, T.

Fink, Y.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Frosz, M.

Fuhrberg, P.

Furniss, D.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gai, X.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Gao, W.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

George, A. K.

Han, X.

Hartung, A.

Heidt, A. M.

Hermann, B.

Hooper, L. E.

Hu, L.

Huang, C.

Huang, Y.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Jia, Z.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Knight, J. C.

Koch, E.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Krok, P.

Kubat, I.

Kumar, A.

Lamrini, S.

Li, G.

Li, L.

Li, Q.

Li, X.

Liao, M.

Liu, L.

Liu, S.

Liu, Z.

Lloyd, G. R.

Lucas, J.

S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014).
[Crossref] [PubMed]

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Lucas, P.

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Luo, B.

Luther-Davies, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Matsumoto, M.

Messaddeq, Y.

Mittasch, M.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Moselund, P. M.

Mosley, P. J.

Muir, A. C.

Nagasaka, K.

Nallala, J.

Napier, B.

Nie, Q.

North, T.

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Ohishi, Y.

Omenetto, F. G.

Ou, H.

Pan, Z.

Peng, X.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

Petersen, C. R.

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Povazay, B.

Price, J. H. V.

Prtljaga, N.

Qi, S.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Qin, G.

Qin, W.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ringsted, T.

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

Rochette, M.

Rohwer, E. G.

Russell, P. S. J.

Saghaei, H.

Saini, T. S.

Salem, A. B.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Sato, K. I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Sattmann, H.

Scherzer, E.

Scholle, K.

Schwoerer, H.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

Shen, X.

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Siesler, H. W.

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

Sinha, R. K.

Stolyarov, A. M.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Stone, N.

Sujecki, S.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sun, L.

Sun, Y.

Suzuki, T.

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Tao, G.

Tezuka, H.

Tuan, T. H.

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wague, A.

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
[Crossref] [PubMed]

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Walther, J.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Wang, A.

Wang, F.

Wang, K.

Wang, L.

Wang, R.

Wang, S.

Wang, X.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

Wang, Y.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Ward, J.

Wilhelm, A. A.

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Wolchover, N. A.

Wu, C.

Wu, Y.

Xu, D.

Xu, H.

Xu, P.

Xu, Y.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

Xue, T.

Xue, X.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Yan, X.

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett. 37(11), 2127–2129 (2012).
[Crossref] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Yang, A.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Yang, P.

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

Yang, Z.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Yao, C.

You, C.

Yu, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zghal, M.

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Zhai, C.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhang, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhang, L.

Zhang, P.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zhao, Z.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Adv. Mater. (1)

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Adv. Opt. Photonics (1)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Appl. Sci. (Basel) (1)

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

Electron. Lett. (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Infrared Phys. Technol. (1)

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

J. Biomed. Opt. (1)

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

J. Cereal Sci. (1)

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

J. Lightwave Technol. (3)

J. Mod. Opt. (1)

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Eng. (1)

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Opt. Express (9)

J. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12(11), 2423–2428 (2004).
[Crossref] [PubMed]

P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005).
[Crossref] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[Crossref] [PubMed]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
[Crossref] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[Crossref] [PubMed]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014).
[Crossref] [PubMed]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

Opt. Lett. (10)

A. Al-Kadry, L. Li, M. E. Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40(20), 4687–4690 (2015).
[Crossref] [PubMed]

F. Wang, K. Wang, C. Yao, Z. Jia, S. Wang, C. Wu, G. Qin, Y. Ohishi, and W. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41(3), 634–637 (2016).
[Crossref] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett. 37(11), 2127–2129 (2012).
[Crossref] [PubMed]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
[Crossref] [PubMed]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref] [PubMed]

Photon. Res. (1)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Core and cladding glass rods. (b) Extruded preform. Inset: cross-section of the preform. (c) A roll of well-fabricated step-index fiber. Inset: cross-section image of the fiber. (d) Tapered fiber with the core waist diameter of ∼80μm. Inset: I untapered region, II taper waist, III transition region.
Fig. 2
Fig. 2 Measured refractive index of the fiber core and cladding glasses and calculated NA of the fiber.
Fig. 3
Fig. 3 Measured optical loss in the fiber. Inset: Transmittance spectrum of the core glass sample.
Fig. 4
Fig. 4 Calculated fundamental mode dispersion characteristic curves of Te-based ChG fibers with various core diameters.
Fig. 5
Fig. 5 Measured SC spectral generated from Te-based ChG tapered fiber with different pumping wavelengths of (a) 4.5 μm, (b) 5.5 μm, and (c) 6.5 μm and (d) an untapered fiber pumped at 5.5 μm.
Fig. 6
Fig. 6 Simulated the SC spectrum (green curve, left axis) and its coherence property (red curve, right axis) in Te-based tapered fiber.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ )1= i=1 3 B i λ 2 λ 2 C i .
| g 12 (1) ( λ, t 1 t 2 ) |=| E 1 ( λ, t 1 ) E 2 ( λ, t 2 ) | E 1 ( λ, t 1 ) | 2 | E 2 ( λ, t 2 ) | 2 |

Metrics