J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]
W. Charee and V. Tangwarodomnukun, “Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water,” Opt. Laser Technol. 100, 230–243 (2018).
[Crossref]
C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref]
[PubMed]
Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]
J. Lu and T. M. Kowalewski, “Flexible, stretchable skin sensors for two-dimensional position tracking in medical simulators,” ASME J. Med. Devices 9, 020927 (2015).
M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]
H. Zhang and M. Chiao, “Anti-fouling coatings of Poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng. 35(2), 143–155 (2015).
[Crossref]
[PubMed]
J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref]
[PubMed]
E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref]
[PubMed]
M. H. Mahdieh and M. Akbari Jafarabadi, “Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique,” Appl. Phys., A Mater. Sci. Process. 116(3), 1211–1220 (2014).
[Crossref]
T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]
E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref]
[PubMed]
K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]
S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]
K. Sasaki and N. Takada, “Liquid-phase laser ablation,” Pure Appl. Chem. 82(6), 1317–1327 (2010).
[Crossref]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref]
[PubMed]
Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]
A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref]
[PubMed]
Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]
A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
[Crossref]
Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]
J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
[Crossref]
Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. Engl. 37(5), 550–575 (1998).
[Crossref]
[PubMed]
M. H. Mahdieh and M. Akbari Jafarabadi, “Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique,” Appl. Phys., A Mater. Sci. Process. 116(3), 1211–1220 (2014).
[Crossref]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref]
[PubMed]
J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref]
[PubMed]
E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref]
[PubMed]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref]
[PubMed]
E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref]
[PubMed]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
W. Charee and V. Tangwarodomnukun, “Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water,” Opt. Laser Technol. 100, 230–243 (2018).
[Crossref]
J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]
Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]
H. Zhang and M. Chiao, “Anti-fouling coatings of Poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng. 35(2), 143–155 (2015).
[Crossref]
[PubMed]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref]
[PubMed]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref]
[PubMed]
M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]
M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]
J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]
Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]
Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]
Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]
Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]
Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]
R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]
S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]
Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref]
[PubMed]
S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]
S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
J. Lu and T. M. Kowalewski, “Flexible, stretchable skin sensors for two-dimensional position tracking in medical simulators,” ASME J. Med. Devices 9, 020927 (2015).
A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
[Crossref]
Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]
A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref]
[PubMed]
S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]
J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]
K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]
J. Lu and T. M. Kowalewski, “Flexible, stretchable skin sensors for two-dimensional position tracking in medical simulators,” ASME J. Med. Devices 9, 020927 (2015).
M. H. Mahdieh and M. Akbari Jafarabadi, “Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique,” Appl. Phys., A Mater. Sci. Process. 116(3), 1211–1220 (2014).
[Crossref]
M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref]
[PubMed]
Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]
Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]
Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]
Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]
J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref]
[PubMed]
S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]
T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]
T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]
T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]
T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]
R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]
K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]
Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]
J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
[Crossref]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]
K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]
J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]
Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]
J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref]
[PubMed]
E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref]
[PubMed]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref]
[PubMed]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
K. Sasaki and N. Takada, “Liquid-phase laser ablation,” Pure Appl. Chem. 82(6), 1317–1327 (2010).
[Crossref]
Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref]
[PubMed]
C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref]
[PubMed]
J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref]
[PubMed]
E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref]
[PubMed]
Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]
Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]
R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]
K. Sasaki and N. Takada, “Liquid-phase laser ablation,” Pure Appl. Chem. 82(6), 1317–1327 (2010).
[Crossref]
Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]
Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]
W. Charee and V. Tangwarodomnukun, “Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water,” Opt. Laser Technol. 100, 230–243 (2018).
[Crossref]
A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref]
[PubMed]
M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]
Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]
J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
[Crossref]
J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]
Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]
J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref]
[PubMed]
Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. Engl. 37(5), 550–575 (1998).
[Crossref]
[PubMed]
C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref]
[PubMed]
Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. Engl. 37(5), 550–575 (1998).
[Crossref]
[PubMed]
J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
[Crossref]
Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]
H. Zhang and M. Chiao, “Anti-fouling coatings of Poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng. 35(2), 143–155 (2015).
[Crossref]
[PubMed]
J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]
J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]
J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]
C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref]
[PubMed]
J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref]
[PubMed]
T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]
Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. Engl. 37(5), 550–575 (1998).
[Crossref]
[PubMed]
Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]
Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]
M. H. Mahdieh and M. Akbari Jafarabadi, “Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique,” Appl. Phys., A Mater. Sci. Process. 116(3), 1211–1220 (2014).
[Crossref]
A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]
J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]
R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]
J. Lu and T. M. Kowalewski, “Flexible, stretchable skin sensors for two-dimensional position tracking in medical simulators,” ASME J. Med. Devices 9, 020927 (2015).
S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]
E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref]
[PubMed]
C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref]
[PubMed]
H. Zhang and M. Chiao, “Anti-fouling coatings of Poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng. 35(2), 143–155 (2015).
[Crossref]
[PubMed]
K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]
Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]
J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
[Crossref]
K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref]
[PubMed]
E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref]
[PubMed]
W. Charee and V. Tangwarodomnukun, “Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water,” Opt. Laser Technol. 100, 230–243 (2018).
[Crossref]
A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
[Crossref]
V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref]
[PubMed]
Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]
A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref]
[PubMed]
M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]
K. Sasaki and N. Takada, “Liquid-phase laser ablation,” Pure Appl. Chem. 82(6), 1317–1327 (2010).
[Crossref]
S. S. Saliterman, FUNDAMENTALS OF BioMEMS and Medical Microdevices: Silicon Microfabrication, 2.2 Lithography (SPIE, 2006).