Abstract

Bubbles can be formed by focusing a high-power laser in a liquid. Based on this phenomenon, the present study demonstrated a novel technique, referred to as microFabrication using Laser-Induced Bubbles (microFLIB), for the microfabrication of the thermoset polymer polydimethylsiloxane (PDMS). A conventional nanosecond green laser was focused at the interface between uncured PDMS and a metal target and scanned to generate a line of bubbles at the boundary. The hemispherical shapes of these bubbles produced a groove on the rear side of the PDMS substrate following subsequent thermal curing. After the fabrication of such specimens, metal films could be selectively deposited along the grooves by electroless plating. This process allows rapid, high-quality microfluidic fabrication with potential applications to biochips.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Selective metallization on insulator surfaces with femtosecond laser pulses

Jian Xu, Yang Liao, Huidan Zeng, Zenghui Zhou, Haiyi Sun, Juan Song, Xinshun Wang, Ya Cheng, Zhizhan Xu, Koji Sugioka, and Katsumi Midorikawa
Opt. Express 15(20) 12743-12748 (2007)

Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser

Jie Zhang, Koji Sugioka, and Katsumi Midorikawa
Opt. Lett. 23(18) 1486-1488 (1998)

Mechanism and morphology control of underwater femtosecond laser microgrooving of silicon carbide ceramics

Qingzhen Zheng, Zhengjie Fan, Gedong Jiang, Aifei Pan, Zhaoxuan Yan, Qingyan Lin, Jianlei Cui, Wenjun Wang, and Xuesong Mei
Opt. Express 27(19) 26264-26280 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
    [Crossref] [PubMed]
  2. H. Zhang and M. Chiao, “Anti-fouling coatings of Poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng. 35(2), 143–155 (2015).
    [Crossref] [PubMed]
  3. S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
    [Crossref]
  4. J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
    [Crossref] [PubMed]
  5. J. Lu and T. M. Kowalewski, “Flexible, stretchable skin sensors for two-dimensional position tracking in medical simulators,” ASME J. Med. Devices 9, 020927 (2015).
  6. J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
    [Crossref]
  7. E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
    [Crossref] [PubMed]
  8. A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
    [Crossref] [PubMed]
  9. S. S. Saliterman, FUNDAMENTALS OF BioMEMS and Medical Microdevices: Silicon Microfabrication, 2.2 Lithography (SPIE, 2006).
  10. E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
    [Crossref] [PubMed]
  11. Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. Engl. 37(5), 550–575 (1998).
    [Crossref] [PubMed]
  12. K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
    [Crossref]
  13. Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
    [Crossref]
  14. Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
    [Crossref]
  15. J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
    [Crossref]
  16. Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
    [Crossref]
  17. Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
    [Crossref]
  18. A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
    [Crossref]
  19. M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
    [Crossref]
  20. V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
    [Crossref] [PubMed]
  21. T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
    [Crossref]
  22. W. Charee and V. Tangwarodomnukun, “Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water,” Opt. Laser Technol. 100, 230–243 (2018).
    [Crossref]
  23. R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
    [Crossref]
  24. M. H. Mahdieh and M. Akbari Jafarabadi, “Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique,” Appl. Phys., A Mater. Sci. Process. 116(3), 1211–1220 (2014).
    [Crossref]
  25. A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
    [Crossref]
  26. K. Sasaki and N. Takada, “Liquid-phase laser ablation,” Pure Appl. Chem. 82(6), 1317–1327 (2010).
    [Crossref]
  27. C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
    [Crossref] [PubMed]

2018 (2)

J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]

W. Charee and V. Tangwarodomnukun, “Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water,” Opt. Laser Technol. 100, 230–243 (2018).
[Crossref]

2017 (2)

C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref] [PubMed]

Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]

2016 (1)

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

2015 (4)

R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]

J. Lu and T. M. Kowalewski, “Flexible, stretchable skin sensors for two-dimensional position tracking in medical simulators,” ASME J. Med. Devices 9, 020927 (2015).

M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]

H. Zhang and M. Chiao, “Anti-fouling coatings of Poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng. 35(2), 143–155 (2015).
[Crossref] [PubMed]

2014 (4)

J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref] [PubMed]

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref] [PubMed]

M. H. Mahdieh and M. Akbari Jafarabadi, “Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique,” Appl. Phys., A Mater. Sci. Process. 116(3), 1211–1220 (2014).
[Crossref]

T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]

2013 (1)

E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref] [PubMed]

2012 (1)

K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]

2011 (1)

S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]

2010 (1)

K. Sasaki and N. Takada, “Liquid-phase laser ablation,” Pure Appl. Chem. 82(6), 1317–1327 (2010).
[Crossref]

2009 (2)

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref] [PubMed]

2006 (2)

Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

2005 (1)

Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]

2004 (2)

A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
[Crossref]

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]

1999 (1)

J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
[Crossref]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. Engl. 37(5), 550–575 (1998).
[Crossref] [PubMed]

Akbari Jafarabadi, M.

M. H. Mahdieh and M. Akbari Jafarabadi, “Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique,” Appl. Phys., A Mater. Sci. Process. 116(3), 1211–1220 (2014).
[Crossref]

Alarid, E. T.

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

Amano, K.

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

Amendola, V.

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref] [PubMed]

Banlunara, W.

J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref] [PubMed]

Beebe, D. J.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref] [PubMed]

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

Borenstein, J.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

Brady, A. C.

E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref] [PubMed]

Carver, K. C.

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

Charee, W.

W. Charee and V. Tangwarodomnukun, “Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water,” Opt. Laser Technol. 100, 230–243 (2018).
[Crossref]

Chen, J.

J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]

Chen, S. C.

Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]

Chiao, M.

H. Zhang and M. Chiao, “Anti-fouling coatings of Poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng. 35(2), 143–155 (2015).
[Crossref] [PubMed]

Domenech, M.

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

Ellison-Zelski, S. J.

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

Fraker, C. A.

E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref] [PubMed]

Fukami, K.

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

Fulton, A. L.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref] [PubMed]

Ganjali, M.

M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]

M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]

Gao, Q.

J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]

Gomi, Y.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]

Gorday, K. A. V.

Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]

Gregorcic, P.

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

Hanada, Y.

Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]

Honda, T.

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

Hsieh, Y. K.

Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]

Hsu, K. P.

Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]

Huang, W. L.

Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]

Ito, Y.

R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]

Jeong, S. M.

S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]

Kawaguchi, Y.

Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]

Kawasaki, A.

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

Khademhosseini, A.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

Kim, J. H.

S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]

Kim, S. H.

S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]

Koepsel, J. T.

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

Kowalewski, T. M.

J. Lu and T. M. Kowalewski, “Flexible, stretchable skin sensors for two-dimensional position tracking in medical simulators,” ASME J. Med. Devices 9, 020927 (2015).

Kruusing, A.

A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
[Crossref]

Kurosaki, R.

Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]

Langer, R.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

Lee, S. H.

S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]

Li, H.

J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]

Liu, K.

K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]

Lu, J.

J. Lu and T. M. Kowalewski, “Flexible, stretchable skin sensors for two-dimensional position tracking in medical simulators,” ASME J. Med. Devices 9, 020927 (2015).

Mahdieh, M. H.

M. H. Mahdieh and M. Akbari Jafarabadi, “Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique,” Appl. Phys., A Mater. Sci. Process. 116(3), 1211–1220 (2014).
[Crossref]

Marashi, S. M. B.

M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]

Matsumoto, A.

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

Meneghetti, M.

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref] [PubMed]

Midorikawa, K.

Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]

Miyamoto, I.

Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]

Mokkaphan, J.

J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref] [PubMed]

Moon, J. H.

S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]

Murphy, W. L.

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

Narazaki, A.

Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]

Nguyen, Q. D.

T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]

Nguyen, T. B.

T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]

Nguyen, T. D.

T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]

Nguyen, T. T.

T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]

Nguyen, T. T. P.

R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]

NiCkolov, Z.

K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]

Niino, H.

Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]

J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
[Crossref]

Nishi, N.

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

Noh, H. Moses

K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]

Oh, J.

K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]

Omisore, O. M.

J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]

Otsuki, O.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]

Palaga, T.

J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref] [PubMed]

Pedraza, E.

E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref] [PubMed]

Regehr, K. J.

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

Sackmann, E. K.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref] [PubMed]

Sakka, T.

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

Sasaki, K.

K. Sasaki and N. Takada, “Liquid-phase laser ablation,” Pure Appl. Chem. 82(6), 1317–1327 (2010).
[Crossref]

Sato, T.

Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]

Schuler, L. A.

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

Shih, C. Y.

C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref] [PubMed]

Shugaev, M. V.

C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref] [PubMed]

Sombuntham, P.

J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref] [PubMed]

Stabler, C. L.

E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref] [PubMed]

Sugioka, K.

Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]

Sugiura, T.

R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]

Takada, N.

K. Sasaki and N. Takada, “Liquid-phase laser ablation,” Pure Appl. Chem. 82(6), 1317–1327 (2010).
[Crossref]

Takai, H.

Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]

Takase, H.

Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]

Tamura, A.

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

Tanabe, R.

R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]

Tangwarodomnukun, V.

W. Charee and V. Tangwarodomnukun, “Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water,” Opt. Laser Technol. 100, 230–243 (2018).
[Crossref]

Vacanti, J. P.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

Vahdatkhah, P.

M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]

Wang, J.

Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]

J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
[Crossref]

Wang, L.

J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]

Wang, T.

Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]

Wanichwecharungruang, S.

J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref] [PubMed]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. Engl. 37(5), 550–575 (1998).
[Crossref] [PubMed]

Wu, C.

C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref] [PubMed]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. Engl. 37(5), 550–575 (1998).
[Crossref] [PubMed]

Yabe, A.

J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
[Crossref]

Yamaoka, H.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]

Zhang, H.

H. Zhang and M. Chiao, “Anti-fouling coatings of Poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng. 35(2), 143–155 (2015).
[Crossref] [PubMed]

Zhang, J.

J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]

J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]

Zheng, J.

J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]

Zhigilei, L. V.

C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

J. Mokkaphan, W. Banlunara, T. Palaga, P. Sombuntham, and S. Wanichwecharungruang, “Silicone Surface with Drug Nanodepots for Medical Devices,” ACS Appl. Mater. Interfaces 6(22), 20188–20196 (2014).
[Crossref] [PubMed]

Adv. Nat. Sci.: Nanosci. Nanotechnol. (1)

T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, and T. T. Nguyen, “Preparation of platinum nanoparticles in liquids by laser ablation method,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 5(3), 035011 (2014).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. Engl. 37(5), 550–575 (1998).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (4)

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1001–1003 (2004).
[Crossref]

Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys., A Mater. Sci. Process. 80(1), 111–115 (2005).
[Crossref]

M. H. Mahdieh and M. Akbari Jafarabadi, “Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique,” Appl. Phys., A Mater. Sci. Process. 116(3), 1211–1220 (2014).
[Crossref]

A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorcic, N. Nishi, K. Amano, K. Fukami, and T. Sakka, “Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe,” Appl. Phys., A Mater. Sci. Process. 122(3), 234 (2016).
[Crossref]

Appl. Sci. (Basel) (1)

J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O. M. Omisore, L. Wang, and H. Li, “Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications,” Appl. Sci. (Basel) 8(3), 345–360 (2018).
[Crossref]

Appl. Surf. Sci. (1)

R. Tanabe, T. T. P. Nguyen, T. Sugiura, and Y. Ito, “Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography,” Appl. Surf. Sci. 351, 327–331 (2015).
[Crossref]

ASME J. Med. Devices (1)

J. Lu and T. M. Kowalewski, “Flexible, stretchable skin sensors for two-dimensional position tracking in medical simulators,” ASME J. Med. Devices 9, 020927 (2015).

Biomed. Eng. Lett. (1)

S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, and S. H. Lee, “Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device,” Biomed. Eng. Lett. 1(3), 199–203 (2011).
[Crossref]

J. Biomater. Sci. Polym. Ed. (1)

E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, “Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications,” J. Biomater. Sci. Polym. Ed. 24(9), 1041–1056 (2013).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

C. Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, “Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water,” J. Colloid Interface Sci. 489, 3–17 (2017).
[Crossref] [PubMed]

J. Med. Biol. Eng. (1)

H. Zhang and M. Chiao, “Anti-fouling coatings of Poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng. 35(2), 143–155 (2015).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

K. Liu, Z. NiCkolov, J. Oh, and H. Moses Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, and H. Niino, “Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches,” J. Photochem. Photobiol. Chem. 182(3), 319–324 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. Wang, H. Niino, and A. Yabe, “Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 7A), L761–L763 (1999).
[Crossref]

Lab Chip (1)

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip 9(15), 2132–2139 (2009).
[Crossref] [PubMed]

Nature (1)

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

W. Charee and V. Tangwarodomnukun, “Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water,” Opt. Laser Technol. 100, 230–243 (2018).
[Crossref]

Opt. Lasers Eng. (1)

A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
[Crossref]

Phys. Chem. Chem. Phys. (1)

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref] [PubMed]

Polymers (Basel) (1)

Y. K. Hsieh, S. C. Chen, W. L. Huang, K. P. Hsu, K. A. V. Gorday, T. Wang, and J. Wang, “Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,” Polymers (Basel) 9(12), 242 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

Procedia Materials Science (1)

M. Ganjali, M. Ganjali, P. Vahdatkhah, and S. M. B. Marashi, “Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase,” Procedia Materials Science 11, 359–363 (2015).
[Crossref]

Pure Appl. Chem. (1)

K. Sasaki and N. Takada, “Liquid-phase laser ablation,” Pure Appl. Chem. 82(6), 1317–1327 (2010).
[Crossref]

Other (1)

S. S. Saliterman, FUNDAMENTALS OF BioMEMS and Medical Microdevices: Silicon Microfabrication, 2.2 Lithography (SPIE, 2006).

Supplementary Material (1)

NameDescription
» Visualization 1       A focused laser beam

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustrations of the microFLIB process. (a) The experimental setup and (b) enlarged images showing the Cu/uncured PDMS boundary during laser irradiation. The focused laser beam was scanned parallel to the Cu surface to generate a line of bubbles.
Fig. 2
Fig. 2 Microscopy images of laser-induced bubbles at the Cu/uncured PDMS boundary after the microFLIB process, taken from the (a) top and (b) (Visualization 1) side of the specimen. The generated bubbles remain at the boundary for more than 3 h and then collapse from the edge. (c) A photographic image of the lines of microgrooves fabricated on the rear side of the PDMS. (d) An enlarged LSM image of the groove and (e) the associated cross-sectional profile. The microgroove with aspect ratio of approximately 1 can be obtained by the microFLIB of single laser scanning.
Fig. 3
Fig. 3 (a) LSM image of the microgroove fabricated using a low laser scanning speed, and (b) and (c) cross-sectional profiles obtained from (a) and Fig. 2(c), respectively. A microgroove with a wavy shape at the groove base is fabricated using a low scanning speed, while a smooth surface at the base is fabricated using a higher scanning speed.
Fig. 4
Fig. 4 (a) Surface roughness at the microgroove base as a function of overlap ratio at various laser powers, and (b) microgroove dimensions as functions of the laser power. A smooth microgroove with hemispherical shape can be obtained using an appropriate overlap ratio of the laser beam during the microFLIB. The size of the microgroove can be controlled by varying the laser power.
Fig. 5
Fig. 5 Microscopy images of the fabricated microgroove (a) before and (b) after the electroless Cu plating, and (c) an enlarged image of the area indicated by the circle in (b) after the tape test. (d) A cross-sectional image obtained from (c). Cu thin film is selectively deposited on the fabricated microgroove after the plating.
Fig. 6
Fig. 6 Microscopy images (upper) and enlarged elemental maps (lower) of a microgroove after (a) the microFLIB process, (b) hydrochloric acid treatment and (c) electroless plating without the hydrochloric acid treatment. In the EDX maps, Cu and Si show as red and green, respectively.
Fig. 7
Fig. 7 Time-lapse images of the laser-induced bubbles formed by (a) a single pulse and (b) ten pulses of the nanosecond laser. Following the multiple laser irradiations, membrane-like structure was clearly observed at the Cu/lower part of the bubble.
Fig. 8
Fig. 8 Schematic illustration of the microFLIB mechanism. Following laser irradiation, membrane-like structures are formed at the metal/bubble boundary (Shaded areas represent the membrane-like structures.).
Fig. 9
Fig. 9 (a) Schematic illustration and (b) a photographic image of the microfluidic chip. Enlarged microscopy images of (c) the microfluidic channel fabricated by microFLIB and (d) the same microfluidic channel filled with water containing blue ink.

Tables (1)

Tables Icon

Table 1 Effects of laser irradiation conditions on the waviness at the base of the fabricated microgroove. ○: Arithmetic mean is less than 1 μm. × : Arithmetic mean is more than 1 μm.

Metrics